淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2406201314355700
中文論文名稱 循環伏安法應用於電化學氧化降解反應機制探討
英文論文名稱 Electrochemical Oxidation Mechanism Study with Cyclic Voltammetry
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 陳威任
研究生英文姓名 Wei-Jen Chen
學號 600480684
學位類別 碩士
語文別 中文
口試日期 2013-05-30
論文頁數 90頁
口試委員 指導教授-陳俊成
委員-申永順
委員-許道平
中文關鍵字 電化學  電解質  次級氧化劑  循環伏安法 
英文關鍵字 electrochemical;electrolyte;secondary oxidant;cyclic voltammetry 
學科別分類 學科別應用科學環境工程
中文摘要 本研究為了證實電氧化三途徑中,次級氧化劑會於電化學氧化程序中生成並提高有機物的降解效率,利用循伏安法(cyclic voltammetry , CV),分析在不同pH值條件下以硫酸鈉、氯化鈉作為輔助電解質時,四環素於工作電極周圍所發生的電化學反應。藉由循環伏安圖所得之峰值電流與掃描速率平方根之間的關係,了解工作電極周圍所發生的反應為擴散控制或是化學反應控制,用以判定是否有次級氧化劑產生。
由循環伏安法分析後發現,以氯化鈉作為輔助電解質時,峰值電流與掃描速率平方根呈非線性關係,表示電極周圍發生化學反應,其原因在於氯離子於電氧化過程中會形成次氯酸根離子氧化四環素;硫酸鈉作為輔助電解質於電氧化過程當中不會有氧化劑產生,但經由循環伏安法分析後發現峰值電流與掃描速率平方根亦呈非線性關係,表示電氧化過程中有其他次要氧化劑如過氧化氫、臭氧、氫氧自由基產生與四環素發生化學反應,證實次級氧化劑會於電化學氧化程序中生成。
英文摘要 This research attempts to confirm the formation of secondary oxidant during an electrochemical oxidation as well as its function of improving the degradation efficiency of the targeted organic, which was initially proposed in the three-pathway theory of electrochemical- oxidation. Cyclic voltammetry (CV) is utilized hereby to analyze the electrochemical reactions of Tetracycline (TC) happened adjacent to the working electrode in different pH environment when using Na2SO4 and NaCl as auxiliary electrolytes, respectively. In a cyclic voltammogram, the relationship between the current peak (Ip) and the square root of scan rate (V^(1/2)) could be used to determine whether the reactions happened around working electrode are diffusion controlled or chemical reaction controlled; in other words, to detect the production of secondary oxidant.
The CV analysis indicated a non-linear relationship between Ip and V^(1/2) when NaCl was used as the auxiliary electrolyte. As a result, there was some chemical reactions occurred near the working electrode, whichwould most possibly be the oxidation of TC by hypochlorite which was converted from the Cl-. Theoretically speaking, Na2SO4 should not generate any oxidant during the electro-oxidation; however, a linear relationship still could not be built between Ip and V^(1/2) when Na2SO4 served as the electroylte. The possible scenario is that other secondary oxidants may form during the electro-oxidation including, but not limited to, hydrogen peroxide, ozone and hydroxyl radical, all of which might trigger the oxidation of TC.
論文目次 目錄 ..................................................... I
圖目錄 .................................................. IV
表目錄 .................................................. IX
第一章 研究源起 .......................................... 1
1.1研究背景及目的...................................... 1
1.1.1研究背景、目的 .................................. 1
1.1.2 研究內容 ...................................... 3
第二章 文獻回顧 .......................................... 4
2.1四環素類抗生素廢水特性 .............................. 4
2.1.1四環素類抗生素介紹 .............................. 4
2.1.2四環素類抗生素廢水特性 ........................... 4
2.1.3四環素類抗生素結構 .............................. 5
2.2四環素廢水處理方式 ................................ 6
2.2.1物理吸附 ...................................... 6
2.2.2二氧化鈦光催化法 ................................ 6
2.2.3臭氧、過氧化氫氧化處理 ........................... 7
2.2.4加氯處理 ....................................... 8
2.3電化學氧化降解有機物機制 ............................ 9
2.3.1 電氧化三途徑理論 ............................... 9
2.3.2 影響電化學氧化降解程序因素 .................... 12
2.4 循環伏安法之原理與應用 ............................ 22
第三章 實驗方法與材料 ................................... 32
3.1實驗藥品........................................... 32
3.2實驗設備........................................... 34
3.2.1電化學氧化降解有機物程序 ....................... 34
3.2.2電化學分析儀器 ................................. 37
3.3實驗方法與流程 ..................................... 39
3.3.1不同種類電解質於電氧化程序中降解有機物效率比較 . 39
3.3.2不同濃度氯化鈉為電解質在電氧化程序中四環素效降解率比較 ................................................ 41
3.3.3不同陽極對電氧化程序對於降解四環素效率比較 ..... 43
3.3.4循環伏安法分析四環素水溶液之電氧化反應 ......... 45
第四章 結果與討論 ....................................... 48
4.1四環素的定量分析 ................................... 48
4.2 實驗條件之確認 .................................... 50
4.2.1電解質導電度比較 ............................... 50
4.2.2主要氧化劑確認 ................................. 52
4.3電化學氧化降解途徑探討 – 主要氧化劑氧化 ........... 55
4.3.1不同電解質降解效率差異 ......................... 55
4.3.2不同濃度電解質對四環素降解影響 ................. 61
4.3電化學氧化降解途徑探討 – 極板直接氧化 ............. 63
4.4電化學氧化降解途徑探討 – 次級氧化劑 ............... 68
第五章 結論與建議 ....................................... 86
5.1結論 .............................................. 86
5.2建議 .............................................. 87
參考文獻 ................................................ 88
圖目錄
圖2-1 四環素類抗生素結構圖................................................................5
圖2-2 金屬過氧化物產生途徑圖..........................................................11
圖2-3 不同pH值Cl2 / HOCl / OCl-存在百分比變化..........................13
圖2-4 四環素降解途徑圖......................................................................16
圖2-5使用氯化鈉及硫酸鈉作為電解質電氧化降解生乳中的OTC..17
圖2-6 使用電化學氧化降解程序處理四環素廢水..............................19
圖2-7循環伏安法分析含有100 mgL-1 TC +、0.1 M Na2SO4之電解液...................................................................................................................21
圖2-8 循環伏安法反應槽示意圖..........................................................25
圖2-9 石墨電極測量含有5.0 mM K4Fe(CN)6、以0.1M KCl作為輔助電解質水溶液所獲得之CV圖...............................................................25
圖2-10 擴散控制、化學反應控制示意圖............................................30
圖3-1 四環素化學結構圖......................................................................32
圖3-2 電化學氧化降解有機物反應槽..................................................34
圖3-3 實驗所使用之極板......................................................................35
圖3-4 數位三用電表..............................................................................36
圖3-5 直流電電源供應器......................................................................36
圖3-6 分光光度計..................................................................................37
圖3-7 循環伏安分析儀..........................................................................37
圖3-8 循環伏安分析儀反應槽..............................................................38
圖3-9 不同種類電解質在電化學氧化程序中降解四環素效率實驗流程圖...........................................................................................................40
圖3-10不同濃度氯化鈉電解質在電化學氧化程序中降解四環素效率實驗流程圖...............................................................................................42
圖3-11 不同陽極於電氧化降解程序中對降解四環素效率比較實驗流程圖...........................................................................................................44
圖3-12 循環伏安法分析四環素水溶液間接證明次要氧化劑之存在實驗流程圖...................................................................................................47
圖4-1 四環素(Tetracycline)吸收光譜..................................................48
圖4-2 吸收值與四環素(Tetracycline)濃度迴歸關係...........................49
圖4-3 電解氯化鈉與硫酸鈉水溶液電流密度變化..............................50
圖4-4 不同電解質於操作過程中pH變化圖.......................................53
圖4-5同pH值Cl2 / HOCl / OCl-存在百分比變化...............................54
圖4-6 石墨作為陽極,使用不同電解質電氧化含100 ppm TC混合液...................................................................................................................55
圖4-7 不同電解質的處理效率及EEO比較圖......................................57
圖4-8 石墨作為陽極,電氧化含有3.42 x 10-2 M NaCl、100 ppm TC混合液之濃度與pH值變化...................................................................59
圖4-9不同濃度氯化鈉為電解質處理四環素水溶液隨時間變化圖...61
圖4-10 不同濃度氯化鈉的處理效率與反應速率常數k比較圖........62
圖4-11不同種類極板電解含有3.42 x 10-2 M Na2SO4、100 ppm TC混合液...........................................................................................................65
圖4-12 不同陽極之處理效率、反應速率常數及EEO比較圖............66
圖4-13以石墨棒為工作電極(工作面積:33 mm2),10-3 M TC + 10-2M NaCl為電解液(pH 10)掃描所得之CV圖(scan rate = 50 mV/s)..........71
...................................................................................................................71
圖4-14以石墨棒為工作電極(工作面積:33 mm2),10-3 M TC + 10-2M Na2SO4為電解液(pH 10)掃描所得之CV圖(scan rate = 50 mV/s) ......71
...................................................................................................................71
圖4-15(a) 以石墨棒為工作電極,10-3 M TC + 10-2 M NaCl為電解液(pH 6),在不同的掃描速率下掃描所得之CV圖................................72
圖4-15(b) 以石墨棒為工作電極,10-3 M TC + 10-2 M NaCl為電解液(pH 8),在不同的掃描速率下掃描所得之CV圖................................72
圖4-15(c) 以石墨棒為工作電極,10-3 M TC + 10-2 M NaCl為電解液(pH 10),在不同的掃描速率下掃描所得之CV圖..............................73
圖4-15(d) 以石墨棒為工作電極,10-3 M TC + 10-2 M NaCl為電解液(pH 12),在不同的掃描速率下掃描所得之CV圖..............................73
圖4-16 以石墨棒為工作電極,10-3 M TC + 10-2 M NaCl為電解液所得之氧化峰值電流(Ipa)、還原峰值電流(Ipc)與掃描速率平方根(V 1/2)關係圖...........................................................................................................75
圖4-16 以石墨棒為工作電極,10-3 M TC + 10-2 M NaCl為電解液所得之氧化峰值電流(Ipa)、還原峰值電流(Ipc)與掃描速率平方根(V 1/2)關係圖...........................................................................................................76
圖4-17(a) 以石墨棒為工作電極,10-3 M TC + 10-2M Na2SO4為電解液(pH 6),在不同的掃描速率下掃描所得之CV圖................................77
圖4-17(b) 以石墨棒為工作電極,10-3 M TC + 10-2M Na2SO4為電解液(pH 8),在不同的掃描速率下掃描所得之CV圖................................77
圖4-17(c) 以石墨棒為工作電極,10-3 M TC + 10-2 M Na2SO4為電解液(pH 10),在不同的掃描速率下掃描所得之CV圖..............................78
圖4-17(d) 以石墨棒為工作電極,10-3 M TC + 10-2 M Na2SO4為電解液(pH 12),在不同的掃描速率下掃描所得之CV圖..........................78
圖4-18 以石墨為工作電極,10-3 M TC + 10-2 M Na2SO4 為電解液所得之氧化峰值電流(Ipa)、還原峰值電流(Ipc)與掃描速率平方根(V 1/2)關係圖(a) pH 6 (b) pH 8........................................................................80
圖4-18 以石墨為工作電極,10-3 M TC + 10-2 M Na2SO4 為電解液所得之氧化峰值電流(Ipa)、還原峰值電流(Ipc)與掃描速率平方根(V 1/2)關係圖(c) pH 10 (d) pH 12 ...................................................................81
表目錄
表4-1 不同濃度四環素溶液在波長為355 nm的紫外光吸收值........49
表4-1(a) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M NaCl為電解液(pH 6),在不同的掃描速率下掃描所得之CV數據...................................................................................................................74
表4-1(b) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M NaCl為電解液(pH 8),在不同的掃描速率下掃描所得之CV數據...................................................................................................................74
表4-1(c) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M NaCl為電解液(pH 10),在不同的掃描速率下掃描所得之CV數據...................................................................................................................74
表4-1(d) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M NaCl為電解液(pH 12),在不同的掃描速率下掃描所得之CV數據...................................................................................................................74
表4-2(a) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M Na2SO4為電解液(pH 6),在不同的掃描速率下掃描所得之CV數據...................................................................................................................79
表4-2(b) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M Na2SO4為電解液(pH 8),在不同的掃描速率下掃描所得之CV數據...................................................................................................................79
表4-2(c) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M Na2SO4為電解液(pH 10),在不同的掃描速率下掃描所得之CV數據...............................................................................................................79
表4-2(d) 以石墨棒為工作電極(工作面積:33 mm2 ),10-3 M TC + 10-2 M Na2SO4為電解液(pH 12),在不同的掃描速率下掃描所得之CV數據...............................................................................................................79
表4-3 標準氧化還原電位表..................................................................82
參考文獻 [1] D. Belkheiri, F. Fourcade, F. Geneste, D. Floner, H. Ait-Amar, and A. Amrane, "Feasibility of an electrochemical pre-treatment prior to a biological trea- tment for tetracycline removal," Separation and Purification Technology, vol. 83, pp. 151-156, 2011.
[2] 何志軒, "電化學處理反應性染料之反應機制探討," 2007.
[3] 鄧文俊, "染料的化學結構與溶解度對其電化學氧化降解的影響," 2012.
[4] 王信翔, "電氧化法降解染料廢水的機制研究," 2012.
[5] 謝政憲, "以電化學氧化程序處理含抗生素廢水之研究," 2013.
[6] 林正芳,林郁真,余宗賢, "新興汙染物(抗生素與止痛藥)於特定汙染源環境之流佈," 持久性有機汙染物(含戴奧辛)研討會, 2008.
[7] R. A. Fernandez and S. A. Dassie, "Transfer of tetracyclines across the H2O|1,2-dichloroethane interface: Analysis of degraded products in strong acid and alkaline solutions," Journal of Electroanalytical Chemistry, vol. 585, pp. 240-249, 2005.
[8] K. J. Choi, S. G. Kim, and S. H. Kim, "Removal of antibiotics by coagulation and granular activated carbon filtration," J Hazard Mater, vol. 151, pp. 38-43, Feb 28 2008.
[9] W. R. Chen and C. H. Huang, "Adsorption and transformation of tetracycline antibiotics with aluminum oxide," Chemosphere, vol. 79, pp. 779-85, May 2010./
[10] P. Wang, P.-S. Yap, and T.-T. Lim, "C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation," Applied Catalysis A: General, vol. 399, pp. 252-261, 2011.
[11] Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, and W. Cai, "Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode," J Hazard Mater, vol. 171, pp. 678-83, Nov 15 2009.
[12] C. V. Gomez-Pacheco, M. Sanchez-Polo, J. Rivera-Utrilla, and J. Lopez-Penalver, "Tetracycline removal from waters by integrated technologies based on ozonation and biodegradation," Chemical Engineering Journal, vol. 178, pp. 115-121, 2011.
[13] M. H. Khan, H. Bae, and J. Y. Jung, "Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway," J Hazard Mater, vol. 181, pp. 659-65, Sep 15 2010.
[14] H. Nakamura, T. Kawakami, T. Niino, Y. Takahashi, and S. Onodera, "Chemical fate and changes in mutagenic activity of antibiotics nitrofurazone and furazolidone during aqueous chlorination," Toxicological Sciences, vol. 33, pp. 621-629, 2008.
[15] M. C. Dodd, C.-h. Huang, "Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: Kinetics, mechanisms, an pathways.," Environmental Science & Technology, vol. 38, pp. 5607-5615, 2004.
[16] O.Simond, V.schaller, and Ch.Comninelles, "Theoretical model for the anodic oxidation of organics on metal oxide electrodes," Electrochimica Acta, vol. 42, 2009.
[17] G.C.White, "The Handbook of Water Chlorination," 2nd Edition,Van Nostrand Reinhold Co.,New York,NY, 1986.
[18] E.-h. M.Ahmed, Saad Al-Sulani, "Disinfection and Disinfection by-products : A nuisance in Desalination Technology," Water Science and Technology Association Conference 2005.
[19] J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, and M. A. Oturan, "Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode," Chemosphere, vol. 87, pp. 614-20, May 2012.
[20] Y. Kitazono, I. Ihara, G. Yoshida, K. Toyoda, and K. Umetsu, "Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method," J Hazard Mater, vol. 243, pp. 112-6, Dec 2012.
[21] L. Guoting, Y. Jinxia, C. Jing, Z. Meiya, Z. Lingfeng, and Z. Xiwang, "Degradation of Tetracycline by Eletrochemical Oxidation Using Dimensionally Stable Anode," pp. 253-256, 2009.
[22] D. Andrienko, "Cyclic Voltammetry," 2008.
[23] "Electroanalytical Methods-III : VOLTAMMETRY."
[24] S. P. Kounaves, "Voltammetric Techniques."
[25] "Experiments in Analytical Electrochemistry : The Cyclic Voltammetry of Dopamine an ec mechanism."
[26] M. Benjamin, "Water Chemistry," McGraw Hill Series in Water Resources and Environmental Engineering, 2002.
[27] 范姜仁茂, "預臭氧程序提升綜合性工業廢水生物可分解性之研究,"2001.
[28] Rajan Sundara, "Hot peroxide bleaching," Canadian Chemical News, vol. 50, pp.15-17, Jan 1998.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-06-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-06-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信