§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2406201411450600
DOI 10.6846/TKU.2014.00958
論文名稱(中文) 膜管式水旋風分離器之多相流模擬
論文名稱(英文) Multiple Phase Flow Simulation of a Tubular-Membrane Hydrocyclone
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 徐琳芳
研究生(英文) Lin-Fang Hsu
學號 602400086
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-06-11
論文頁數 107頁
口試委員 指導教授 - 吳容銘(romeman@mail.tku.edu.tw)
委員 - 李篤中
委員 - 陳錫仁
委員 - 謝宇恒
關鍵字(中) 水旋風分離器
計算流體力學
離散相模型
膜管
關鍵字(英) Hydrocyclone
CFD
Discrete Phase Model
Membrane tube
第三語言關鍵字
學科別分類
中文摘要
本研究採用直徑2.5 cm之水旋風分離器,並安裝膜管至水旋風分離器中心位置,使用黑色碳化矽粉末作為實驗粉體,並以計算流體力學軟體FLUENT的模擬作為搭配,分別討論不同的進口操作壓力下對水旋風分離器顆粒分級之影響。模擬方面則改變膜管的尺寸,並以VOF多相流模式以及LES紊流模式模擬空氣核心以及內部流場,並使用離散相模式(Discrete Phase Model)針對水旋風分離器中之顆粒運動做預測及追蹤,將模擬與實驗結果進行分析,並討論膜管尺寸對水旋風分離器的影響。
實驗與模擬結果顯示,當進口壓力越大則整體分離效率會越好,而其分級效率在8μm。對於2.5公分的水旋風分離器,膜管變細則過濾效果差,而膜管變粗過濾效果則變好,但分級效率卻會微幅下降;分級效率:膜管徑1公分>1.2公分>0.8公分;膜管濾液流量:膜管徑1.2公分>1公分>0.8公分。
英文摘要
This study uses black silicon carbide powder as experimental particles to realize its classification in a 2.5 cm diameter hydrocyclone that equips membrane tube in center position. In the experiment, the effects of variations in inlet pressure on particle size distribution efficiency were analyzed. In the simulation of the change the size of the membrane tube, the air core and the flow pattern in hydrocyclone was simulated by VOF model and LES model, and using the discrete phase model to track and predict the particle motion. The simulation and experimental results will be analyzed discuss the impact of the membrane tube size on the hydrocyclone.
Experimental and simulation results show that when the inlet pressure larger the overall separation efficiency will be better, and its classification efficiency in 8 μm. For the 2.5 cm diameter hydrocyclone, membrane tube diameter becomes smaller filtering effect poor and diameter becomes larger filtering effect better than original size, but the classification efficiency will drop a little. Classification efficiency:diameter 1 cm>1.2 cm>0.8 cm. Filtering effect:diameter 1.2 cm>1 cm>0.8 cm.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖表目錄	V
第一章 緒論  1
1-1 前言	  1
1-2 研究動機與目的	  2
第二章 文獻回顧	3
2-1 水旋風分離器發展簡介   3
2-1-1水旋風分離器之發展歷史	  3
2-1-2 水旋風分離器之結構	4
2-1-3 水旋風分離器之基本分離原理與規格  6
2-1-4 水旋風分離器的優缺點	8
2-2 水旋風分離器之特殊現象	9
2-2-1 平衡軌道理論	9
2-2-2 空氣柱現象	10
2-2-3 短路流現象	11
2-2-4 循環流	11
2-2-5 魚鉤現象	12
2-3 數值計算在水旋風分離器的應用與模擬方法	13
2-3-1 數值計算的應用發展	13
2-3-2 數值計算方法之無因次群組	20
2-3-3 模擬軟體簡介	23
2-3-4 建立幾何形狀與網格	24
2-3-5 邊界條件設定	28
2-3-6 模擬流場之統御方程式	31
2-4 影響水旋風分離器之參數	35
2-4-1 幾何結構對水旋風分離器的影響	35
2-4-2 物性參數對水旋風分離器的影響	39
2-4-3 操作參數對水旋風分離器的影響	40
2-5 固體顆粒在水旋風分離器流場中移動的受力分析	43
2-5-1 固體顆粒在流場中的拖曳力	43
2-5-2 兩相流動中的受力分析	46
2-5-3 拉格朗日法在顆粒運動中的應用	48
2-5-4 水旋風分離器中的剪切應力	48
2-6 薄膜過濾	50
2-6-1 薄膜分離程序	50
2-6-2 薄膜的型式	51
2-6-3 掃流過濾及膜管上的作用力	54
第三章 實驗裝置與步驟	58
3-1 水旋風分離器之實驗裝置	58
3-2 實驗物料與濾膜設備	60
3-2-1 實驗物料	60
3-2-2 實驗濾膜	61
3-2-3 實驗設備	62
3-3 實驗步驟	63
第四章 結果與討論	64
4-1 實驗結果	64
4-1-1 進口壓力對無因次群的關係	64
4-1-2 分級效率	68
4-2 模擬結果	69
4-2-1 空氣體積分率之膜管直徑1公分	69
4-2-2 空氣體積分率之膜管直徑0.8公分及1.2公分	79
4-2-3 速度向量分佈	84
4-3 離散相粒置移動軌跡	87
4-4 實驗與模擬分級效率及濾液比較	92
4-1-1 模擬和實驗比較	92
4-1-2 模擬膜管徑1公分、0.8公分及1.2公分比較	94

第五 結論	96
符號說明	98
參考文獻	102

圖表目錄

圖目錄
第二章
圖2-1 水旋風分離器裝置的結構與內部流動示意圖	5
圖2-2 長錐與短錐水旋風分離器示意圖	7
圖2-3 各截面軸速度分布和零速包絡面(LZVV)	9
圖2-4 水旋風分離器的魚鉤現象	12
圖2-5 模擬用的水旋風分離器網格-膜管R=1公分	25
圖2-6 模擬用的水旋風分離器網格-膜管R=0.8公分	26
圖2-7 模擬用的水旋風分離器網格-膜管R=1.2公分	27
圖2-8 水旋風分離器的基本結構圖	36
圖2-9 三種渦流半徑與切線速度的示意圖	49
圖2-10 薄膜孔洞大小與適用範圍之分離程序圖	50
圖2-11 膜管上的受力變化情形	57

第三章
圖3-1 水旋風分離器實驗裝置圖	58
圖3-2 陶瓷薄膜管取代空氣核心之水旋風分離器示意圖	59
圖3-3 碳化矽的粒徑分布	60

第四章
圖 4-1 水旋風分離器不同進口壓力下溢流、底流、進口的流量圖	64
圖 4-2 進口壓力對進口速度和特性速度關係圖	65
圖 4-3 水旋風分離器進口壓力對雷諾數關係圖	66
圖 4-4 水旋風分離器進口壓力對尤拉數關係圖	67
圖 4-5 水旋風分離器分級效率	68
圖 4-6 水旋風分離器(膜管R=1 cm)進口速度9.06 m/s之0.1-1.5 s的x=0 m切面空氣體積分率	70
圖 4-7 水旋風分離器(膜管R=1 cm)進口速度12.75 m/s之0.1-1.5 s的x=0 m切面空氣體積分率	71
圖 4-8 水旋風分離器(膜管R=1 cm)進口速度15.67 m/s之0.1-1.5 s的x=0 m切面空氣體積分率	72
圖 4-9 水旋風分離器(膜管R=1 cm)進口速度18.21 m/s之0.1-1.5 s的x=0 m切面空氣體積分率	73
圖 4-10 水旋風分離器(膜管R=1 cm)進口速度9.06 m/s之0.1-1.5 s的x=0.005 m切面空氣體積分率	75
圖 4-11 水旋風分離器(膜管R=1 cm)進口速度12.75 m/s之0.1-1.5 s的x=0.005 m切面空氣體積分率	76
圖 4-12 水旋風分離器(膜管R=1 cm)進口速度15.67 m/s之0.1-1.5 s的x=0.005 m切面空氣體積分率	77
圖 4-13 水旋風分離器(膜管R=1 cm)進口速度18.21 m/s之0.1-1.5 s的x=0.005 m切面空氣體積分率	78
圖 4-14 水旋風分離器(膜管R=0.8 cm)進口速度9.06 m/s之0.1-1.5 s的x=0 m切面空氣體積分率	80
圖 4-15 水旋風分離器(膜管R=0.8 cm)進口速度9.06 m/s之0.1-1.5 s的x=0.004 m切面空氣體積分率	81
圖 4-16 水旋風分離器(膜管R=1.2 cm)進口速度9.06 m/s之0.1-1.5 s的x=0 m切面空氣體積分率	82
圖 4-16圖 4-17 水旋風分離器(膜管R=1.2 cm)進口速度9.06 m/s之0.1-1.5 s的x=0.006 m切面空氣體積分率	83
圖 4-18 水旋風分離器(膜管R=1 cm)之1.5 s的x=0切面速度向量分佈-(a) 1 bar (b)2 bar (c)3 bar (d)4 bar	85
圖 4-19 進口速度9.06 m/s之1.5 s的x=0切面速度向量分佈(a)膜管R=1 cm (b)膜管R=0.8 cm (c)膜管R=1.2 cm	86
圖 4-20 粒子移動軌跡起點示意圖位置1~21(a)置中(b)垂直(c)水平	88
圖 4-21 粒子移動軌跡-置中	89
圖 4-22 粒子移動軌跡-垂直	90
圖 4-23 粒子移動軌跡-水平	91
圖 4-24 實驗和模擬分級效率	92
圖 4-25 不同膜管徑之分級效率	93
表目錄
表2-1 四種主要膜組件之特性比較	53
表3-1 複合陶瓷膜管之性質	61
表4-1 粒子往底流機率	87
表4-2 實驗和模擬分流比和膜管流量	93
表4-3 不同膜管徑之分流比和膜管流量	95
參考文獻
參考文獻
Ahmed, M. M., Ibrahim, G. A., and Farghaly, M. G. (2009) “Performance of a three-product hydrocyclone.” International Journal of Mineral Processing, 91, 34-40. 

Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009a) “Experimental study of flow patterns in deoiling hydrocyclone.”Minerals Engineering, 22, 319-323.

Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009b) “Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles.” Chemical Engineering and Technology, 32, 55-63. 

Bamrungsri, P., Puprasert, C., Guigui, C., Marteil, P., Breant, P., & Hebrard, G. (2008) “Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones.” Chemical Engineering Research and Design, 86, 1263-1270. 

Bhaskar, K. U., Murthy, Y. R., Raju, M. R., Tiwari, S., Srivastava, J. K., and Ramakrishnan, N. (2007) “CFD Simulation and Experimental Validation Studies on hydrocyclone,” Minerals Engineering, 20, 60-71.

Bhaskar, K. U., Murthy, Y. R., Ramakrishnan, N., Srivastava, J.K., Shakar, Supriya., and Kumar, Vimal. (2007) “CFD validation for flyash particle classification inhydrocyclones,” Minerals Engineering, 20, 209-302.

Boysan, F., Ayers, W. H., and Swithenbank, J. (1982) “Fundamental Mathematical Modeling Approach to Cyclone Design,” Transactions of the Institution of Chemical Engineers, 60, 222-230. 

Bouhabila, E. H.,R.B.Aim and H.Buisson, (2001) “Fouling Chararcterisation in Membrane Bioreactors”,Separation and Purification Technolog,22-23,123

Chu, K.W., Wang, B., Yu, A.B., and Vince A.(2009) “CFD-DEM modeling of multiphase flow in dence medium cyclones,” Powder Tecknology, 193, 235-247. 

Da Matta, V. M., and Medronho, R. D. A. (2000) “A New Method for Yeast Recovery in batch Ethanol Fermentations: Filter Aid Filtration Followed by Separation of Yeast from Filter Aid Using Hydrocyclone,” Bioseparation, 9, 43-53 

Delgadillo, J. A., and Rajamani, R. K. (2005) “Hydrocyclone Modeling: Large Eddy Simulation CFD Approach,” Minerals amd Metallurgical Processing, 22, 225-232. 

Duggins, R. K., and Frith, P. C. W. (1987) “Turbulence Anisotropy in Cyclones,” Filtration and Separation, 24, 394-397.

Dyakowski, T., and Williams, R. A. (1993) “Modelling Turbulent Flow Within a Small-Diameter Hydrocyclone,” Chemical Engineering Science, 48, 1143-1152. 

Frachon, A. M., and Cilliers, J. J. (1999) “A General Model for Hydrocyclone Partition Curves,” Chemical Engineering Journal, 73, 53-59. 

Gupta, R., Kaulaskar, M. D., Kumar, V., Sripriya, R., Meikap, B. C., & Chakraborty, S. (2008) “Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone.” Chemical Engineering Journal, 144, 153-166. 

Harrison, S.T.L., and Cilliers, J. J.(1997) “The Use of Mini-Hydrocyclones for Differential Separations within Mineral Slurries Subjected to Bioleaching,” Minerals Engineering, 10, 529-535 

Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A. (1999) “An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones,” Chemical Engineering Science, 54, 2055-2065. 

Huang, S. (2005) “Numerical Simulation of Oil-Water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows,” The Canadian Journal of Chemical Engineering, 83, 829-834. 

Hsieh, K. T., and Rajamani, R. K. (1991) “Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow,” AIChE Journal, 37, 735-746. 

Kelsall, D. F. (1953) “A Further Study on the Hydraulic Cyclone,” Chemical Engineering Science, 2, 254-272. 

K. Okada, T. Nagase, Y. Ohinshe, A. Nishihan,and Y. Akagi,“Correlations  of Filtration Flux Enhanced by Electric Fields in Crossflow Microfiltration,”Journal of Chemical Engineering of Japan,Vol.30,No.6,pp.1054-1058(1997)

Liu, Hai-Fei, Xu, Jing-Yu, Wu, Ying-Xiang, Zheng, Zhi-Chu.(2010) “Numerical study on oil and water two-phase flow in a cylindrical hydrocyclone,” 9th International Conference on Hydrodynamics, October 11-15,2010 Shanghai,China.

Majumder, A. K., Yerriswamy, P., and Barnwal, J. P. (2003) “The ‘Fish-Hook’ Phenomenon in Centrifugal Separation of Fine Particles,” Minerals Engineering, 6, 1005-1007.

Matvienko, O. V., and Dueck, J. (2006) “Numerical Study of the Separation Characteristics of a Hydrocyclone under Various Conditions of Loading of the Solid Phase,” Theoretical Foundations of Chemical Engineering, 40, 203-208.

M. Mulder,Basic Principles of Membrane Technology,Kluwer Academic Publishers,The Netherlands,(1996)

M. Y. Teng, K. R. Pal, and J. Y. Lai,“Preparation and Prevaporation Performance of Poly(3-alkylthiophene) Membrane,”Polymer ,Vol. 41,pp. 2047-2052(2000)

Nageswararao, K. (2000) “A Critical Analysis of the Fish-Hook Effect in Hydrocyclone Classifiers,” Chemical Engineering Journal, 80, 251-256. 

Narasimha, M., Brennan, M., and Holtham, P. N. (2006) “Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape,” International Journal of Mineral Processing, 80, 1-14.

Psoch, C., and S. Schiewer,(2005)“Long-term Study of an Intermittent Air Sparged MBR for Synthetic Wastewater Treatment”,Journal of Membrane Science,260,56

Puprasert, C.,G. Hebrard, L. Lopez and Y. Aurelle, (2004)“Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treament,”Chemical Engineering and Processing,43,67-83.

R.Byron Bird,Warren E.Stewart,Edwin N.Lightfoot,(1960), “Transport Phenomena”,Wiley International Edition,3,89

R.Prased and K.K. Sirkar, “Dispersion-Free Solvent Extraction with Micro-porous Hollow-Fiber Modules, ” Desalination, Vol. 53,pp.265-273(1985)

R.R.Bhave, Inorganic Membranes Synthesis, Characteristics and Application, van Nostrand Reinhold,New York(1991)

Slack, M. D., Del Porte, S., and Engelman, M. S. (2004) “Designing Automated Computational Fluid Dynamics Modeling Tools for Hydrocyclone Design,” Minerals Engineering, 17, 705-711.

Svarovsky, L. (1984) “Hydrocyclone,” Holt, Rinehart and Winston Ltd, London.

Svarovsky, L. (1990) “Solid-Liquid Separation,” 3rd ed., Butterworths, London 

Trawinski, H. F. (1977) “Solid/Liquid Separation Equipment Scale up,” Ed. D. B. Purchas, Uplands Press, England, 241-286.

T. Tsuru, “Inorganic  Porous  Membranes for Liquid Phase Separation, ” Separation and Purification Methods,Vol. 30,No. 2,pp. 191-220(2001)

Wang, B., Chu, K.W., and Yu, A. B. (2007) “Numerical Study of Particle-Fluid Flow in A Hydrocyclone,” Industrial and Engineering Chemistry Research, 46, 4695-4705. 

Wang, B., Chu, K.W., Yu, A. B., Vince, A., Barnett, G.D., Barnett, P.J.(2011) “Computational study of the multiphase flow and performance of dence medium cyclones:Effect of body dimensions,” Minerals Engineering, 24, 19-34.

Xu, P., Wu, Z., Mujumdar, A. S., and Yu, B. (2009) “Innovative hydrocyclone inlet designs to reduce erosion-induced wear in mineral dewatering processes,” Drying Technology, 27, 201-211.

Yang, G. A. B. and Wakley, W. D. (1994) “Oil-water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions,” Oil Gas, 11, 37-50.

Yoshioka, N., and Hotta, Y., (1955) “Liquid Cyclone As A Hydraulic Classifier,” Chemical Engineering Japen, 19(12),623 .

Yoshioka, H., S., Fukui, K.,and Kobayashi, A. (2004) “Effect of Apex Cone on Particle Classification Performance of Cyclone Separator,” Journal of the Chinese Institute of Chemical Engineers,,35,41-46 

彭大志(2001),凝膠衍生SiO2無機濾材製備,碩士學位論文,淡江大學化學工程與材料工程學系

方巽禾(2007) “以多像流膜是模擬掃流為過濾”,碩士學位論文,淡江大學化學工程與材料工程學系

李建明 (1997) “水力旋流器固液兩相流動數值模擬及分離機理研究”,博士學位論文,成都四川聯合大學化學工程學院

李權家(2005) “管狀無機膜製備其於化學機械研磨廢水處理之研究”,碩士學位論文,國立中山大學環境工程學系

呂信毅 (2006) “改進複合型水旋風分離器之分離效率”,碩士學位論文,淡江大學化學工程與材料工程學系
郭文正、曾添文,“薄膜分離”,第二章,高立圖書有限公司,台北市(1991)

許智淵 (2008) “水旋風分離器之研究與薄膜水旋風分離之發展”,碩士學位論文,淡江大學化學工程與材料工程學系

趙慶國和張明賢 (2003) “水力旋流器分離技術”,化學工業出版社

陳怡任 (2009) “水旋風分離器流場測量與模擬暨新型水旋風分離器之研究”,碩士學位論文,淡江大學化學工程與材料工程學系

任連城、梁政、梁利平和龍道玉 (2005) “過濾式水力旋流器方案設計”,西南石油學院學報,27(1),82-85
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信