§ 瀏覽學位論文書目資料
系統識別號 U0002-2407200613202300
DOI 10.6846/TKU.2006.01157
論文名稱(中文) 銀奈米流體應用於震盪式熱管效能之研究
論文名稱(英文) Experimental investigation of silver nanofluid on pulsating heat pipe thermal performance
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 陳慧倫
研究生(英文) Hui-Lun Chen
學號 693340035
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-07-14
論文頁數 79頁
口試委員 指導教授 - 康尚文(swkang@mail.tku.edu.tw)
委員 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 顏政雄(shyong@tedns.te.tku.edu.tw)
委員 - 陳志臣(jcchen@cc.ncu.edu.tw)
委員 - 夏曉文(swshiah@ccit.edu.tw)
關鍵字(中) 震盪式熱管
銀奈米流體
濃度
充填率
關鍵字(英) Pulsating Heat Pipes
Silver Nano-Fluid
Concentration
Filled Ratio
第三語言關鍵字
學科別分類
中文摘要
本論文是利用內徑2.4mm外徑3mm的銅管做震盪式熱管實驗。比較20nm的銀奈米流體在不同濃度(100ppm、450ppm)或不同充填量(20%、40%、60%、80%)下,在不同加熱瓦數(5w、15w、25w、35w、45w、55w、65w、75w、85w)下效率之探討,並與純水(Pure Water)做比較。總括而言,充填率在中間值(40%、60%)的效果較好,其中又以60%效率較好的居多,此可能是因為此兩個充填量在高瓦數時氣泡生成量與脈動效果勢均力敵,因此在顯熱交換方面效果相當,但60%相對於40%而言有較多的液柱可供顯熱交換,因此比較上充填率60%的散熱效果較好。整體而言各組最佳的充填率是60%,而各個充填率下最佳的充填液體是100ppm的銀奈米水溶液。其在充填率60%下加熱瓦數85W時,溫差較同充填量下的純水低了7.79℃,熱阻低了0.092℃∕W。
英文摘要
This paper reports on preliminary experimental results on using copper tube having internal and external diameter with 2.4 mm and 3 mm respectively to carry out the experimental pulsating heat pipe. In order to study and measure the efficiency, we compare with 20 mm silver nano-fluid at different concentration (100ppm and 450ppm) or in the different filled ratio (20%, 40%, 60% and 80%), also applying with different heating power (5W, 15W, 35W, 45W, 55W, 65W, 75W and 85W). Finally we make a comparison with pure water. In a word, the result in the mid value (40%, 60%) of filled ratio is better. In the majority 60% of efficiency is considered much better. May be in these two filled ratio at high heating power, the power in the bubble production amount and pulsation gets balanced. The result is analogous in sensible heat exchange, 60% has more liquid slugs that are suitable for sensible heat exchange as to 40%, so in 60% of filled ratio, heat dissipation result is better than 40%. On the whole the best filled ratio is 60%, and the best filled fluid is 100ppm in silver nano-fluid. When the filled ratio is 60% and the heating power is 85 W, the difference of temperature is less than 7.79 ℃ at this same filled ratio, and the thermal resistance is also less than 0.092℃/W.
第三語言摘要
論文目次
總目錄
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………...II
總目錄…………………………………………………………………..III
圖目錄…………………………………………………………………..VI
表目錄…………………………………………………………………..IX
符號說明………………………………………………………………..IX

第一章 緒論………………………………………………..……………1
  1-1研究動機…………………………………………………………..1
  1-2研究目的…………………………………………………………..1
  1-3震盪式熱管研究背景……………………………………………..2
  1-4奈米流體研究背景………………………………………………..8
第二章 理論介紹………………………………………………………12
  2-1傳統式熱管..……………….……………………………………..12
    2-1-1 傳統式熱管作動原理………….………….…..……………12
    2-1-2 傳統式熱管熱傳限制………….………..……….…………13
  2-2震盪式熱管(Pulsating Heat Pipe; PHP)…………………………16
    2-2-1震盪式熱管基本構造及工作原理……….…………….……16
    2-2-2 PHP裝置特性…………………………………………….…17
    2-2-3工作流體的選擇…………………………………………….18
    2-2-4管路材質的選擇…………………………………………….19
    2-2-5流場型態…………………………………………………….20
    2-2-6 PHP熱傳機制………………………………….……………24
    2-2-7管徑設計…………………………………………….………24
    2-2-8流體充填率………………………………………………….26
    2-2-9震盪式熱管優點………………………………………….…26
  2-3震盪式熱管與傳統熱管優缺點比較……………………….…...28
第三章 奈米流體簡介…………………………………………………29
  3-1奈米流體之備製…………………………………………………30
  3-2奈米流體增強機制………………………………………………31
  3-3奈米粉末團聚的影響……………………………………………32
第四章 實驗架設………………………………………………………34
4-1震盪式熱管製作…………………………………….…………...34
4-2真空處理…………………………………………….…………...36
    4-2-1真空測漏………………………………………….…………36
    4-2-2管路真空處理與工作流體之脫氣充填…………………….38
  4-3實驗模組架設……………………………………………………39
  4-4性能測試…………………………………………….…………...42
    4-4-1實驗參數……………..…………………………...…………42
    4-4-2實驗步驟………………………………………..…………...44
第五章 結果與討論……………………………………………………45
  5-1震盪溫度曲線觀察………………………….…………………...45
  5-2相同濃度、不同充填量溫差與熱阻值比較…………………….48
    5-2-1工作流體為水……………………………………………….48
    5-2-2工作流體為濃度100ppm之奈米銀水溶液………………..50
    5-2-3工作流體為濃度450ppm之奈米銀水溶液………………..52
  5-3不同濃度、相同充填量溫差與熱阻值比較…………………….54
    5-3-1充填率為20%……………………………………...………..54
    5-3-2充填率為40%…………………………………...…………..56
    5-3-3充填率為60%………………………………………...……..58
    5-3-4充填率為80%…………………………………...…………..60
  5-4綜合討論………………………………………………….……...62
第六章 結論與未來建議………………………………………………63
  6-1結論……………………………………….……..……………….63
  6-2未來建議……………………………….……..………………….64
參考文獻…..............................................................................................67
附錄ㄧ 各組平均熱組與溫差數據資料................................................71
附錄二 奈米銀水溶液檢測資料............................................................74
附錄三 熱傳風洞設備資料....................................................................76
附錄四 水基本性質表…………………………………………………78


圖目錄
圖1-1 Akachi,迴路式熱管示意圖............................................................2
圖1-2 Akachi,震盪式熱管示意圖............................................................3
圖1-3 Akachi,震盪式熱管........................................................................3
圖1-4 M. Groll,可視化PHP示意圖.........................................................6
圖1-5 Tong ,Closed Loop PHP(玻璃)流場可視化示意圖.....................7
圖1-6 M. Groll ,Closed Loop PHP實驗模組示意圖..............................7
圖1-7奈米顆粒體積比對熱傳導係數之影響…………....………..……8
圖1-8 PHP尺寸及溫度擷取位置………………….………………...….11
圖1-9 PHP內水與鑽石奈米流體溫差比較圖…………............…..…..11
圖2-1傳統熱管作動示意圖……………..………………………..……13
圖2-2傳統熱管之構形示意…………………..…………………..……13
圖2-3傳統熱管擺放效率示意圖…………………………………..…..14
圖2-4震盪型熱管作動示意圖………………..………………………..17
圖2-5震盪式熱管之構形示意圖………………………………..……..17
圖2-6 PHP迴路種類……………………………………………………18
圖2-7垂直上升管中的流場型態………………………………………21
圖2-8垂直管中氣液二相流流場型態……………………..……..……23
圖2-9氣水混合物通過U型管與倒U型管時的流場型態…………....23
圖2-10流道中不同停滯流體內圓柱氣泡垂直上升參數實驗結果…..26
圖3-1一階合成技術示意圖……………………………………………31
圖3-2熱傳導係數對團聚塊狀體填充分率之關係圖…………..…..…33
圖4-1銅管路圖…………………………………………………………34
圖4-2 PHP迴路完整架構外觀圖………………………………………35
圖4-3水的三相圖……………………………………………………….36
圖4-4法國製ALCATEL真空幫浦……………………….……………37
圖4-5數位壓力計………………………………………………..……..37
圖4-6工作流體真空處理進行……………………………..…………..39
圖4-7熱管腔體內部真空處理進行……………………………………39
圖4-8充填後封口完成………………………………..………………..39
圖4-9秤重………………………………………………..……………..39
圖4-10加熱線……………………………………………..……………41
圖4-11電源供應器…………………………………………..…………41
圖4-12風洞測試機台……………………………………..…………....41
圖4-13溫度擷取器與熱電偶線………………………………..………41
圖4-14奈米銀水溶液…………………………………..………………41
圖4-15實驗整體架構示意圖………………………..………………....43
圖5-1濃度100ppm,充填率60%,奈米銀水溶液震盪溫度曲線分佈
  ………………………………………………….…………………….47
圖5-2濃度100ppm,充填率20%,奈米銀水溶液震盪溫度曲線分佈
  ………………………………………………………………………..47
圖5-3不同充填率下、水之蒸發冷卻端平均溫差…………...…..…….49
圖5-4不同充填率下、水之蒸發冷卻端平均熱阻………….…...……..49
圖5-5不同充填率、濃度100ppm奈米銀水溶液蒸發冷卻端平均溫差
  ………………………………………………………………………..51
圖5-6不同充填率、濃度100ppm奈米銀水溶液蒸發冷卻端平均熱阻
  ………………………………………………………………………..51
圖5-7不同充填率、濃度450ppm奈米銀水溶液蒸發冷卻端平均溫差
  …………………………………………………………...……..…….53
圖5-8不同充填率、濃度450ppm奈米銀水溶液蒸發冷卻端平均熱阻
  ………………………………………………………………………..53
圖5-9充填率20%,不同工作流體蒸發冷卻端平均溫差……………55
圖5-10充填率20%,不同工作流體蒸發冷卻端平均熱阻…………...55
圖5-11充填率40%,不同工作流體蒸發冷卻端平均溫差……………57
圖5-12充填率40%,不同工作流體蒸發冷卻端平均熱阻……………57
圖5-13充填率60%,不同工作流體蒸發冷卻端平均溫差……………59
圖5-14充填率60%,不同工作流體蒸發冷卻端平均熱阻……………59
圖5-15充填率80%,不同工作流體蒸發冷卻端平均溫差……………61
圖5-16充填率80%,不同工作流體蒸發冷卻端平均熱阻……………61


表目錄
表2-1震盪式熱管與傳統式熱管優缺點比較表………………………28
表4-1實驗參數設計……………………………………………………42
表5-1 相同工作流體下之實驗參數變因表…………………………..48
表5-2 相同量下之實驗參數變因表…………………………………..54



符號說明
σ:表面張力,N/m
ρlig:工作流體密度,kg/m3
ρvap:氣泡密度,kg/m3
g:重力加速度,m/s2
D:管徑,m
υ:速度,m/s
參考文獻
參考文獻
[1]	Suo, M. and Griffith, P., “Two-Phase Flow in Capillary Tubes,” Transactions of the ASME, pp. 576-582 (1964)
[2]	Akachi H., US Patent, Patent Number 5219020 (1993)
[3]	Akachi H., US Patent, Patent Number 5490558 (1996)
[4]	Akachi, H., Polasek F., Stulc P., “Pulsating Heat Pipes,” Proceedings of the 5th International Heat Pipe Symposium, Melbourne, Australia,pp. 208-217 (1996)
[5]	Miyazaki, Y. and Akachi, H., “Self-Excited Oscillation of Slug Flow in a Micro Channel,” Proc. Of the 3rd Int. Conf. On Multiphase Flow, Lyon, France (1998)
[6]	Gi, K., Maezawa, K. Y., and Yamazaki, N., “CPU Cooling of Notebook PC by Oscillating heat pipe,” Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japen, pp. 166-169 (1999)
[7]	H.L. Wook, S.J. Hyun, H.K. Jeung, S.K. Jong, “Flow Visualization of Oscillating Capillary Tube Heat Pipe,” Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japen, pp. 131-136 (1999)
[8]	Gi K., Sato F. and Maezawa S., “Flow Visualization Experimental on Oscillating Heat Pipe,” Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japen, pp. 373-377 (1999)
[9]	Hosoda, M., Nishio, S., and Shirakashi, R., “Meandering Closed-Loop Heat-Transport Tube (Propagation Phenomena of Vapor Plug),” Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, CA., pp. 15-19 (1999)
[10]	S. Nagata, R. Shirakashi, S. Nishio, “Closed-Loop Heat-Transport  Tube,” 第36回日本傳熱演講論文集, pp. 675-676 (1999)
[11]	S. Khandekar, M. Schneider, P. Schäfer, R. Kulenovic and M. Groll, “Visualization of Thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipe,” Proc. 6th Int. Heat Pipe Symposium, Chiang Mai, Thailand, pp. 235-247 (2000)
[12]	B Tong, T. Wong, and K. Ooi, “Closed-Loop Pulsating Heat Pipe,” Applied thermal Engineering, Vol. 21, pp. 1845-1862 (2001)
[13]	Tong B., Wong T. and Ooi K., Closed-Loop Pulsating Heat Pipe, Applied Thermal Engineering, Vol. 21, pp. 1845-1862 (2001)
[14]	Sameer Khandekar, Nicolas Dollinger and Manfred Groll., “Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study,” Applied Thermal Engineering, Elsevier Science, Vol. 23, pp. 707-719 (2003)
[15]	S. lee, S. U. S. Choi, J. A. Eastman et al, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Journal of Heat Transfer , Vol. 121, pp. 280-289 (1999)
[16]	Y. Xuan and Q. Li, “Heat Transfer Enhancement of Nanofluids”, International Journal of Heat and Fluid Flow, Vol. 21, pp. 58-64 (2000)
[17]	S. U. S. Choi, J. A. Eastman, S. Li et al., “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-based Containing Copper Nanoparticles”, Applied Physics Letters, Vol. 78, pp. 718 (2001)
[18]	P. Keblinski, S. R. Phillopt, S. U. S. Choi et al., “Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (nanofluids)”, International Journal of Heat and Mass Transfer, vol. 45, pp.855-863 (2002)
[19]	宣益民,胡衛峰和李強,“奈米流體的聚集結構和導熱係數模擬”, 工程熱物理學報, Vol. 23 (2002)
[20]	吳軒, 宣益民, “基於晶格-Boltzmann 方法的納米流體流動和傳熱模型”, 工程熱物理學報, Vol. 204 (2003)
[21]	魏維瑲, “奈米流體應用於熱管之熱傳分析”, 碩士論文, 淡江大學機械工程學系 (2004)
[22]	許欽淳, “奈米流體應用於微迴路式熱管之研製”, 碩士論文, 淡江大學機械工程學系 (2004)
[23]	楊世宇, “銀奈米流體應用於熱管效益之研究”, 碩士論文, 淡江大學機械工程學系 (2005)
[24]	H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, and Q. Yu, S. U. S. Choi, Murli Tirumala, “Effect of nanofluid on the heat transport capability in an oscillating heat pipe” , Applied Physics Letters, vol.88, pp. 143116-1~3 (2006)
[25]	TS Heatronics. Co., Ltd. http://www.tsheatronics.co.jp/english/technology/index.html
[26]	林宗虎等編著, “氣液兩相流和沸騰傳熱”, 西安交通大學出版社, pp. 14-35 (2003)
[27]	S. Meazawa, “Heat Pipe: Its Origin, Development and Present Situation,” Proceeding of the 6th Internation Heat Pipe Symposium, Chiang Mai, pp. 3-13 (2000)
[28]	林益邦, “脈衝式熱管之製造與測試”, 碩士論文, 台北科技大學製造科技研究所 (2004)
[29]	Y. Xuan, and Q. Li, “Heat Transfer Enhancement of Nanofluids”, International Journal of Heat and Flow, Vol. 21, pp. 58-64 (2000)
[30]	王啟川, “奈米科技與冷凍空調-兩個未來可能的應用例”, 線上冷凍空調雜誌, ttp://www.hvacr.com.tw/mag/tech/rah54/r5401.cfm.
[31]	http://www.techtransfer.anl.gov/techtour/nanofluids-figs.html.
[32]	Doboson, R. T., and Harms, T. M., “Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipes”, Proceedings of 11th Internation Heat Pipe Conference, Tokyo, Japan, pp. 137-142 (1999)
[33]	http://webbook.nist.gov/chemistry/fluid/
[34]	Shung-Wen Kang, Wei-Chiang Wei, Sheng-Hong Tsai, and Shih-Yu Yang, “Experimental investigation of silver nano-fluid on heat pipe thermal performance”, Applied Thermal Engineering Volume 26, Issues 17-18, pp. 2377-2382 (2006)
[35]	White E. and Beardmore R., “The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes”, Chem. Engg. Science, Vol. 17, pp. 351-361 (1962)
論文全文使用權限
校內
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信