淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2406201313151700
中文論文名稱 以好氧造粒程序處理血液透析廢水
英文論文名稱 Treatment of hemodialysis wastewater by aerobic granular process
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 鄭至翔
研究生英文姓名 Chih-Hsiang Cheng
學號 600480718
學位類別 碩士
語文別 中文
口試日期 2013-05-31
論文頁數 64頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-李柏青
中文關鍵字 血液透析廢水  好氧顆粒污泥  氨氮  硝化作用  SBR 
英文關鍵字 Hemodialysis wastewater  Aerobic granule  Ammonia nitrogen  Nitrification  SBR 
學科別分類 學科別應用科學環境工程
中文摘要 血液透析廢水因含有高濃度的氨氮(約60~70 mg/L),若未經處理直接將廢水排入水溝會造成嚴重污染。根據文獻指出好氧造粒程序能有效去除氨氮,且具有較佳的穩定性、維持高污泥濃度,以及能承受高有機負荷。故本研究於SBR系統內以好氧顆粒污泥處理某診所排放之血液透析廢水,探討好氧顆粒污泥及實廠之活性污泥對於血液透析廢水中COD及氨氮之去除效率。
初期為確認血液透析廢水能培養出好氧顆粒污泥,以血液透析廢水作為進流水,於實驗室培養好氧顆粒污泥,觀察顆粒之形成及水質處理狀況。經觀察發現SBR系統能培養出好氧顆粒污泥,且各水質分析結果皆有明顯的去除效率。SBR系統經過三周的培養期間,即可形成好氧顆粒污泥,且對於COD及氨氮之去除效率皆可達95%以上。此外,從SBR系統得知好氧顆粒污泥能將氨氮完全氧化為硝酸鹽氮。
後期將SBR系統搬至該診所之廢水處理廠進行培養,並定期至實廠採集SBR系統及實廠之進、出流水,於實驗室進行各項水質分析。由於該診所會針對血液透析機進行消毒,故SBR系統於實廠培養約六個月的期間,活性污泥因受到次氯酸鈉之影響,皆未形成好氧顆粒污泥,對於COD及氨氮之去除效率均降至85%左右,而從結果得知SBR系統之活性污泥僅能將氨氮氧化為亞硝酸鹽氮。因此,比較SBR系統於實驗室及實廠培養結果顯示,好氧顆粒污泥比起活性污泥更有利於硝化作用進行,且對於水質有較好之處理結果。
英文摘要 Hemodialysis wastewater contains high concentration of ammonia nitrogen (about 60~70 mg/L). It may cause serious water pollution if the wastewater is not properly treated. Literatures showed that aerobic granule process has good stability, maintains high sludge concentration, withstands high organic loadings, and can remove ammonia nitrogen effectively. In this study, aerobic granular process was used to treat hemodialysis wastewater collected from a local clinic. Both aerobic granular process and activated sludge process in the existing activated sludge process were compared side-by-side for removing chemical oxygen demand (COD) and ammonia nitrogen of hemodialysis wastewater.
At first, cultivation of aerobic granule using hemodialysis wastewater was conducted in the laboratory to observe granule formation and treated water quality. The result shows that aerobic granule can be cultivated in SBR reactor using hemodialysis wastewater as substrate, having outstanding treatment efficiency. After a three-week operation, aerobic granules were formed in SBR reactor, achieving more than 95% of COD and ammonia nitrogen removal efficiency. Besides, complete oxidation of ammonia nitrogen to nitrate nitrogen was observed in the aerobic granule process.
Thereafter, SBR reactor was moved onsite to the clinic and was operated side-by-side with the activated sludge process in the existing wastewater treatment plant. Influent and effluent of SBR reactor and of the existing treatment process were collected and brought back to laboratory regularly for water quality analysis to compare the performance of two systems. No aerobic granules formed during the course of six-month study due to raw water containing sodium hypochlorite, which was used to sterilize medical devices at the end of each business day. Therefore, the onsite SBR reactor was operated as a normal activated sludge system. Less than 85% of COD and ammonia nitrogen removal efficiency was achieved for both systems. Furthermore, the SBR reactor was only capable of oxidizing ammonia nitrogen into nitrite nitrogen, while no ammonia nitrogen removal was observed for the activated sludge process of the existing treatment plant. Comparison of SBR reactor in the laboratory with SBR reactor onsite, this study confirmed that aerobic granule process achieved better nitrification efficiency and produced better treated water quality than activated sludge process.
論文目次 目錄 I
圖目錄 IV
表目錄 VII
第一章、前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章、文獻回顧 3
2-1 水中之氨氮 3
2-1-1 水中氨氮的型態及危害 3
2-1-2 硝化作用 4
2-2 好氧顆粒污泥 6
2-2-1 碳源 7
2-2-2 沉澱時間 8
2-2-3 溶氧 9
2-2-4 水力停留時間 10
2-2-5 其他影響因子 10
2-3 好氧顆粒污泥之應用 11
2-3-1 去除廢水中之氨氮 11
2-3-2 降解有毒物質 14
2-3-3 去除水中重金屬離子 15
第三章、實驗材料與方法 16
3-1 實驗材料與設備 16
3-1-1 實驗材料 16
3-1-2 實驗設備 16
3-1-3 實驗藥品 18
3-1-4 實驗儀器 20
3-2 分析方法 20
3-2-1 水中化學需氧量(COD)檢測方法 21
3-2-2 污泥容積指數(SVI30)及總懸浮固體物 22
3-2-3 氨氮(NH3-N)檢測方法 22
3-2-4 硝酸鹽氮(NO3--N)及亞硝酸鹽氮(NO2--N)檢測方法 24
3-2-5 總氮(TN)檢測方法 26
3-2-6 總有機碳(Total organic carbon, TOC)分析 27
3-2-7 數值分析 27
第四章、結果與討論 29
4-1 好氧顆粒污泥之培養及分析 29
4-1-1 污泥容積指數及MLSS 29
4-1-2 COD 之去除效率 31
4-1-3 氨氮、亞硝酸鹽氮及硝酸鹽氮之去除效率 32
4-1-4 顆粒外觀 35
4-1-5 單一週期內各濃度變化情形 36
4-2 SBR 系統與實廠相比 43
4-2-1 pH 值之影響 43
4-2-2 污泥容積指數及MLSS 44
4-2-3 COD 之去除效率 49
4-2-4 氨氮、亞硝酸鹽氮及硝酸鹽氮之去除效率 50
4-2-5 水質變化 53
第五章、結論與建議 57
5-1 結論 57
5-2 建議 58
參考文獻 59

圖目錄
Figure 1. 實廠之處理程序:包含調節槽、接觸氧化槽、生物沉澱槽、消毒槽及放流槽 17
Figure 2. 本研究之SBR反應槽示意圖 18
Figure 3. 氨氮檢量線 23
Figure 4. 硝酸鹽氮檢量線 24
Figure 5. 亞硝酸鹽氮檢量線 25
Figure 6. 總氮檢量線 26
Figure 7. SBR系統之MLSS濃度及SVI30與操作天數之關係圖 30
Figure 8. SBR系統形成好氧顆粒後之MLSS濃度及SVI30與操作天數之關係圖 30
Figure 9. 進流水及SBR出流水之COD濃度與操作天數之關係圖 32
Figure 10. 進流水及SBR出流水之氨氮與操作天數之關係圖 33
Figure 11. 進流水及SBR出流水之亞硝酸鹽氮與操作天數之關係圖 34
Figure 12. 進流水及SBR出流水之硝酸鹽氮與操作天數之關係圖 34
Figure 13. 於不同天數(5th, 23rd, 31st, 36th, 44th, 49th day)SBR系統培養之顆粒形成圖 36
Figure 14. 不同水力停留時間下,SBR系統於一個周期內之COD濃度變化與時間之關係圖 37
Figure 15. 不同水力停留時間下,SBR系統於一個周期內之氨氮濃度變化與時間之關係圖 38
Figure 16. 不同水力停留時間下,SBR系統於一個周期內之亞硝酸鹽氮濃度變化與時間之關係圖 39
Figure 17. 不同水力停留時間下,SBR系統於一個周期內之硝酸鹽氮濃度變化與時間之關係圖 40
Figure 18. 為6小時水力停留時間下,SBR系統之氨氮、亞硝酸鹽氮及硝酸鹽氮濃度變化與時間之關係圖 41
Figure 19. 為4小時水力停留時間下,SBR系統之氨氮、亞硝酸鹽氮及硝酸鹽氮濃度變化與時間之關係圖 42
Figure 20. 為3小時水力停留時間下,SBR系統之氨氮、亞硝酸鹽氮及硝酸鹽氮濃度變化與時間之關係圖 42
Figure 21. SBR系統及實廠生物系統之pH值與時間之關係圖 44
Figure 23. SBR系統(植入實廠污泥)及實廠生物系統之MLSS濃度與時間之關係圖 47
Figure 24. SBR系統及實廠生物系統之SVI30與時間之關係圖 48
Figure 25. SBR系統(植入實廠污泥)及實廠生物系統之SVI30與時間之關係圖 48
Figure 26. 摒除系統不穩定之SBR系統及實廠生物系統之SVI30濃度與時間之關係圖 49
Figure 27. 進流水、SBR出流水及實廠生物系統出流水之COD濃度與時間之關係圖 50
Figure 28. 進流水、SBR出流水及實廠生物系統出流水之氨氮與時間之關係圖 51
Figure 29. 進流水、SBR出流水及實廠生物系統出流水之亞硝酸鹽氮與時間之關係圖 52
Figure 30. 進流水、SBR出流水及實廠生物系統出流水之硝酸鹽氮與時間之關係圖 53
Figure 31. 單一循環內之氨氮、亞硝酸鹽氮及硝酸鹽氮與時間之關係圖(9/2) 54
Figure 32. 單一循環內之氨氮、亞硝酸鹽氮及硝酸鹽氮與時間之關係圖(11/5) 55
Figure 33. 該診所生物處理系統之調節槽,每30分鐘之COD濃度變化 56
Figure 34. 該診所生物處理系統之調節槽,每30分鐘之氨氮、硝酸鹽氮及亞硝酸鹽氮之濃度變化 56


表目錄
Table 1. 探討不同好氧顆粒污泥之文獻對於氨氮之去除效率 12
Table 2. SBR 系統對於MLSS 及SVI30 兩種因子之統計量表:(a) SBR 系統之
MLSS 濃度統計;(b)為好氧顆粒污泥形成後,SBR 系統之MLSS 濃度統
計;(c) SBR 系統之SVI30 統計;(d)為好氧顆粒污泥形成後,SBR 系統
之SVI30 統計 31
Table 3. SBR 系統之進、出流對於COD、氨氮、亞硝酸鹽氮及硝酸鹽氮等四種因
子之統計量表 35
Table 4. 進流水、SBR 系統及實廠生物系統對於pH 值之中位數統計量表 44
Table 5. SBR 系統及實廠生物系統對於MLSS 及SVI30 兩種因子之統計量表:(a)
兩系統之MLSS 濃度統計;(b)為SBR 系統植入實廠污泥之MLSS 濃度
統計;(c)兩系統之SVI30 統計;(d)為8 月份以後系統趨於穩定之SVI30
統計 49
Table 6. SBR 系統及實廠生物系統對於COD、氨氮、亞硝酸鹽氮及硝酸鹽氮等四
種因子之統計量表 53
參考文獻 1.行政院衛生署, 101年度慢性腎衰竭病人門診透析服務品質提升獎勵計畫 In 行政院衛生署中央健康保險局, Ed. 2012.
2.陳琪婷. 以二氧化錳催化降解水中氨氮之研究. 國立中山大學, 2003.
3.林恩添, 工業廢水氨氮處理技術. 陽光綠地 2009.
4.王有樂; 翟鈞; 謝剛. 超聲波吹脫技術處理高濃度氨氮廢水試驗研究. 甘肅工業大學, 2001.
5.張瑩輝. 利用中空纖維薄膜接觸器結合硫酸水溶液去除廢液中氨氮之研究--以半導體廠測試之實例. 龍華科技大學, 2012.
6.Adav, S. S.; Lee, D. J., Physiological characterization and interactions of isolates in phenol-degrading aerobic granules. Appl. Microbiol. Biotechnol. 2008, 78, (5), 899-905.
7.Jiang, H. L.; Tay, J. H.; Tay, S. T. L., Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol. Lett. Appl. Microbiol. 2002, 35, (5), 439-445.
8.Moy, B. Y. P.; Tay, J. H.; Toh, S. K.; Liu, Y.; Tay, S. T. L., High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 2002, 34, (6), 407-412.
9.Bouchard, D. C.; Williams, M. K.; Surampalli, R. Y., Nitrate contamination of groundwater: sources and potential health effects. American Water Works Association 1992, 84, (9), 85-90.
10.Huang, C. P.; Wang, H. W.; Chiu, P. C., Nitrate reduction by metallic iron. Water Res. 1998, 32, (8), 2257-2264.
11.Ackert, L., Sergei Vinogradskii and the Cycle of Life: From the Thermodynamics of Life to Ecological Microbiology. Springer London, Limited: 2013.
12.Painter, H. A.; Loveless, J. E., Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. Water Res. 1983, 17, (3), 237-248.
13.Boon, B.; Laudelout, H., Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J 1962, 85, 440-447.
14.Knowles, G.; Downing, A. L.; Barrett, M. J., Determination of kineticconstants for nitrifying bacteria in mixed culture, with the aid of an elevtronic computer. J. Gen. Microbiol. 1965, 38, 263-78.
15.Painter, H. A., Nitrification in the treatment of sewage and wastewater. Published for the Society for General Microbiology by IRL Press: Oxford, 1986; p 195-211.
16.Downing, P. B., Subjunctive Conditionals, Time Order, and Causation. Proceedings of the Aristotelian Society 1958, 59, 125 - 140.
17.Nagel, C. A., Operational factors affecting nitrification in the activated sludge process. County Sanitation Districts of L.A. County: Los Angeles, Ca., 1969.
18.Wild, H. E.; Jr., C. N. S.; McMahon, T. C., Factors affecting nitrification kinetics. Water Pollution Control Federation 1971, 43, 1845-1854.
19.Randall, C. W.; Pattarkine, V. M.; McClintock, S. A., Nitrification Kinetics in Single-Sludge Biological Nutrient Removal Activated Sludge Systems. Water Sci. Technol. 1992, 25, 195-214.
20.Ng, W. J.; Ong, S. L.; Hu, J. Y., Effect of Operating Protocols on SBR Performance for Sewage Treatment. J. Chin. Inst. Environ. Eng. 1998, 8, 289-294.
21.Bruns, M. A., Comparative Diversity of Ammonia Oxidizer 16S RRNA Gene Sequences in Native, Tilled, and Successional Soils. Appl. Environ. Microbiol. 1999.
22.Suwa, Y.; Imamura, Y.; Suzuki, T.; Tashiro, T.; Urushigawa, Y., Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res. 1994, 28, (7), 1523-1532.
23.Cecen, F., Investigation of Patricia and Full Nitrification Characteristics of Ferilifeer Wastewater in a Submerged Biofilm Reactor. Water Sci. Technol. 1996, 34, (11), 77-85.
24.Van Dongen, U.; Jetten, M. S.; van Loosdrecht, M. C., The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci. Technol. 2001, 44, (1), 153-160.
25.Anthonisen, A. C.; Loehr, R. C.; Prakasam, T. B. S.; Srinath, E. G., Inhibition of nitrification by ammonia and nitrous acid. Journal of Water Pollution Control Federation 1976, 48, 835-852.
26.Morgenroth, E.; Sherden, T.; Van Loosdrecht, M. C. M.; Heijnen, J. J.; Wilderer, P. A., Aerobic granular sludge in a sequencing batch reactor. Water Res. 1997, 31, (12), 3191-3194.
27.Tijhuis, L.; Van Loosdrecht, M. C. M.; Heijnen, J. J., Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol. Bioeng. 1994, 44, (5), 595-608.
28.Cassidy, D. P.; Belia, E., Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res. 2005, 39, (19), 4817-4823.
29.Li, J. P.; Healy, M. G.; Zhan, X. M.; Rodgers, M., Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor. Bioresour. Technol. 2008, 99, (16), 7644-7650.
30.Liu, Y.-Q.; Moy, B. Y.-P.; Tay, J.-H., COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors. Enzyme Microb. Technol. 2007, 42, (1), 23-28.
31.Wang, S. G.; Liu, X. W.; Gong, W. X.; Gao, B. Y.; Zhang, D. H.; Yu, H. Q., Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresour. Technol. 2007, 98, (11), 2142-2147.
32.Adav, S. S.; Lee, D.-J.; Show, K.-Y.; Tay, J.-H., Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008, 26, (5), 411-423.
33.Tay, J. H.; Pan, S.; Tay, S. T. L.; Ivanov, V.; Liu, Y., The effect of organic loading rate on the aerobic granulation: The development of shear force theory. Water Sci. Technol. 2003, 47, 235-240.
34.Tay, J. H.; Pan, S.; He, Y.; Tay, S. T. L., Effect of organic loading rate on aerobic granulation. I: Reactor performance. J. Environ. Eng. 2004, 130, (10), 1094-1101.
35.Li, A.-j.; Yang, S.-f.; Li, X.-y.; Gu, J.-d., Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res. 2008, 42, (13), 3552-3560.
36.Sharma, B.; Ahlert, R. C., Nitrification and Nitrogen Removal. Water Res. 1977, 11, 897-925.
37.Strauss, E. A.; Lamberti, G. A., Regulation of nitrification in aquatic sediments by organic carbon. Limnol. Oceanogr. 2000, 45, (8), 1854-1859.
38.Prakasam, T. B. S.; Loehr, R. C., Microbial nitrification and denitrification in concentrated wastes. Water Res. 1972, 6, (7), 859-869.
39.Strauss, E. A., The Effects of Organic Carbon and Nitrogen Availability on Nitrification Rates in Stream Sediments. Can. J. Fish. Aquat. Sci 2002, 59, 554-563.
40.Beun, J. J.; Van Loosdrecht, M. C. M.; Heijnen, J. J., Aerobic granulation in a sequencing batch airlift reactor. Water Res. 2002, 36, (3), 702-712.
41.Beun, J. J.; Hendriks, A.; Van Loosdrecht, M. C. M.; Morgenroth, E.; Wilderer, P. A.; Heijnen, J. J., Aerobic granulation in a sequencing batch reactor. Water Res. 1999, 33, (10), 2283-2290.
42.Tay, J. H.; Liu, Q. S.; Liu, Y., Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol. 2001, 91, (1), 168-175.
43.McSwain, B. S.; Irvine, R. L.; Wilderer, P. A., The influence of settling time on the formation of aerobic granules. Water Sci. Technol. 2004, 50, 195-202.
44.Liang Yang-Min; Chen Jie-Yuan; Gaetan Marchesini; Li Chi-Wang; Chen Shiao-Shing, Granulation of biological flocs under elevated pressure:characteristics of granules. Water Sci. Technol. 2013.
45.Mosquera-Corral, A.; De Kreuk, M. K.; Heijnen, J. J.; Van Loosdrecht, M. C. M., Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res. 2005, 39, (12), 2676-2686.
46.Meyer, R. L.; Saunders, A. M.; Zeng, R. J.; Keller, J.; Blackall, L. L., Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms. FEMS Microbiol. Ecol. 2003, 45, (3), 253-261.
47.Chiu, Z. C.; Chen, M. Y.; Lee, D. J.; Tay, S. T. L.; Tay, J. H.; Show, K. Y., Diffusivity of oxygen in aerobic granules. Biotechnol. Bioeng. 2006, 94, (3), 505-513.
48.Liu, Y.; Liu, Q.-S., Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol. Adv. 2006, 24, (1), 115-127.
49.Dangcong, P.; Bernet, N.; Delgenes, J.-P.; Moletta, R., Aerobic granular sludge—a case report. Water Res. 1999, 33, (3), 890-893.
50.Liang, Y.-M.; Li, C.-W.; Lee, P.-C.; Tzeng, T.-W.; Chen, S.-S., Intermittent high-pressure sequential bioreactor (IHPSB) with integration of sand filtration system for synthetic wastewater treatment. Environ. Technol. 33, (7-9), 937-42.
51.Toba, T.; Hayasaka, I.; Taguchi, S.; Adachi, S., A new method for manufacture of lactose-hydrolysed fermented milk. J. Sci. Food Agric. 1990, 52, (3), 403-407.
52.Pan, S.; Tay, J. H.; He, Y. X.; Tay, S. T. L., The effect of hydraulic retention time on the stability of aerobically grown microbial granules. Lett. Appl. Microbiol. 2004, 38, (2), 158-163.
53.Jiang, H. L.; Tay, J. H.; Liu, Y.; Tay, S. T. L., Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol. Lett. 2003, 25, (2), 95-99.
54.Yang, S.-F.; Tay, J.-H.; Liu, Y., Inhibition of free ammonia to the formation of aerobic granules. Biochem. Eng. J. 2004, 17, (1), 41-48.
55.Li, X.-M.; Liu, Q.-Q.; Yang, Q.; Guo, L.; Zeng, G.-M.; Hu, J.-M.; Zheng, W., Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresour. Technol. 2009, 100, (1), 64-67.
56.Beun, J. J.; Heijnen, J. J.; van Loosdrecht, M. C., N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol. Bioeng. 2001, 75, (1), 82-92.
57.Arrojo, B.; Mosquera-Corral, A.; Garrido, J. M.; Mendez, R., Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res. 2004, 38, (14-15), 3389-3399.
58.Kishida, N.; Kim, J.; Tsuneda, S.; Sudo, R., Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Water Res. 2006, 40, (12), 8-8.
59.Lu, S.; Ji, M.; Wang, J. F.; Wei, Y. J., Simultaneous phosphorus and nitrogen removal of domestic sewage with aerobic granular sludge SBR. Water Sci. Technol. 2007, 28, (8), 1687-1692.
60.Qin, L.; Liu, Y., Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor. Chemosphere 2006, 63, (6), 926-33.
61.Yang, S.-F.; Tay, J.-H.; Liu, Y., A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J. Biotechnol. 2003, 106, (1), 77-86.
62.Ni, B.-J.; Xie, W.-M.; Liu, S.-G.; Yu, H.-Q.; Wang, Y.-Z.; Wang, G.; Dai, X.-L., Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 2009, 43, (3), 751-761.
63.Zhang, D.; Wang, Y.; Li, H.; Wang, S.; Jing, Y., Aerobic Granulation in a Sequencing Batch Reactor for the Treatment of Piggery Wastewater. Water Environ. Res. 2013, 85, (3), 239-245.
64.Jiang, H.; Tay, J.; Maszenan, A. M.; Tay, S. T., Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl. Environ. Microbiol. 2004, 70, (11), 6767-75.
65.Tay, S. T.-L.; Zhuang, W.-Q.; Tay, J.-H., Start-Up, Microbial Community Analysis and Formation of Aerobic Granules in a tert-Butyl Alcohol Degrading Sequencing Batch Reactor. Water Sci. Technol. 2005, 39, (15), 5774-5780.
66.Yi, S.; Zhuang, W.-Q.; Wu, B.; Tay, S. T.-L.; Tay, J.-H., Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Water Sci. Technol. 2006, 40, (7), 2396-2401.
67.張筱瑜, 水質分析與實習: 廢水處理專責人員訓練教材. 行政院環境保護署環境保護人員訓練所: 2007.
68.放流水標準. In 水污染防治法, 行政院環境保護署: 2012; Vol. 第1010090770 號令.
69.Williams, J. C.; de los Reyes Iii, F. L., Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci. Technol. 2006, 54, 139-146.
70.Yang, S. F.; Li, X. Y.; Yu, H. Q., Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem. 2008, 43, (1), 8-14.
71.Alleman, J. E., Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci. Technol. 1985, 17, (2-3 -3 pt 1), 409-419.
72.廢水生物處理學. 茂昌圖書有限公司印: 1991.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-06-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-06-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信