淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407200610522800
中文論文名稱 圓管挫曲式微型閥門之研製
英文論文名稱 Fabrication of Buckled-type Microvalves Using Micro-tubes
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 劉冠君
研究生英文姓名 Kuan-Chun Liu
學號 693340159
學位類別 碩士
語文別 中文
口試日期 2006-07-14
論文頁數 115頁
口試委員 指導教授-楊龍杰
委員-洪啟峰
委員-趙福杉
委員-施文彬
委員-康尚文
委員-楊龍杰
中文關鍵字 微機電系統  聚-對二甲苯  挫曲式閥門  圓形微流道  SU-8光阻  致動器 
英文關鍵字 MEMS  Parylene  Buckled-type valve  circular microchannel  SU-8  Actuator 
學科別分類 學科別應用科學機械工程
中文摘要 本研究使用parylene C材料沈積步階覆蓋良好之特性,將其均勻鍍著於犧牲層(sacrificial layer)毛細玻璃管三維表面上,隨後利用氫氟酸(HF)移除犧牲層,完成一具有圓形橫截面之parylene C高分子薄膜挫曲式導管。該導管利用彎折區阻擋流體,成為構型簡明,不需額外防漏設計且具有零值無益體積(zero dead volume)特性之挫曲式(buckled-type)閥門。
隨後利用SU-8厚膜光阻為材料,多次曝光同次顯影為手法,設計與製作parylene圓管挫曲式微型閥門之可行性驗證模組與仿生式驅動模組。前者成功驗證「彎折導管」原理可止逆流體,實現閥門之功能性;後者則提供以液體表面張力為動力源之元件,使parylene圓管挫曲式閥門彎折區產生角度變化。
成功製備之parylene圓管挫曲式微型閥門,預期進行微流體(microfluidics)的控制,進而應用於生醫實驗室晶片(lab-on-a-chip)。
英文摘要 This thesis proposes a novel parylene bucked-type valve, which is based on the parylene C technology of good step-coverage characteristic. First conformally depositing the parylene C thin film on sacrificial material of capillary glass tubes, then we remove the embedded capillary tubes via HF acid to obtain the buckled-type circular microchannel of parylene C.
The buckled region stops the flow of liquid, and there is no need of adding sealing parts into the buckled-type valve with almost zero dead volume. Afterwards we integrate SU-8 photolithography into the parylene C process to fabricate a test module for feasibility study and a biomimic driving module of the buckled-type valve. The feasibility test module demonstrates that the parylene buckled-type valve has the same working principle as the “buckled straw”. Meanwhile, the biomimic driving module using surface tension-force makes the actuation angle of buckled region apparent and approves the functionality of the valve device.
Finally, the fabricated parylene buckled-type valves expect to perform as a component to control microfluidics flow and then apply to lab-on-a-chip.
論文目次 目 錄
中文摘要 ----------------------------------------------------------------------- I

英文摘要 ----------------------------------------------------------------------- II

目錄 ----------------------------------------------------------------------- III

圖目錄 ----------------------------------------------------------------------- V

表目錄 ----------------------------------------------------------------------- VIII

第一章 緒 論--------------------------------------------------------------- 1
1-1 研究動機----------------------------------------------------- 1
1-2 文獻回顧----------------------------------------------------- 3
1-3 研究目的----------------------------------------------------- 6
1-4 各章提要----------------------------------------------------- 10
第二章 圓管挫曲式微型閥門可行性驗證模組之設計與製作----- 11
2-1 材料之選擇:parylene------------------------------------- 11
2-1-1 簡介與特點------------------------------------------ 11
2-1-2 相關微機電應用------------------------------------ 12
2-2 可行性驗證模組之設計內涵----------------------------- 14
2-3 各類玻璃管材質之蝕刻試驗----------------------------- 21
2-4 可行性驗證模組之製作程序----------------------------- 23
2-5 可行性驗證模組之製作成果----------------------------- 31
第三章 可行性驗證模組之測試與結果分析-------------------------- 36
3-1 實驗量測設備架設說明----------------------------------- 36
3-2 測試方法----------------------------------------------------- 40
3-3 量測結果與分析-------------------------------------------- 42
3-3-1 出口流率對應於彎折角度之變化關係--------- 42
3-3-2 各類材質與尺寸之挫曲式閥門止逆角度的比較--- 46
第四章 圓管挫曲式微型閥門驅動模組之設計與製作-------------- 47
4-1閥門仿生驅動模組------------------------------------------ 47
4-1-1 驅動方式--------------------------------------------- 48
4-1-2 材料選擇--------------------------------------------- 53
4-1-3 設計內涵--------------------------------------------- 56
4-2 驅動模組之製作程序-------------------------------------- 61
4-3 驅動模組之製作成果-------------------------------------- 70
4-4 製程問題與解決方法-------------------------------------- 78
第五章 驅動模組之測試與結果分析----------------------------------- 82
5-1實驗量測設備架設說明------------------------------------ 82
5-2測試方法------------------------------------------------------ 84
5-3量測結果與分析--------------------------------------------- 85
5-3-1 未整合parylene彎折導管------------------------ 87
5-3-2 整合parylene彎折導管--------------------------- 90
第六章 結論與未來建議-------------------------------------------------- 93
6-1 結論----------------------------------------------------------- 93
6-2 未來方向與建議-------------------------------------------- 96
參考文獻 ----------------------------------------------------------------------- 101
附錄A 本研究“Buckled-type valves integrated by parylene micro-tubes”發表於國際期刊Sensors and Actuators A: physical之全文--------------------------------------------------- 106
附錄B 未整合parylene彎折導管之挫曲式微型閥門驅動模組受液體驅動時,彎折角度ψ對應於環狀毛細結構長度之變化關係圖--- 113
附錄C 彎折角度ψ的數學分析模式----------------------------------- 114

圖 目 錄
圖1-1 Sim等製作之氣動式微閥門------------------------------------ 4
圖1-2 K. Hosokawa等製作之三路氣動式微閥門------------------- 5
圖1-3 Z. Hua等製作出之parylene三明治結構氣動式微閥門陣列---- 6
圖1-4 大尺度及其彎折後之塑膠導管--------------------------------- 7
圖1-5 第一代parylene挫曲式微閥門模組---------------------------- 8
圖1-6 不同操作橫截面之挫曲式閥門--------------------------------- 9
圖1-7 論文架構------------------------------------------------------------ 10
圖2-1 Parylene熱挫曲式微型致動器---------------------------------- 14
圖2-2 Tjerkstra等製作出接近半圓形之透明微流道---------------- 16
圖2-3 L. J. Yang等製作出之矩形parylene微流道SEM圖-------- 16
圖2-4 L. J. Yang等製作出之圓形parylene微流道SEM圖-------- 16
圖2-5 L. J. Yang等製作出之圓形微流道製作流程圖-------------- 17
圖2-6 以SU-8厚膜光阻封黏為一體之PE軟管與毛細玻璃管---- 18
圖2-7 圓管挫曲式微型閥門可行性驗證模組設計示意圖--------- 20
圖2-8 硼玻璃與其熱溶拉伸成為毛細玻璃管之實體圖------------ 23
圖2-9 Parylene圓管挫曲式微型閥門可行性驗證模組之製程實體圖------------------------------------------------------------------ 28
圖2-10 製作parylene挫曲式圓管微型閥門可行性驗證模組之膠片光罩--------------------------------------------------------------- 30
圖2-11 硼質毛細玻璃管3D示意圖與SEM圖------------------------- 32
圖2-12 硼質毛細玻璃管包覆parylene之3D示意圖與SEM圖----- 33
圖2-13 Parylene圓管微閥門流道3D示意圖與SEM圖------------- 34
圖2-14 Parylene圓管挫曲式微型閥門可行性驗證模組------------- 35
圖3-1 量測實驗架設圖--------------------------------------------------- 38
圖3-2 自行裝配之微閥門驅動平台------------------------------------ 39
圖3-3 閥門模組彎折原理圖--------------------------------------------- 41
圖3-4 閥門可行性驗證模組工作角度測試實驗之情形------------ 41
圖3-5 微閥門驅動平台各部位水平校正------------------------------ 44
圖3-6 Parylene圓管挫曲式微型閥門出口流率對應於彎折角度之變化關係--------------------------------------------------------- 44
圖3-7 PE圓管挫曲式微型閥門出口流率對應於彎折角度之變化關係--------------------------------------------------------------- 45
圖3-8 Parylene & PE圓管挫曲式微型閥門出口流率對應於彎折角度之變化關係------------------------------------------------ 45
圖4-1 C. J. Kim等控制汞珠於SU-8流道內作動情形-------------- 49
圖4-2 Y. C. Lee使用寬400、高600微米之錫球組裝多晶矽支架---- 50
圖4-3 蕨類孢子囊致動機構原理--------------------------------------- 50
圖4-4 圓管挫曲式微閥門驅動模組作動情形說明------------------ 53
圖4-5 挫曲式微閥門驅動模組結合parylene圓管3D示意圖----- 56
圖4-6 形變產生區與高深寬比SU-8環狀毛細結構----------------- 57
圖4-7 Parylene圓管溝槽承載區---------------------------------------- 58
圖4-8 結構補強區--------------------------------------------------------- 59
圖4-9 驅動模組尺寸註記結構------------------------------------------ 60
圖4-10 Parylene圓管挫曲式微閥門驅動模組製作程序------------- 66
圖4-11 Parylene圓管挫曲式微閥門驅動模組製程光罩------------- 68
圖4-12 金屬對準點製作流程與成果------------------------------------ 70
圖4-13 第一層SU-8驅動模組定義區----------------------------------- 71
圖4-14 驅動模組藉由第三道光罩定義出之parylene圓管溝槽承載區------------------------------------------------------------------ 73
圖4-15 挫曲式微閥門驅動模組---------------------------------------------- 74
圖4-16 Parylene彎折導管與雙層SU-8驅動模組以光阻黏合之情形-- 76
圖4-17 溫度效應對SU-8造成之影響----------------------------------- 79
圖4-18 雙層SU-8挫曲式微閥門驅動模組因與矽晶片熱膨脹量不匹配發生翹曲--------------------------------------------------- 81
圖5-1 實驗量測架構圖--------------------------------------------------- 83
圖5-2 挫曲式微閥門驅動模組彎折角度ψ之定義--------------- 84
圖5-3 Parylene圓管挫曲式微型閥門驅動模組特徵尺寸說明圖--- 86
圖5-4 挫曲式微型閥門驅動模組受液體驅動時,彎折角度ψ對應於環狀毛細結構長度之變化關係:未整合parylene彎折導--- 90
圖5-5 挫曲式微型閥門驅動模組受液體驅動時,彎折角度ψ之變化對應於環狀毛細結構長度之變化關係:整合parylene彎折導管--------------------------------------------------------------------- 92
圖6-1 Parylene圓管挫曲式微型閥門驅動模組改良構型示意圖--- 100
圖B-1 未整合parylene彎折導管之挫曲式微型閥門驅動模組受IPA驅動時,彎折角度ψ對應於環狀毛細結構長度之變化關係--- 113
圖B-2 未整合parylene彎折導管之挫曲式微型閥門驅動模組受DI water驅動時,彎折角度ψ對應於環狀毛細結構長度之變化關係--------------------------------------------------------------- 113
圖C-1 單一環狀毛細結構之彎折圖--------------------------------------- 115

表 目 錄
表2-1 氫氟酸(49%)蝕刻石英玻璃、鋁玻璃、硼玻璃之結果---------- 22
表3-1 各種材料之挫曲式閥門啟動角度--------------------------------- 46
表4-1 應用於微機電高分子材料楊氏係數之比較--------------------- 55
表4-2 SU-8相關機械材料特性-------------------------------------------- 55
表5-1 受表面張力驅動測試之挫曲式微型閥門驅動模組特徵尺寸--- 86
表5-2 未整合parylene彎折導管之挫曲式微型閥門驅動模組受液體驅動情形------------------------------------------------------------ 89
表5-3 整合parylene彎折導管之挫曲式微型閥門驅動模組受液體驅動情形--------------------------------------------------------------- 91
參考文獻 [1] R. P. Feynman, “There’s plenty of room at the bottom,” Journal of Micro-electromechanical Systems, Vol. 1, No.1, 1992, pp.60-66.
[2] 楊嘉麗,“新興科技介紹-微機電技術”,資策會資訊市場情報中心產業研究報告,2003年12月,頁1-16。
[3] 李世光與孫美芳,“初探我國發展微機電系統與奈米技術新興科技的人才培育與發展策略”,科技發展政策報導,2002年11月,頁845-858。
[4] 李慧瑜,“只要一滴血-談生物科技產業”,產經資訊,No.16,2004年,頁38-43。
[5] D. Figeys and D. Pinto, “Lab-on-a-chip: A revolution in biological and medical sciences,” Analytical Chemistry, Vol. 72, May 1, 2000, pp.330A-335A.
[6] D. Y. Sim, T. Kurabayashi and M. Esashi, “Bakable silicon pneumatic microvalve,” The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX., Vol. 2, June 25-29, 1995, pp.280-283.
[7] 楊龍杰,“認識微機電”,滄海書局,中華民國九十年九月初版。
[8] K. Hosokawa and R. Maeda, “A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique,” Journal of Micromechanics and Microengineering, Vol. 10, 2000, pp.415-420.
[9] W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally and R. A. Mathies, “Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices,” Sensors and Actuators B, Vol. 89, 2003, pp.315-323.
[10] J. N. Lee, C. Park and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem., Vol. 75, 2003, pp.6544-6554.
[11] J. Xie, X. Yang, X. Q. Wang and Y. C. Tai, “Surface micromachined leakage proof Parylene check valve,” Proceeding of 14th IEEE MEMS, January 21-25, 2001, pp.539-542.
[12] J. Xie, J. Shih, and Y. C. Tai, “Integrated surface-micromachined mass flow controller,” Proceeding of 16th IEEE MEMS, January 19-23, 2003, pp.20-23.
[13] Z. Hua, O. Srivannavit, Y. Xia and E. Gulari, “A Compact Chemical-Resistant Microvalve Array Using Parylene Membrane and Pneumatic Actuation,” Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems, August 25-27, 2004, pp.72-76.
[14] G. T. A. Kovacs, “Micromachined Transducers Sourcebook,” McGraw-Hill, New York, 1st ed., 1998, pp.823.
[15] L. Yobas, M. A. Huff, F. J. Lisy and D. M. Durand, “A Novel Bulk-Micromachined Electrostatic Microvalve with a Curved-Compliant Structure Applicable for a Pneumatic Tactile Display,” Journal of Micro-electromechanical Systems, Vol. 10, June 2001, pp.187-196
[16] T. J. Yao, X. Yang and Y. C. Tai, “BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators,” Sensors and Actuators A, Vol. 97-98, 2002, pp.771-775.
[17] The private communication of Dr. T. J. Yao with authors of this paper in 2001.
[18] http://www.scscoatings.com/index.cfm
[19] H. M. Tong, L. Mok, K. R. Grebe, H. L. Yeh, K. K. Srivastava and J. T. Coffin, “Parylene encapsulation of ceramic packages for liquid nitrogen application,” IEEE Trans. Electron Devices, Vol. 37, No.3, 1990, pp.345-350.
[20] E. M. Charlson, E. J. Charlson and R. Sabeti, “Temperature selective deposition of parylene-C,” IEEE transactions on Biomedical Engineering, Vol. 39, No.2, February 1992, pp.202-206.
[21] R. Olson and J. Yira, “Relative compatibility of parylene conformal coatings with no-clean flux residues,” Electronics Manufacturing Technology Symposium, 1993, pp.157-164.
[22] G. R. Yang, S. Ganguli, J. Karcz, W. N. Gill and T. M. Lu, “High deposition rate parylene film,” Jounal of Crystal Growth, Vol. 183, 1998, pp.385-390.
[23] T. A. Harder, T. J. Yao, Q. He, C, Y. Shih and T. C. Tai, “Residual stress in thin-film parylene-c,” Proceeding of the 15th IEEE MEMS, January 20-24, 2002, pp.435-438.
[24] X. Yang, J. M. Yang, Y. C. Tai and C. M. Ho, “Micromachined membrane particle filters,” Sensors and Actuators A, Vol. 73, 1999, pp.184-191.
[25] X. Q. Wang and Y. C. Tai, “A normally closed in-channel micro check valve,” Proceeding of 13th IEEE MEMS, January 23-27, 2000, pp.614-617.
[26] T. J. Yao, K. Walsh and Y. C. Tai, “Dielectric charging effects on parylene electrostatic actuators,” Proceeding of 15th IEEE MEMS, January 20-24, 2002, pp.614-6172.
[27] S. Takeuchi, Y. Yoshida, K. Mabuchi and T. Suzuki, “Parylene flexible neural probe with micro fluidic channel,” Proceeding of the 17th IEEE MEMS, January 25-29, 2004, pp.208-211.
[28] 戴霆樘,“利用聚-對二甲苯微機電技術製作微感測器與微致動器”,淡江大學機械與機電工程學系碩士學位論文,2003年6月。
[29] 林宏樺,“以聚-對二甲苯微機電技術製作之熱挫曲式微型致動器”,淡江大學機械與機電工程學系碩士學位論文,2005年6月。
[30] http://www.paryleneengineering.com/
[31] K. Minami, H. Morishita and M. Esashi, “A bellows-shape electrostatic microactuator,” Sensors and Actuators A, Vol. 72, February 16, 1999, pp.269-276.
[32] K. Walsh, J. Norville and Y. C. Tai, “Photoresist as a sacrificial layer by dissolution in acetone,” Proceeding of the 14th IEEE MEMS, January 21-25, 2001, pp.114-117.
[33] C. Xu, W. Lemon and C. Liu, “Design and fabrication of a high-density metal microelectrode array for neural recording,” Sensors and Actuators A, Vol. 96, January 31, 2002, pp.78-85.
[34] K. Yoo, C. Gibbons, Q. T. Su, R. N. Miles and N. C. Tien, “Fabrication of biomimetic 3-D structured diaphragms,” Sensors and Actuators A, Vol. 97-98, April 1, 2002, pp.448-456.
[35] Y. Mizuno, M. Liger and Y. C. Tai, “Nanofludic flowmeter using carbon sensing element,” Proceeding of the 17th IEEE MEMS, January 25-29, 2004, pp.322-325.
[36] H. S. Noh, K. S. Moon, A. Cannon, P. J. Hesketh and C. P. Wong, “Wafer bonding using microwave heating of parylene for MEMS packaging,” Proceeding of Electronic Components and Technology 2004, Vol. 1, June 1-4, 2004, pp.924-930.
[37] J. M. Wang, Y. J. Lin, K. C. Ko, H. H. Lin, Y. C. Ou and L. J. Yang, “Design and fabrication of a diaphragm type thermo-buckled microactuator,” Proc. APCOT’06, June 25-28, 2006.
[38] R. W. Tjerkstra, M. d. Boer, E. Berenschot, J. G. E. Gardeniers, V. D. B. Alber and E. Miko, “Etching technology for chromatography microchannels”, Proceeding of 10th IEEE MEMS, Vol. 42, 1997, pp.3399-3406.
[39] L. J. Yang, T. J. Yao, Y. L. Huang, Y. Xu and Y. C. Tai, “Marching velocity of capillary meniscuses in microchannels,” Proceeding of 15th IEEE MEMS, January 20-24, 2002, pp93-96.
[40] L. J. Yang, T. J. Yao, Y. L. Huang, Y. Xu and Y. C. Tai, “The marching velocity of the capillary meniscus in a microchannel,” Journal of Micromechanics and Microengineering, Vol.14, 2004, pp.220-225.
[41] L. J. Yang, Y. T. Chen, S. W. Kang and Y.-C. Wang, “Fabrication of SU-8 embedded microchannels with circular cross-section,” International Journal of Machine Tools & Manufacture, Vol. 44, 2004, pp.1109-1114.
[42] 伍秀菁、汪若文與林美吟,“微機電系統技術與應用”,行政院國家科學委員會精密儀器發展中心,中華民國九十二年七月初版。
[43] J. Liu, Y. C. Tai, J. Lee, K. C. Pong, Y. Zohar and C. M. Ho, “In situ monitoring and universal modeling of sacrificial PSG etching using hydrofluoric acid, Proceedings”, Proceeding of 6th IEEE MEMS, Fort Lauderdale, Florida, Feb 7-10, 1993, pp.71-76.
[44] http://www.microchem.com/
[45] J. M. Wang, K. C. Liu, K. C. Ko, L. J. Yang and W. P. Shih, “Buckled-type valves integrated by parylene micro-tubes,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9, 2005, pp.656-659.
[46] L. J. Yang, H. H. Wang, J. M. Wang, K. C. Liu and K. C. Ko, “Buckled-type valves integrated by parylene micro-tubes,” Sensors and Actuators A, Vol. 130-131, August 14, 2006, pp.241-246.
[47] D. S. Popescu, P. Lerch, C. Dunare and D. Dascalu, “Modelling and optimisation for an electrostatic actuation of a valveless micropump using a silicon buckled membrane,” Semiconductor Conference’97, Vol. 1, pp.157-160.
[48] D. Bosch, et al., “A silicon microvalve with combined electromagnetic/electrostatic actuation,” Sensors and Actuators A, Vol. 37-38, 1993, pp.684-692.
[49] T. Furuhata et al., “Electrostatic comb-drive microactuators with sub-micro gaps,” Trans. Inst. Elect. Eng. Japan., 112-A, 1992, pp.999-1006.
[50] C. W. Storment, D. A. Borkholder, V. Westerlind, J. W. Suh, N. I. Maluf and G. T. A. Kovacs, “Flexible, dry-released process for aluminum electrostatic actuators,” Journal of Micro-electromechanical Systems, Vol. 3, Issue: 3, 1994, pp.90-96.
[51] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon and E. G. Lovell, “Thermo-magnetic metal flexure actuators,” Tech. Dig. Solid-State Sen. Act. Workshop, Hilton Head Island, SC, (1992), June 22-25, 1992, pp.73-75.
[52] C. Lo, H. Y. Lin and W Fang, “A novel out-of-plane electrothermal microactuator,” Proceeding of 2001 Microsystem Technical Conference, Dusseldorf, Germany, March 2001.
[53] W. C. Chen, C. C. Chu, J. Hsieh and W. Fang, “A reliable single-layer out-of-plane micromachined thermal actuator,” Sensors and Actuators A, Vol. 103, 2003, pp. 48-58.
[54] J. W. L. Zhou, H. Y. Chan, T. K. H. To, K. W. C. Lai and W. J. Li, “Polymer MEMS actuators for underwater micromanipulation,” IEEE/ASME Transactions on Mechatronics, Vol. 9, Issue: 2, June, 2004, pp.334-342.
[55] D. S. Lee, H. C. Yoon and J. S. Ko, “Fabrication and characterization of a bidirectional valveless peristaltic micropump and its application to a flow-type immunoanalysis,” Sensors and Actuators B, Vol. 103, 2004, pp.409-415.
[56] S. Matsumoto, A. Klein and R. Maeda, “Development of bi-direction valve-less micropump for liquid,” Proceeding of the 12th IEEE MEMS, January 17-21, 1999, pp.141-146.
[57] R. Schellin, G. Hess, W. Kuehnel, G. M. Sessler and E. Fukada, “Silicon subminature microphones with organic piezoelectric layers-fabrication and acoustical behavior,” Transactions on Electrical Insulation, Vol. 27, Issue: 4, 1992, pp.867-871.
[58] M. Shikida, K. Sato and T. Harada, “Fabrication of an S-shaped microactuator,” Journal of Micro-electromechanical System, Vol. 6, No.1, March 1997, pp.18-24.
[59] T. Pan, S. J. McDonald and E. M. Kai, “A magnetically driven PDMS micropump with ball check-valves,” Journal of Micromechanics and Microengineering, Vol.15, 2005, pp.1021-1026.
[60] Y. Lu and C. J. Kim, “Micro-finger articulation by pneumatic parylene balloons,” The 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003, pp.276-279.
[61] J. Lee and C. J. Kim, “Liquid micromotor driven by continuous electrowetting,” Proceeding of the 11th IEEE MEMS, January 25-29, 1998, pp.535-543.
[62] K. F. Harsh, V. M. Bright and Y. C. Lee “Solder self-assembly for three-dimensional microelectromechanical systems,” Sensors and Actuators A, Vol. 77, Issue: 3, November 2, 1999, pp.237-244.
[63] M. P. Stoykovich, H. B. Cao, K. Yoshimoto, L.E. Ocola and P.F. Nealey, “Deformation of Nanoscopic Polymer Structure in Response to Well-Defined Capillary Forces,” Advanced Materials, Vol. 15, 2003, pp.1180-1184.
[64] R. T. Borno and M. M. Maharbiz, “A distributed actuation method base on Young-Laplace Forces,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9, 2005, pp.125-128.
[65] 陶雨台,“表面物理化學”,千華出版公司,民國七十七年五月初版,頁4-47。
[66] J. M. Gere, “Mechanics of materials-5th,” PRK editiorial services, 2000, pp.609-678.
[67] B. Samel, J. Melin, P. Griss and G.. Stemme, “Single-use microfluidic pumps and vales bases on a thermally responsive PDMS composite,” Proceeding of 18th IEEE MEMS, January 30-February 3, 2005, pp.690-693.
[68] 陳虹吟,“非平面電極之研製及其微流體驅動之應用”,淡江大學機械與機電工程學系碩士學位論文,2004年6月。
[69] B. Bohl, R. Steger, R. Zengerle and P. Koltay, “Multi-layer SU-8 lift-off technology for microfluidic devices,” Journal of Micromechanics and Microengineering, Vol. 15, 2005, pp.1125-1130.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信