淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407200713561600
中文論文名稱 具單一組線圈之永磁同步自軸承馬達研製
英文論文名稱 Design and Implementation of a PM Synchronous Self-Bearing Motor with a Single Set of Windings
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 林政良
研究生英文姓名 Cheng-Liang Lin
學號 694340547
學位類別 碩士
語文別 中文
口試日期 2007-07-05
論文頁數 73頁
口試委員 指導教授-楊勝明
委員-謝劍書
委員-林逢傑
中文關鍵字 永磁同步馬達  徑向力控制  自軸承 
英文關鍵字 permanent magnet synchronous motor  radial force control  self-bearing 
學科別分類 學科別應用科學機械工程
中文摘要 本論文主要目的為建立6/4單一線圈型永磁同步自軸承馬達之徑向力控制法則,且將所提出之法則建立在自軸承控制系統,其馬達繞組結構並非為Y接而以獨立六極繞組取代之。透過有限元素分析軟體分析並說明[7]之徑向力數學模式,此模式為轉子角度與激磁電流之函數,並且在模式中考慮互感之影響,由於其模式僅能使用在一特殊馬達上,故透過本論文提出之單一線圈型繞組轉換模式以突破其方法限制。其中以向量控制理論作為其轉矩及徑向力模式基礎。此自軸承馬達之轉子僅需要組裝單邊軸承組之狀況下即可運作,用以限制其軸向移動,而下端則移除原有之軸承,所以轉子可以自由地徑向移動。
英文摘要 The main objective of this research investigates the control of radial force of 6/4-pole PMSM, and the applications of this scheme to self-bearing control system. The six single-pole winding structure for the proposed motor replaces Y-connection winding structure. The radial force mathematical models of the motor [7] are analyzed and developed through finite-element analysis. The radial force is modeled as a function of the rotor angle and the excitation current. Mutual inductance is included in the modeling. This research makes a breakthrough by single-pole winding structure transfer model as a result of this model only can apply in particular motor. And torque control use the principle of vector control. In this self-bearing motor, the rotor needs only unilateral bearing combination and constrain of axial movement, and the other side can move freely in the radial direction.
論文目次 目錄
中文摘要I
英文摘要II
誌謝III
目錄IV
圖目錄VI
表目錄VIII
符號說明IX
第一章 緒論1
1.1研究背景與目的1
1.2文獻回顧4
1.3論文目的8
1.4論文大綱8

第二章 永磁同步自軸承馬達模式與控制9
2.1PMSM轉矩模式10
2.2徑向力產生原理介紹16
2.3複合線圈型永磁同步自軸承馬達徑向力模式20
2.4複合線圈型自軸承PMSM徑向力控制25
2.5單一線圈型自軸承PMSM徑向力控制27

第三章 永磁同步自軸承馬達設計與製作32
3.1馬達基本設計33
3.2磁路設計36
3.3電氣設計41
3.4馬達設計修正49
3.5複合線圈與單一線圈型自軸承PMSM之徑向力模擬比較50

第四章 實驗結果54
4.1實驗系統54
4.2實驗結果63

第五章 結論與未來研究方向67
5.1結論67
5.2未來研究方向68

圖目錄

圖1.1磁力軸承工具機主軸馬達及其內部結構圖[3]3
圖1.2以磁力軸承懸浮馬達轉子之離心式壓縮機內部結構圖[4]3
圖1.3馬達之懸浮力示意圖,(a)細長型轉子,(b)扁平型轉子3
圖2.1複合線圈與單一線圈型自軸承PMSM9
圖2.2永磁同步馬達等效電路圖10
圖2.3d-q軸與定子軸關係圖13
圖2.4固定軸與轉子軸幾何關係圖14
圖2.5兩相四極PMSM的徑向力產生示意圖16
圖2.6加入兩極懸浮繞組的兩相四極PMSM徑向力產生示意圖18
圖2.7加入六極懸浮繞組的兩相四極PMSM徑向力產生示意圖19
圖2.8三相4極6槽複合線圈型自軸承PMSM結構圖20
圖2.9轉子偏離中心位置時各繞組受磁通連結情況示意圖23
圖2.10複合線圈型自軸承PMSM控制系統方塊圖26
圖2.11單一線圈型自軸承PMSM結構圖27
圖2.12單一線圈型自軸承PMSM控制系統方塊圖31
圖3.1PMSM設計流程圖32
圖3.2磁鐵工作點示意圖36
圖3.3等效磁路圖38
圖3.4定子細部尺寸符號對照圖40
圖3.550RM600之BH曲線40
圖3.6PMSM繞組結構圖42
圖3.7槽形示意圖44
圖3.8激磁方式示意圖46
圖3.9單一線圈平均繞線長度示意圖46
圖3.10馬達損失示意圖47
圖3.11PMSM設計尺寸圖48
圖3.12自軸承PMSM設計尺寸圖50
圖3.13固定轉子角度 且無轉矩電流之徑向力模擬結果51
圖3.14固定轉子角度 且有轉矩電流之徑向力模擬結果52
圖3.15轉子機械角與徑向力角度同步且有轉矩電流下徑向力模擬結果53
圖4.1實驗系統架構圖54
圖4.2雙極式後級電壓轉換器55
圖4.3雙極式後級電壓轉換器切換模式56
圖4.4雙極式後級電壓轉換器切換模式下之電流示意圖57
圖4.5自軸承PMSM實作尺寸圖58
圖4.6定子照片59
圖4.7轉子照片60
圖4.8自軸承系統機構照片61
圖4.9控制程式流程圖62
圖4.10θm=0∘,∣F*∣=5N,∠F*由0∘~360∘以4Hz旋轉下之量測結果63
圖4.11θm=0∘,徑向力大小命令不同,∠F*由0∘~360∘以4 Hz旋轉下之徑向力,(a)∣F*∣=1N,(b)∣F*∣=3N,(b)∣F*∣=5N64
圖4.12轉子角度不同,∣F*∣=5N,∠F*由0∘~360∘以4 Hz旋轉之徑向力64
圖4.13轉速900rpm,∣F*∣=5N,∠F*由0∘~360∘以4 Hz旋轉下之量測結果,(a)六極電流回授,(b)徑向力65
圖4.14轉速900rpm,徑向力大小命令不同,∠F*由0∘~360∘以4 Hz旋轉下之徑向力,(a)∣F*∣=1 N,(b)∣F*∣=3 N,(b)∣F*∣=5
N66

表目錄

表3.1各類磁鐵比較表34
表3.2PMSM規格與主要尺寸表35
表3.3馬達定子細部尺寸表41
表3.4銅線型式表43
表3.5PMSM設計模擬結果48
表3.6自軸承PMSM控制參數表50
表4.1凡立水性質表58



參考文獻 [1]H. Toliyat and G. Kliman, eds., “Handbook of Electric Motors”, 2nd edition, Marcel Dekker Inc., 2004.
[2]黃忠良, 磁懸浮與磁力軸承, 復漢出版社, 1994.
[3]http://www.mmsonline.com/articles/040104.html
[4]http://www.turbocor.com/literature/pdfs/articles/frictionless.pdf
[5]H. Hoshi, T. Shinshi, and S. Takatani, “Third-Generation Blood Pumps With Mechanical Noncontact Magnetic Bearings”, Artificial Organs, Vol. 30, No. 5 , 2006, pp. 324-338.
[6]陳景欣與盧博堅, “直流無刷馬達於左心室輔助器之應用”, 馬達技術研究中心電子報, 第68期, 民國93年5月.
[7]A. Chiba﹐T. Fukao﹐O. Ichikawa﹐M. Oshima﹐M. Takemoto﹐and D. Dorrell, “Magnetic Bearings and Bearingless Drives”, Elsevier’s Science & Technology, 2005.
[8]許智翔, “應用於軸流式泵之單軸磁力軸承設計與控制改善”, 淡江大學機械與機電工程學系碩士論文, 民國94年6月.
[9]G. Schweitzer, H. Bleuler, and A. Traxler, “Active Magnetic Bearings”, Hochschulverlag AG an der ETH Zurich, 1994.
[10]D. W. Novotny and T. A. Lipo, “Vector Control and Dynamics of AC Drives”, Oxford Science Publications, 1996.
[11]P. K. Hermann, “A Radial Active Magnetic Bearing Having a Rotating Drive”, London Patent No. 1500809, Feb., 1974.
[12]P. Meinke and G. Flachenecker, “Electromagnetic Drive Assembly for Rotary Bodies Using a Magnetically Mounted Rotor”, United States Patent No. 3988658, Jul. 29, 1974.
[13]T. Higuchi, “Magnetically Floating Actuator Having Angular Positioning Function”, United States Patent No. 4683391, Mar. 12, 1985.
[14]R. Bosch, “Development of a Bearingless Electric Motor”, ICEM, 1988, pp. 373-375.
[15]A. Chiba and T. Fukao, “Electric Rotating Machinery with Radial Position Control Windings and its Rotor Radial Position Controller”, Japan Patent No. 2835522, Jan. 1989.
[16]A. Chiba, T. Deido, T. Fukao and M. Rahman, “An Analysis of Bearingless AC Motors”, IEEE Transactions on Energy Conversion, Vol. 9, No. 1, Mar., 1994, pp. 61-68.
[17]M. Ooshima, S. Miyazawa, A. Chiba, F. Nakamura, T. Fukao, “Performance Evaluation and Test Results of a 11,000r/min, 4kW Surface-Mounted Permanent Magnet-Type Bearingless Motor”, Proc. of the 7th Int. Sym. Magnetic Bearings, 2000, pp.377-382.
[18]J. Bichsel, “Contributions on Bearingless Electric Motors”, ETH Thesis No. 9303, 1990.
[19]R. Schoeb, “Contributions on Bearingless Asynchronous Machines”, ETH Thesis No. 10417, 1993.
[20]W. Amrhein, S. Silber and K. Nenninger, “Levitation Forces in Bearingless Permanent Magnet Motors”, IEEE Transactions on Magnetics, Vol. 35, No. 5, Sep. 1999, pp. 4052-4054.
[21]H. Kanebako and Y. Okada, “New Design of Hybrid-Type Self-bearing Motor for Small, High-Speed Spindle”, IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 1, Dec. 2003, pp.111-119.
[22]Fengxiang Wang, Baoguo Wang, and Longya Xu, “A Novel Bearingless Motor with Hybrid Rotor Structure and Levitation Force Control”, IEEE-IAS, Oct. 2002, pp.212-215.
[23]N. Heng, Y. He, Y. Zhou, “Analytical Modeling of the Magnetic Levitation Force for an Inset Permanent Magnet Type Bearingless motor”, ICEMS 2005, pp. 893-897.
[24]M. Casemore and L. Stephens, “Actuator Gains for a Toothless Permanent-Magnet Self-bearing Motor”, IEEE Transactions on Magnetics, Vol. 35, No. 6, Nov. 1999, pp. 4482-4489.
[25]S. Williamsons, “Construction of Electrical Machine”, United States Patent No. 4792710, Feb., 1987.
[26]A. O. Salazar, W. Dunford, R. Stephan and E. Watanabe, “A Magnetic Bearing System Using Capacitive Sensors for Position Measurement”, IEEE Transactions on Magnetics, Vol. 26, No. 5, Sep. 1990, pp. 2541-2543.
[27]Y. Okada, K. Dejima, and T. Ohishi, “Analysis and Comparison of PM Synchronous Motor and Induction Motor Type Magnetic Bearings”, IEEE Transactions on Industry Applications, Vol. 31, No. 5, Sep./Oct. 1995, pp.1047-1053.
[28]Y. Okada, S. Miyamoto, and T. Ohishi, “Levitation and Torque Control of Internal Permanent Magnet Type Bearingless Motor”, IEEE Transactions on Control Systems Technology, Vol. 4, No. 5, Sep. 1996, pp.565-571.
[29]S. Khoo, R. Fittro, and S. Garvey, “An AC Self-bearing Rotating Machine with a Single Set of Windings”, Conference on Power Electronics, Machines and Drives, 2003, pp. 292-297.
[30]W. Khoo, “Bridge Configured Winding for Polyphase Self-bearing Machines”, IEEE Transactions on Magnetics, Vol. 41, No. 4, Apr. 2005, pp.1289-1295.
[31]L. Stephens and D. Kim, “Analysis and Simulation of a Lorentz-Type Slotless, Self-bearing Motor”, Control Engineering Practices, Vol. 10, 2002, pp. 899-905.
[32]L. S. Stephens and D. G.. Kim, “Force and Torque Characteristics for a Slotless Lorentz Self-Bearing Servomotor”, IEEE Transactions on Magnetics, Vol. 38, No. 4, Jul. 2002, pp. 17642-1773.
[33]Z. Ren, L. Stephens, and A. Radun “Improvements on Winding Flux Models for a Slotless Self-bearing Motor”, IEEE Transactions on Magnetics, Vol. 42, No. 7, Jul. 2006, pp.1838-1848.
[34]W. S. Han, C. W. Lee, and Y. Okada, “Design and Control of a Disk-Type Integrated Motor-Bearing System”, IEEE Transactions on Mechatronics, Vol. 7, No. 1, Mar. 2002, pp. 15-22.
[35]S. H. Park and C. W. Lee, “Lorentz Force-Type Integrated Motor-Bearing System in Dual Rotor Disk Configuration”, IEEE Transactions on Mechatronics, Vol. 10, No. 6, Dec. 2005, pp. 618-625.
[36]H. Grabner, W. Amrhein, S. Silber, and K. Nenninger,, “Nonlinear Feedback Control of a Bearingless Brushless DC Motor”, IEEE PEDS, 2005, pp-366-371.
[37]F. Lin and S. Yang, “Modeling and Control of Radial Force in Switched Reluctance Motor”, Power Electronics Specialist Conference (PESC), Korea, 2006.
[38]F. Lin, “Switched Reluctance Motor Radial Force Control and its Applications”, Ph.D Thesis, Tamkang University, Jul., 2006.
[39]S. Chen, S. Fan, and W. Lu, “Electromagnetic-Force Analysis of the Magnetically Levitated Motor with Two Directions of Movement”, IEEE Transactions on Industry Applications, Vol. 42, No.1, Jan. 2006, pp. 31-41.
[40]D. W. Novotny and T. A. Lipo, “Vector Control and Dynamics of AC Drives”, Oxford University Press, 1996.
[41]Y. Okada, K. Dejima and T. Ohishi, “Analysis and Comparison of PM Synchronous Motor and Induction Motor Type Magnetic Bearings”, IEEE Transactions on Industry Applications, VOL. 31, NO. 5, Sep 1995, pp. 1047- 1053.
[42]王以真, “實用磁路設計”, 全華科技圖書, 1990.
[43]蔡明祺與茆尚勳, “淺談馬達設計”, Motor Express,第2期,2002.
[44]D. C. Hanselman, “Brushless Permanent-Magnet Motor Design”, International Edition, McGraW-Hill, 1994.
[45]姚天佑, “直流無刷馬達的相、極和槽之組成”, 機械工業雜誌, 第111卷, pp.288-293.
[46]陳盛基, “高性能永磁無刷設計與電腦輔助磁路分析”, 工研院永磁
電機電腦輔助設計與分析技術研討會, 2003.
[47]茆尚勳, “直驅式跑步機用直流無刷馬達之設計”, 國立成功大學機械工程學系碩士論文, 民國91年5月.
[48]RM-core, Kawasaki Steel Coporation, Japan.
[49]http://www.hsin-han.com.tw/new_page_7.htm
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信