§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2407200613052900
DOI 10.6846/TKU.2006.00767
論文名稱(中文) 內嵌式螺旋微電極之研製及其應用
論文名稱(英文) Fabrication and Application of Embedded Spiral Electrodes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 柯凱鐘
研究生(英文) Kai-Chung Ko
學號 691340615
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-07-14
論文頁數 73頁
口試委員 指導教授 - 楊龍杰
委員 - 趙福杉
委員 - 洪啟峰
委員 - 康尚文
委員 - 施文彬
關鍵字(中) SU-8光阻
非平面
旋轉曝光
離子牽引式幫浦
關鍵字(英) SU-8
non-planar
rolling exposure
ion drag micropump
第三語言關鍵字
學科別分類
中文摘要
本研究係以低溫非平面製程(non-planar process)方式,製作內嵌式螺旋微電極於SU-8流道內壁。

第一部分係製作螺旋微電極;首先以電子束蒸鍍機(E-beam evaporator)於毛細玻璃管上蒸鍍鈦、金導電種子層(seeding layer),並搭配旋轉曝光(rolling exposure)的技術與後續的黃光微影製程,成型黃金螺旋微電極,再以電鍍鎳層的方式增厚電極,將厚度為5μm的鎳質螺旋微電極製作於毛細玻璃管外表面上。

第二部分係以具有鎳質螺旋微電極的毛細玻璃管作為犧牲層(sacrificial layer),搭配SU-8光阻為結構層,最後以氫氟酸(HF)溶除毛細玻璃管,即可將此鎳質螺旋微電極轉嫁於SU-8材質的流道內壁。

完成的晶片通以直流電壓25V,可成功驅動無水酒精,體積流率達4.5 μl/min;預期此晶片可應用於離子牽引式幫浦(ion drag pump)。
英文摘要
This paper proposes a low-temperature and non-planar process to fabricate spiral electrodes on the inner surface of a SU-8 circular microchannel. The fabrication process can be divided into two parts.

First, the Ti/Au electric seeding layer was deposited on the cylindrical surface of a glass capillary with 350μm diameter by an E-beam evaporator. After doing a rolling exposure process by adjusting the rotation speed of the glass capillary according to the proper UV dosage and using suitable etchants respectively, the author formed the continuous gold spiral electrodes around the glass capillary. Moreover, by electroplating nickel layers of 5μm thick to improve the strength of electrodes, the nickel spiral electrodes can be achieved on the outer surface of the glass capillary successfully.

Second, SU-8 photoresist was coated all over the above workpiece as a structure for the circular microchannel, then the glass capillary was removed by HF acid. Therefore, the nickel spiral electrodes were transferred to the inner surface of the SU-8 circular microchannel.

The complete chip experimentally drives the ethyl alcohol to have the volumetric flow rate of 4.5 μl/min by applying a DC voltage of 25V, and can be applied as an ion drag micropump.
第三語言摘要
論文目次
中文摘要	…………………….………………………………………	Ⅰ
英文摘要	…………………………………………………………….	Ⅱ
目錄	…………………………………………………………….	Ⅲ
圖目錄	………………………………………………………….....	Ⅴ
表目錄	………………………………………………………….....

	Ⅷ
第一章	緒論…………………………………...……………..……	1
	1-1研究動機……………………………….…………..…	1
	1-2文獻回顧……………………………….…………..…	4
	1-3研究目的……………………………….…………..…	11
	1-4論文架構……………………………….…………..…	12
第二章	實驗設備……………………………………………….....	14
	2-1單面對準曝光機加裝步進馬達模組………………...	14
	2-2電鍍設備……………………………….………..……	18
第三章	內嵌螺旋微電極之圓形微流道製程設計……………….	22
	3-1螺旋微電極製程設計……………………………...…	22
	3-2內嵌螺旋微電極之圓形微流道製程設計…………...	23
	3-3螺旋微電極光罩設計……………………………...…	25
	3-4外接導線設計………………………………………...	28
	3-5外接管路設計……………………………………...…	31
第四章	製程詳細步驟與結果討論……………………………….	32
	4-1螺旋微電極製程……………………………………...	32
	4-2內嵌螺旋微電極之圓形微流道製程………………...	42
第五章	量測與分析……………………………………………….	48
	5-1實驗量測設備…………………………………...……	48
	5-2實驗設計……………………………….…………..…	49
	5-3量測結果與分析…………………………………...…	50
第六章	結論與未來建議………………………………………….	56
	6-1結論…………………………………………………...	56
	6-2未來方向與建議……………………………………...	56
	6-3未來的工程應用……………………………………...	63
參考文獻	…………………………………………………………….	65
附錄  A	參與第三屆亞太傳感器暨微奈米技術學術研討會(Asia-Pacific Conference of Transducers and Micro-Nano Technology-APCOT 2006)論文全文-
A CIRCULAR MICROCHANNEL INTEGRATED WITH EMBEDDED SPIRAL ELECTRODES…………..	



69





圖目錄
圖1-1	具有可動組件之薄膜式幫浦...............................................	2
圖1-2	不具可動組件之離子牽引式幫浦………………………...	3
圖1-3	以聚焦離子束輔助化學氣相沈積系統製作出微螺旋結構…………………………………………………………...
	
5
圖1-4	以自我組裝的方式製作出微螺旋結構…………………...	5
圖1-5	微螺旋結構陣列…………………………………………...	6
圖1-6	三維的球型加速度計……………………………………...	7
圖1-7	以分層堆疊的方式製作出三維微結構…………………...	7
圖1-8	以旋轉曝光的方式製作出圓管型鈦鎳合金……………...	7
圖1-9	以熔融接合的方式製作出具有圓形截面的微流道……...	9
圖1-10	以分層堆疊SU-8光阻製作出矩形微流道……………….	9
圖1-11	以SU-8光阻搭配光纖為犧牲層材料所製作的圓形微流道…………………………………………………………...
	
10
圖1-12	圓形微流道製程示意……………………………………...	10
圖1-13	論文架構…………………………………………………...	13
圖2-1	旋轉曝光示意……………………………………………...	14
圖2-2	曝光機加裝步進馬達模組設計構思……………………...	15
圖2-3	對準曝光機加裝步進馬達模組實體……………………...	17
圖2-4	電鍍設備實體……………………………………………...	19
圖2-5	電鍍試片示意……………………………………………...	21
圖3-1	螺旋微電極製程設計……………………………………...	23
圖3-2	內嵌螺旋微電極之圓形微流道製程設計………………...	24
圖3-3	光罩尺寸示意……………………………………………...	25
圖3-4	光罩圖形捲曲成圓管形狀………………………………...	26
圖3-5	具有斜線構型的光罩示意………………………………...	27
圖3-6	光罩圖形角度與毛細玻璃管外徑不配合產生的錯位現象…………………………………………………………...
	
27
圖3-7	兩相鄰的螺旋光阻連接情況良好…………………….…..	28
圖3-8	搭接導線不易接出………………………………………...	29
圖3-9	打線方向些微偏離欲想位置,造成螺旋微電極斷線…….	29
圖3-10	用人工方式,以銀膠黏接螺旋微電極和矽基板上的金屬線路………………………………………………………...
	
30
圖3-11	以探針刮斷電極示意……………………………………...	30
圖3-12	流體測試示意……………………………………………...	31
圖4-1	毛細玻璃管蝕刻測試……………………………………...	33
圖4-2	毛細玻璃管實體…………………………………………...	34

圖4-3	以光學顯微鏡拍攝拉製後的毛細玻璃管………………...	35
圖4-4	毛細玻璃管蒸鍍金屬前…………………………………...	36
圖4-5	毛細玻璃管蒸鍍金屬後…………………………………...	37
圖4-6	以膠帶將毛細玻璃管固定於夾治具上…………………...	38
圖4-7	微螺旋光阻………………………………………………...	38
圖4-8	黃金螺旋微電極實體……………………………………...	39
圖4-9	載玻片和毛細玻璃管並聯………………………………...	40
圖4-10	鎳質螺旋微電極成品……………………………………...	40
圖4-11	探針測試機台實體………………………………………...	41
圖4-12	探針接觸螺旋微電極……………………………………...	41
圖4-13	線路佈局…………………………………………...………	42
圖4-14	毛細玻璃管固定於矽基板上,並以銀膠接出螺旋微電極	43
圖4-15	螺旋微電極黏接銀膠實體………………………………...	44
圖4-16	以SU-8光阻封裝毛細玻璃管,並顯影出蝕刻窗口和金屬接點……………………………………………………...
	
45
圖4-17	毛細玻璃管蝕刻過程….......................................................	46
圖4-18	製作完成的晶片…………………………………………...	47
圖5-1	實驗量測架構……………………………………………...	48
圖5-2	實驗量測設備……………………………………………...	49
圖5-3	離子牽引式幫浦驅動無水酒精連續鏡頭………………...	50
圖5-4	氣泡於微圓管內流動……………………………….……..	51
圖5-5	氣泡流動情形…………….…………………………..……	52
圖5-6	氣泡流動情形..…………………………………………….	53
圖5-7	氣泡流動情形…………………...…………………………	54
圖6-1	具備旋轉機構的蒸鍍機台………………………………...	58
圖6-2	內嵌螺旋微電極之圓型微流道…………………………...	60
圖6-3	增強螺旋微電極內嵌效果製程示意……………………...	62













表目錄
表2-1	鎳電鍍液配方……………………………………………...	19
表4-1	毛細玻璃管規格…………………………………………...	33
表4-2	毛細玻璃管蝕刻結果比較………………………………...	33
參考文獻
[1]	R. P. Feynman, “There’s plenty of room at the bottom”, Journal of Microelectromechanical Systems, Vol. 1, Issue 1, 1992, pp. 60-66.
[2]	李世光與孫美芳,「初探我國發展微機電系統與奈米技術新興科技的人才培育與發展策略」,科技發展政策報導,2002年11月,pp. 845-858。
[3]	馬金溝,「矽晶圓上的電子城市-系統晶片設計」,科學發展,393期,2005年9月,pp. 12-17。
[4]	C. W. Lin and J. Y. Jang, “3D numerical micro-cooling analysis for an electrohydrodynamic micro-pump”, Sensors and Actuators A, Vol. 122, 2005, pp. 167-176.
[5]	J. Darabi and K. Ekula, “Development of a chip-integrated micro cooling device”, Microelectronics Journal, Vol. 34, 2003, pp. 1067-1074.
[6]	P. Woias, “Micropumps-past, progress and future prospects”, Sensors and Actuators B, Vol. 105, 2005, pp. 28-38.
[7]	H. T. G. Van Lintel, F. C. M. Van De Pol and S. Bouwstra, “A piezoelectric micropump based on micromachining of silicon”, Sensors and Actuators, Vol. 15, 1988, pp. 153-167.
[8]	C. H. Ahn and M. G. Allen, “Fluid micropumps based on rotary magnetic actuators”, Proceedings of the 8  IEEE Micro Electro Mechanical Systems, 1995, pp. 408-412.
[9]	A. Richter and H. Sandmaier, “An electrohydrodynamic micropump”, Proceedings of the 3  IEEE Micro Electro Mechanical Systems, 1990, pp.99-104.
[10]	A. Richter, A. Plettner, K. A. Hofmann and H. Sandmaier, “A micromachined electrohydrodynamic (EHD) pump”, Sensors and Actuators A, Vol. 29, 1991, pp. 159-168.
[11]	C. H. Chen and J. G. Santiago, “A planar electroosmotic micropump”, Journal of Microelectromechanical Systems, Vol. 11, 2002, pp. 672-683.
[12]	X. B. Zhang, X. F. Zhang, D. Bernaerts, G. T. Vantendeloo, S. Amelinckx, J. Vanlanduyt, V. Ivanov, J. B. Nagy, P. Lambin, and A. A. Lucas, “The texture of catalytically grown coil-shaped carbon nanotubules”, Europhys. Lett., Vol. 27, 1994, pp. 141-146.
[13]	J. Cheng, X. Zhang, J. Tu, X. Tao, Y. Ye and F. Liu, “Catalytic chemical vapor deposition synthesis of helical carbon nanotubes and triple helices carbon nanostructure”, Materials Chemistry and Physics, Vol. 95, 2006, pp. 12-15.
[14]	X. Y. Kong and Z. L. Wang, “Spontaneous polarization induced growth of ZnO nanostructures”, Proceedings of the 7  International Conference on Solid-State and Integrated Circuits Technology, Vol. 2, 2004, pp. 894-897.
[15]	S. Amelinckx, X. B. Zhang, D. Bemaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, “A formation mechanism for catalytically grown helix-shaped graphite nanotubes”, Science, Vol. 265, 1994, pp. 635-639.
[16]	S. Matsui, “Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition”, Proceedings of the 12  International Conference on  Solid-State Sensors, Actuators and Microsystems, 2003, pp. 179-181.
[17]	D. J. Bell1, Y. Sun, L. Zhang, L. X. Dong, B. J. Nelson, and D. Grutzmacher, “Three-dimensional nanosprings for electromechanical sensors”, Proceedings of the 13  International Conference on Solid-State Sensors, Actuators and Microsystems, 2005, pp. 15-18.
[18]	L. Xia, W. Wu, J. Xu, Y. Hao, and Y. Wang, “3D nanohelix fabrication and 3D nanometer assembly by focused ion beam stress-introducing technique”, Proceedings of the 19  IEEE Micro Electro Mechanical Systems, 2006, pp. 118-121.
[19]	N. Takeda, “Ball semiconductor technology and its application to MEMS”, Proceedings of the 13  IEEE Micro Electro Mechanical Systems, 2000, pp. 11-16.
[20]	R. Toda, N. Takeda, T. Murakoshi, S. Nakamura and M. Esashi, “Electrostatically levitated spherical 3-axis accelerometer”, Proceedings of the 15  IEEE Micro Electro Mechanical Systems, 2002, pp. 710-713.
[21]	A. Bertsch, H. Lorenz and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography” , Sensors and Actuators, Vol. 73, 1999, pp. 14-23.
[22]	T. Mineta, M. Abe, H. Kubo, E. Makino and T. Shibata, “Fabrication of TiNi 3D Micro Structures from Evaporated Thin Film Tube”, Proceedings of the International Conference on Electrical Engineering, 2004, pp. 322-325.

[23]	A. Grosse, M. Grewe and H. Fouckhardt, “Deep wet etching of  fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices”, Journal of Micromechanics and Microengineering, Vol. 11, 2001, pp. 257-262.
[24]	L. J. Guerin, M. Bossel, M. Demierre, S. Calmes and Ph. Renaud, “Simple and low cost fabrication of embedded micro-channels by using a new thick-film photoplastic”, Proceedings of the 9  International Conference on  Solid-State Sensors, Actuators and Microsystems, 1997, pp. 1419-1422.
[25]	http://www.microchem.com/
[26]	H. Y. Chen, S. S. Wang, Y. C. Wang, L. J. Yang and S. W. Kang, “Fabrication of SU-8 embedded microchannels with circular cross-section”, Proceedings of the International Conference on Electrical Engineering, 2004, Vol. 3-1, pp. 423-427.
[27]	L. J. Yang, Y. T. Chen, S. W. Kang and Y. C. Wang, “Fabrication of SU-8 embedded microchannels with circular cross-section”, International Journal of Machine Tools and Manufacture, Vol. 44, 2004, pp. 1109-1114.
[28]	陳虹吟,「非平面電極之研製及其微流體驅動之應用」,私立淡江大學機械與機電工程學系碩士學位論文,民國93年7月。
[29]	L. S. Johansen, M. Ginnerup, J. T. Ravnkilde, P. T. Tang and B. Lochel, “Electroforming of 3D microstructures on highly structured surfaces”, Sensors and Actuators, Vol. 83, 2000, pp. 156-160.
[30]	J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen and M. Kuittinen, “Fabrication of Ni-shims using UV-moulding as an intermediate step”, Microelectronic Engineering, Vol. 83, 2006, pp. 492-498.
[31]	S. C. Shen, C. T. Pan, Y. R. Wang,C.C. Chang, “Fabrication of integrated nozzle plates for inkjet print head using microinjection process”, Sensors and Actuators A, Vol. 127, 2005, pp. 241-247.
[32]	S. W. Chung, J. W. Shin, Y. K. Kim and B. S. Hart, “Design and fabrication of micromirror supported by electroplated nickel posts”, Sensors and Actuators A ,Vol. 54, 1996, pp. 464-467.
[33]	V. Holpuch and J Vitek, “Electrodeposition of nickel from sulphosalicylate solutions”, Surface Technology, Vol.5 1977, pp. 89-96.

[34]	T. Hart and A. Watson, “Electroforming”, Metal Finishing, Vol. 100, 2002, pp. 372-383.
[35]	楊龍杰,「認識微機電」,滄海書局,中華民國90年9月初版。
[36]	http://www.sutter.com/
[37]	S. H. Ahn, Y. K. Kim, “Fabrication and experiment of a planar micro ion drag pump”, Sensors and Actuators A, Vol. 70, 1998, pp. 1-5.
[38]	王俊民,「離子牽引式微幫浦的研製」,私立淡江大學機械與機電工程學系碩士學位論文,民國92年7月。
[39]	L. J. Yang, J. M. Wang, Y. L. Huang, “The micro ion drag pump using indium-tin-oxide (ITO) electrodes to resist aging”, Sensors and Actuators A, Vol. 111, 2004, pp. 118-122.
[40]	侯舜中,「高分子薄膜材料應用於電流體驅動(EHD)幫浦之研製」,私立淡江大學機械與機電工程學系碩士學位論文,民國93年7月。
[41]	P. R. C. Gascoyne, X. B. Wang, Y. Huang and F. F. Becker, “dielectrophoretic separation of cancer cells from blood”, IEEE Transactions on Industry Applications, Vol. 33, 1997, pp. 670-678.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信