淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2406201200285400
中文論文名稱 結合個人創新特質與期望確認模型探討行動APPS持續使用行為之研究
英文論文名稱 Integrating Personal Innovativeness and Expectancy Confirmation Model to Explore the Continued Usage Behavior of Mobile APPS
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士在職專班
系所名稱(英) Department of Business Administration
學年度 100
學期 2
出版年 101
研究生中文姓名 游英雪
研究生英文姓名 Ying-Hsueh Yu
學號 799610109
學位類別 碩士
語文別 中文
口試日期 2012-06-02
論文頁數 60頁
口試委員 指導教授-吳坤山
指導教授-羅惠瓊
委員-張巧真
委員-李月華
中文關鍵字 APPS  個人創新特質  期望確認模型  持續使用意願  最小平方估計法 
英文關鍵字 APPS  Personal Innovativeness  Expectancy Confirmation Model  Continuance Intention  Partial Least Square 
學科別分類 學科別社會科學管理學
中文摘要 隨著全球第三代(3G)行動寬頻基礎建設的普及與升級,行動寬頻上網的資訊傳輸速度已接近固網線路上網體驗,因而造就了行動用戶數的快速成長,預估2011年全球行動用戶數將達到58億戶的水準,其中行動寬頻用戶數成長更為快速,預估可達到10.4億戶,年成長率超過40%(資策會MIC, 2011)。2010年智慧型手機的市場成長率已達244%(www.pcforalla.idg.se,2011),消費者人手一支行動手持裝置,如:智慧型手機或平板電腦也成為劃時代的趨勢與潮流,帶著我們迎向全新的行動寬頻世代。
智慧型手機用戶期待能即時取得與應用多樣化的行動APPS。本研究為了進一步分析智慧型手機用戶對APPS的持續使用意願與用後行為(推薦意願),以個人創新特質與期望確認模型為研究基礎模型,探討智慧型手機用戶的個人創新特質、與「生活應用類」APPS的期望確認程度、認知有用、認知易用、使用滿意度、使用費用、持續使用意願與推薦意願等之間的關聯性。本研究主要以使用過「生活應用類」APPS的智慧型手機用戶為研究對象,總計回收240份,剔除因填答不完整之無效問卷共有1份,實際有效問卷為239份。透過敘述性統計、信效度分析及結構方程模型(Structural Equation Modeling, SEM)中之偏最小平方估計法(Partial Least Square, PLS)進行分析,其主要研究結果如下:
1.個人創新特質對APPS的認知有用性與持續使用意願有顯著正向影響。
2.期望確認程度對APPS的認知有用性與使用滿意度有顯著正向影響。
3.APPS的認知有用性對使用滿意度與持續使用意願有顯著正向影響。
4.APPS認知易用性對認知有用性與APPS使用滿意度有顯著正向影響。
5.APPS使用滿意度對持續使用與推薦意願有顯著正向影響。
英文摘要 With the popularization and upgrading of the infrastructure of the world's third-generation (3G) mobile broadband, the Internet information transmission speed of mobile broadband is close to the fixed-line Internet experience, thus results in a rapid growth of mobile users. It estimates that the number of mobile users will reach the level of 5.8 billion globally in 2011. Especially the users of mobile broadband grow very quickly, and then it forecasts that 1.04 billion users will be reached, and an annual growth rate will above 40% (Institute for Information Industry MIC, 2011). The market growth rate of smart phone has reached 244% in 2010 (www.pcforalla.idg.se, 2011), every consumer has a handheld device, such as smart phone or tablet, become a trend and lead us to new generations of mobile broadband.
The smart phone users expect to be able to obtain immediately and use diversified mobile APPS. This study is to further analyze the continuous intention and post behavior (willingness to recommend) of smart phones users on the APPS. It uses the research model of personal innovativeness and Expectancy Confirmation Model (ECT) to explore the relationships among the smart phone user's personal innovativeness, perceived usefulness, perceived ease of use, satisfaction, costs, continuous intention, and willingness of recommendation. The study object of this research is smart phone users who used “life application category” APPS. Totally 240 returned questionnaires received. There are 239 valid questionnaires after excluding an invalid questionnaire because of incomplete filled in. The quantitative research method including descriptive statistics, validity analysis, reliability analysis, and structural equation modeling (Partial Least Square method) were then conducted for data analysis. The main empirical results are as followings:
1.Personal innovativeness characteristic has positive effect on the perceived usefulness and continuous intention of the APPS.
2.Expectation confirmation towards APPS has positive effect on the perceived usefulness and satisfaction.
3.Perceived usefulness towards APPS has positive effect on perceived satisfaction and continuous intention.
4.Perceived ease of use twoards APPS has positive effect on perceived usefulness and satisfaction.
5.The satisfaction of the APPS has positive effect on continuous intention and willingness of recommendation.
論文目次 目 錄 I
表目錄 II
圖目錄 III
第一章 緒論 4
第一節 研究背景與動機 4
第二節 研究目的 7
第三節 研究流程 8
第二章 文獻探討 9
第一節 行動應用程式 9
第二節 期望確認理論 15
第三節 個人創新特質 21
第四節 持續採用意願 22
第三章 研究方法 24
第一節 研究架構 24
第二節 研究假設 25
第三節 研究變項操作型定義與衡量 27
第四節 研究對象與範圍 31
第五節 資料分析方法 32
第四章 資料分析 34
第一節 預試分析 34
第二節 樣本結構分析 35
第三節 研究變項之因果關係 38
第四節 使用成本在滿意度與持續使用意願之干擾效果探討 44
第五章 結論與建議 45
第一節 研究結論與發現 45
第二節 管理意涵 47
第三節 研究限制 49
第四節 未來研究方向建議 49
參考文獻 51
附錄:正式問卷 59

表目錄
表1-1 全球行動電話市場發展現況 4
表1-2 全球區域性行動電話市場發展現況 5
表1-3 Top 10 Mobile Applications (全球) 6
表2-1 全球主要的APPS Store平台業者概況 10
表2-2 2010-2011年有關應用期望確認模型的相關研究 19
表3-1「個人創新特質」之操作型定義及衡量題項 27
表3-2「期望確認程度」之操作型定義及衡量題項 28
表3-3「認知有用性」之操作型定義及衡量題項 28
表3-4「認知易用性」之操作型定義及衡量題項 29
表3-5「滿意度」之操作型定義及衡量題項 29
表3-6「持續使用意願」之操作型定義及衡量題項 30
表3-7「推薦意願」之操作型定義及衡量題項 30
表4-1 各構面之Cronbach’s α值 34
表4-2 性別統計 35
表4-3 婚姻狀況統計 35
表4-4 婚姻狀況統計 36
表4-5 教育程度統計 36
表4-6 行業別統計 36
表4-7 工作年資統計 37
表4-8 職務層級統計 37
表4-9 每月可支配所得統計 38
表4-10 可接受之APPS下載費用統計 38
表4-11 研究構面之信效度表 40
表4-12 區別效度表 41
表4-13 研究模型路徑分析結果表 43
表4-14 使用成本在滿意度與持續使用行為之階層迴歸分析彙整表 44
表5-1 研究假說彙整表 45

圖目錄
圖1-1 研究流程圖 8
圖2-1 全美手機使用者與iPhone使用者使用手機服務概況 9
圖2-2 智慧型手機用戶使用手機服務概述 11
圖2-3 期望確認理論(Expectation Confirmation Theory, ECT) 16
圖2-4 期望確認模型(Expectancy Confirmation Model, ECM) 19
圖3-1 本研究架構圖 24
圖4-1 本研究相關變數之因果關係路徑 43
參考文獻 一、中文文獻:
1. 丁鴻裕(2011)。抓住消費者的遊戲喜好-Angry birds成功要素分析。資策會產業情報研究所(MIC)。
2. 池文海等(2010)。探討瀏覽影音部落格沈浸經驗的前因與後果。電子商務研究,第八卷第二期,183-208。
3. 余鑑等(2011)。數位學習知覺與使用意圖間影響之研究。電子商務研究,第九卷第三期,323-352。
4. 李敏正(2003)。延伸計劃行為理論以預測WWW持續使用之研究。高雄第一科技大學資訊管理學系碩士論文。
5. 李煉祥(2011)。智慧型手機軟體商店之商業模式分析。國立中央大學資訊管理系碩士學位論文。
6. 林柏齊(2011)。全球行動電話市場預測, 2011~2015。資策會產業情報研究所(MIC)。
7. 哈燒王(2011)。Gartner預測2012行動APP十大趨勢。http://www.hot3c.com/read.asp?class=1&id=16946。
8. 姜阳(2009)。电信移动增值业务客户使用行为研究。北京邮电大学博士研究生学位论文。
9. 相元翰(2011)。雲端應用Apps商業模式分析。資策會產業情報研究所(MIC)。
10. 許麗玲等(2010)。探討Blog使用者持續採用行為之研究—以期望確認理論為基礎。資訊管理學報,第十五卷第四期,1-23。
11. 郭家蓉與魏傳虔(2011)。由雲端服務看Apple、Google、Amazon、Microsoft經營模式之轉變。資策會產業情報研究所(MIC)。
12. 郭莹莹(2010)。移动互联网业务持续使用影响因素研究。北京邮电大学硕士学位论文。
13. 黃文楷(2007)。探討Blog使用者持續採用行為之研究-以期望確認理論為基礎。國立高雄第一科技大學資訊管理系碩士學位論文。
14. 劉倫彤(2011)。攝影新興App服務-Camera+。資策會產業情報研究所(MIC)。
15. 數位時代(2011)。網路已死?消費者使用行動app時間首度超越上網時間。http://www.bnext.com.tw/focus/view/cid/103/id/18959。
16. 蔡秀媛(2006)。行動通訊加值服務使用者滿意度、購買意向與品牌忠誠行為關係之研究-整合科技接受模型與計畫行為理論。東吳大學國際貿易學系碩士學位論文。
17. 鄧偉志(2008)。以任務/科技配適構面擴充期望確認理論-以ERP系統為例。國立中央大學企業管理研究所碩士學位論文。
18. 鐘國晉與蔡玉青(2011)。全球行動電話用戶數預測, 2011~2015。資策會產業情報研究所(MIC)。

二、英文文獻
1. Adams, D.A., Nelson, R.R. and Todd, P.A. (1992). Perceived Usefulness, Ease of Use and Usage of Information. MIS Quarterly, 16(2), 227-250.
2. Adapa, S. (2011). Continued and Frequent Use of Internet Banking by Australian Consumers: Identification of the Factor Components. Journal of Internet Banking and Commerce, 16(2), 1-22.
3. Agarwal, R. and Karahanna, E. (2000). Times files when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24, 665-694.
4. Agarwal, R. and Prasad, J. (2006). Theory of planning behavior(TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822.
5. Anderson, E.W. and Sullivan, M.W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12 (2), 125-143.
6. Anderson, J. C. and Gerbing, D. W. (1988). Structural equations modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411-423.
7. Bagozzi, R. P. and Yi, Y. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16, 75-94.
8. Barclay, D., Higgins, C. and Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies, 2(2), 285–309.
9. Bearden, W.O. and Teel, J.E. (1983). Selected Determinants of Consumer Satisfaction and Complaint Reports. Journal of Marketing Research, 20 (February), 21-28.
10. Bellman, S., Potter, R. F., Shiree, T.-H., Robinson, J. A. and Varan, D. (2011). The Effectiveness of Branded Mobile Phone Apps. Journal of Interactive Marketing, 1-10.
11. Bhattacherjee, A. (2001a). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32 (2), 201–214.
12. Bhattacherjee, A. (2001b). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25 (3), 351-370.
13. Bhattacherjee, A. and Barfar, A. (2011). Information Technology Continuance Research: Current State and Future Directions. Asia Pacific Journal of Information Systems, 21(2), 14-17.
14. Bhattacherjee, A. and Premkumar, G. (2004). Understanding Changes in Belief and Attitude toward Inoformation Technology Usage: The Theoretical Model and Longitudinal Test. MIS Quarterly, 28(2), 229-254.
15. Borchert, J., Goos, P. and Hagenhoff, S. (2004). Innovations-und Technologie management: Eine Bestandsaufnahme[Innovation and technology management: an overview]. in Schumann, M. (Ed.). Arbeitsbericht 4/2003, Institut fur Wirtschafts informatik [Institute of Economic computer science], Georg-August-Universitat, Gotingen.
16. Bougie, R., Pieters, R., and Zeelenberg, M. (2003). Angry customers don’t come back, they get back: the experience and behavioral implications of anger and dissatisfaction in services. Journal of the Academy of Marketing Science, 31(4), 377-393.
17. Burton-Jones, A. and Hubona, G.S. (2005). Individual Differences and Usage Behaviour: Revisiting a Technology Acceptance Model Assumption. The DATA BASE for Advances in Information Systems, 36(2), 58-77.
18. Cardozo, R.N. (1965). An Experimental Study of Consumer Effort, Expectation and Satisfaction. Journal of Marketing Research, 2 (August), 244-249.
19. Chang, S.E., Hsieh, Y.J., Chen, C.W., Liao, C.K. and Wang, S.T. (2006). Location-Based Services for Tourism Industry: an Empirical Study. Lecture Notes in Computer Science, 4159, 1144-1153.
20. Chea, S. and Luo, M.M. (2006). E-Service Customer Retention-the Roles of Negative Affectivity and Perceived Switching Costs. Journal of Information Science and Technology, 3(2), 6-22.
21. Chen, Y.-Y., Huang, H.-L., Hsu, Y.-C., Tseng, H.-C. and Lee, Y.-C. (2010). Confirmation of Expectations and Satisfaction with the Internet Shopping: The Role of Internet Self-efficacy. Computer and Information Science, 3(3), 14-22.
22. Cheng, L.-C. and Sun, L.-M. (2011). Exploring consumer adoption of new services by analyzing the behavior of 3G subscribers: An empirical case study. Electronic Commerce Research and Applications, 1-12.
23. Chin, W. (1998). Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), 7–16.
24. Chiu, C. M., Hsu, M.H., Sun, S.Y., Lin, T.C. and Sun, P.C. (2005). Usability, quality, value and e-learning continuance decisions. Computers and Education, 45(4), 399–416.
25. Churchill, G.A. Jr and Surprenant, C. (1982). An Investigation into the Determinants of Customer Satisfaction. Journal of Marketing Research, 19 (November), 491-504.
26. Compeau, D., Higgins, C. and Huff, S. (1999). Social Cognitive Theory and Individual Reactions to Computing Technology: A Longitudinal Study. MIS Quarterly, 23(2), 145-158.
27. Dabholkar, P.A., Shepherd, C.D. and Thorpe, D.I. (2000). A Comprehensive Framework for Service Quality: An Investigation of Critical Conceptual and Measurement Issues through a Longitudinal Study. Journal of Retailing, 76(2), 139-173.
28. Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13 (3), 319-340.
29. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35 (8), 982-1003.
30. Fornell, C. and Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
31. Fornell, C., Johnson, M.D., Anderson, E.W., Cha, J. and Bryant, B.E. (1996). The American customer satisfaction index: nature, purpose and findings. Journal of Marketing, 60 (October), 7-18.
32. Fu, Jen-Ruei (2006). VISUAL PLS 1.04b1. http://www2.kuas.edu.tw/prof/fred/vpls/index.html.
33. Gefen, D. and Straub, D. (2005). A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. Communications of the Association for Information Systems, 16, 91-109.
34. Gefen, D., Straub, D., and Boudreau, M. (2000). Structural Equation Model Techniques and Regression: Guidelines for Research Practice. Communication of AIS, 7(7), 1-78.
35. Goldsmith, D.J. (2001). A normative approach to the study of uncertainity and communication. Journal of Communication, 51, 514-533.
36. Ha, I., Yoon, Y., Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management 44, 276-286.
37. Hair, J.F., Anderson, R.E., Tatham, R.L. and Black, W.C. (1998). Multivariate Data Analysis, 5th ed. Upper Saddle River, NJ: Prentice Hall.
38. Herr, P., Kardes, F., and Kim, J. (1991). Effects of Word-of-Mouth and Product-Attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective. Journal of Consumer Research, 17 (March), 454-462.
39. Hirunyawipada, T. and Paswan, A.K. (2006). Consumer Innovativeness and Perceived Risk: Implications for High Technology Product Adoption. Journal of Consumer Marketing, 23, 182-198.
40. Ho, S.Y. and Bull, S. (2011). Users’ Trust and Intention to Adopt Personalized Mobile Services. Journal of Next Generation Information Technology, 2(1), 97-104.
41. Hong, S.-J., Thong, J.Y.L., and Tam, K.Y. (2006). Understanding continued information technology usage behavior: A comparision of three models in the context of mobile Internet, Decision Support Systems, 42(3), 1819-1834.
42. Hong, W., Thong, J.Y.L., Wong, W.-M. and Tam, K.-Y. (1992). Determinants of User Acceptance of Digital Libraries: An Empirical Examination of Individual Differences and System Characteristics. Journal of Management Information Systems, 18(3), 97-124.
43. Howard, J.A. and Sheth, J.N. (1969). The Theory of Buyer Behavior. New York: Wiley.
44. Huang, L.-Y., Hsieh, Y.-J. and Chang, S.E.(2011). The Effect of Consumer Innovativeness on Adoption of Location-Based Services. Global Management and Service Science, 1, 17-30.
45. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2), 195-204.
46. Hung, S.Y., Ku, C.Y. and Chang, C.M. (2003). Critical factors of WAP services adoption: An empirical study. Electronic Commerce Research and Applications, 2(1), 42-60.
47. Hwang, I-H., Yu, C.-C., Tsai, S.-J. and Lin, C.-H. (2011). An Empirical Study on the Factors Affecting Continuous Usage Intention of Double Reinforcement Interactive E-Portfolio Learning System. Information Technology and Artificial Intelligence Conference (ITAIC), 246-249.
48. Igbaria, M., Zinatelli, P., Cragg, N. and Cavaye, L. M. (1997). Personal computing acceptance factors in small firms: a structure equation model. MIS Quarterly, 21(2), 279-305.
49. Im, S., Bayus, B.L. and Mason, C.H. (2003). An Empirical Study of Innate Consumer Innovativeness, Personal Characteristics and New-Product Adoption Behavior. Journal of the Academy of Marketing Science, 31, 61-73.
50. Jung, Y. (2011). Understanding the Role of Sense of Presence and Perceived Autonomy in Users' Continued Use of Social Virtual Worlds. Journal of Computer-Mediated Communication, 16(4), 492-510.
51. Kang, C.-R., Hung, M.-C., Yang, S.-T., Hsieh, T.-C. and Tang, S.-M. (2010). Factors Affecting the Continued Intention of Mobile Shopping. Proceedings of the 2010 IEEE IEEM, 710-713.
52. Kettinger, W.J., Park, S.H.S. and Smith, J. (2009). Understanding the Consequences of Information Systems Service Quality on IS Service Reuse. Information and Management, 46(6), 335-341.
53. Kim, S.S. and Son, J.-Y. (2009). Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the context of online services. MIS Quarterly, 33 (1), 49-70.
54. Kuo, Y.-F. and Yen, S.-N. (2009). Towards an understanding of the behavioral intention to use 3G mobile valueadded services. Computers in Human Behaviour, 25 (1), 103-110.
55. Liao, C., Chen, J.L., Yen, D.C. (2006). Theory of planning behavior(TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822.
56. Limayem, M. and Cheung, C.M.K. (2008). Understanding Information Systems Continuance: The Case of Internet-Based Learning Technologies. Information and Management, 45(4), 227-332.
57. Lin, C.S., Wu, S. and Tsai, R.J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information and Management, 42, 683-693.
58. Liu, W.-L., Huang, K.-P. and Wang, C.-H. (2011). Age cohort analysis in continued usage intention of mobile value-added services: Generation Y and Baby boomers. African Journal of Business Management, 5(14), 5863-5870.
59. Locke, E.A. (1976). The nature and causes of job satisfaction. In M. D. Dunnette(Ed.). Handbook of industrial and organizational psychology. Chicage: Rand McNally.
60. Macharia, J. and Nyakwende, E. (2010). The influence of E-mail on Students' Learning in Hingher Education: An Extension to the Technology Acceptance Model(TAM). Asian Journal of Information Technology, 9(3), 123-132.
61. Mathieson, K. (1999). Predicting user intentions: comparing the technolgy acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
62. Mayer, P., Volland, D., Thiesse, F. and Fleisch, E. (2011). User Acceptance of 'Smart Products: An Empirical Investigation. Wirtschaftinformatik Proceedings, 1063-1072.
63. McKinney, V., Yoon, K., Zahedi, F. (2002). The Measurement of Web-Customer Satisfaction: An Expectation and Disconfirmation Approach. Inform. Syst. Res., 13(3), 296-315.
64. Midgley, D.F. and Dowling, G.R. (1978). Innovativeness: The Concept and Its Measurement. Journal of Consumer Research, 4 (March), 229-242.
65. Moon, J.W., and Kim, Y.G (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217-230.
66. Muller, R.M., Kijl, B. and Martens, J.K.J. (2011). A Comparison of Inter-Organizational Business Models of Mobile App Stores: There is more than Open vs. Closed. Journal of Theoretical and Applied Electronic Commerce Research, 6(2), 63-76.
67. Niklas, S.J.B. and Strohmeier, S. (2011). Exploring the Impact of Usefulness and Enjoyment on Mobile Service Acceptance: A Comparative Study. Proceedings of 44th Hawaii International Conference on System Sciences, 1-10.
68. Nunnally, J. C. (1978). Psychometric Theory. New York, NY: McGraw-Hill.
69. Oliver, R.L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17 (4), 460-469.
70. Oliver, R.L. (1981). Measurement and Evaluation of Satisfaction Processes in Retail Settings. Journal of Retailing, 57 (Fall), 25-47.
71. Oliver, R.L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. The Journal of Consumer Research, 20 (3), 418-430.
72. Park, B.-W. and Lee, K.C. (2011). The Effect of Users’ Characteristics and Experiential Factors on the Compulsive Usage of the Smartphone. T.-h. Kim et al. (Eds.): UCMA 2011, Part II, CCIS 151, 438-446.
73. Park, J., Snell, W., Ha, S. and Chung, T.-L. (2011). Consumers' Post-adoption of M-Services: Interest in Future M-Services Based on Consumer Evaluations of Current M-Services. Journal of Electronic Commerce Research, 12(3), 165-175.
74. Patterson, P., Johnston, W. and Spreng, R. (1997). Modeling the determinants of customer satisfaction for business-tobusiness professional services. Journal of the Academy of Marketing Science, 25(1), 4-28.
75. Pavlou, P. A. and Fygenson, M. (2006). Understanding and Predicting Electronic Commerce Adoption: An Extension of the Theory of Planned Behavior. MIS Quarterly, 30(1), 115-143.
76. Pirouz, D. M. (2006). An Overview of Partial Least Squares. Available (23.3.2008): http://www.merage.uci.edu/-dpirouz04/
77. Racherla, P., Babb, J.S. and Keith, M.J. (2011). Pay-What-You-Want Pricing for Mobile Applications: The Effect of Privacy Assurances and Social Information. Conference for Information Systems Applied Research 2011 CONISAR Proceedings Wilmington North Carolina, USA v4 n1833, 1-13.
78. Roca, J.C., Chiu, C.M. and Martinez, F.J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model International Journal of human-computer studies, 64(8), 683-696.
79. Rogers, E.M. (1995). Diffusion of Innovations. 3rd edition. New York/London.
80. Saaksjarv, M. (2003). Consumer adoption of technological innovations. European Journal of Innovation Management, 6(2), 90-100.
81. Sawng, Y.-W., Kim, S.-H., Lee, J. and Oh, Y.S. (2011). Mobile Service Usage Behavior in Korea- An Empirical Study on Consumer Acceptance of Innovative Technologies. Technological and Economic Development of Economy, 17(1), 151-173.
82. Shiau, W.-L., Huang, L.-C. and Shih, C.-H. (2011). Understanding Continuance Intention of Blog Users- A Perspective of Flow and Expectation Confirmation Theory. Journal of Convergence Information Technology, 6(4), 306-317.
83. Shin, Y.M., Lee, S.C., Shin, B. and Lee, H.G. (2010). Examining influencing factors of post-adoption usage of mobile internet: focus on the user perception of supplier-side attributes. Information Systems Frontier, 12 (5), 595-606.
84. Spreng, R.A., Mackenzie, S.B. and Olshavsky, B.W. (1996). A Re-examination of the Determinants of Consumer Satisfaction. Journal of Marketing, 60(3), 15-22.
85. Suki, N.M. and Suki, N.H. (2011). Exploring the relationship between perceived usefulness, perceived ease of use, perceived enjoyment, attitude and subscribers’ intention towards using 3G mobile services. Journal of Information Technology Management, 12, 1-7.
86. Sun, Y., Peng, X., Zhu, Y.-l. and Boehnke, K. (2011). Understanding Users’ Continuance Intention in Online Social Networks. E -Business and E -Government (ICEE) 2011 International Conference, 1-2.
87. Tan, F.B. and Chou, J.P.C. (2008). The Relationship Between Mobile Service Quality, Perceived Technology Compatibility, and Users’ Perceived Playfulness in the Context of Mobile Information and Entertainment Services. Journal of Human-Computer Interaction, 24(7), 649-671.
88. Taylor, S., Todd, P.A. (1995). Understanding information technology usage: A test of competing models. Inf. Syst. Res., 6 (2), 144-176.
89. Thompson, R., Compeau, D. and Higgins, C.A. (2006). Intentions to Use Information Technologies: An Integrative Model. Journal of Organizational and End User Computing, 18(3), 25-46.
90. Thong, J.Y.L., Hong, S.-J., and Tam, K.Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64 (9), 799-810.
91. Tojib, D. and Tsarenko, Y. (2011). Post-adoption modeling of advanced mobile Service use. Journal of Business Research, 2-4.
92. Tse, D.K. and Wilton, P.C. (1988). Models of consumer satisfaction formation: an extension. Journal of Marketing Research, 25 (2), 204-212.
93. Vatanasombut, B., Igbaria, M., Stylianou, A.C. and Rodgers, W. (2008). Information Systems Continuance Intention of Web-Based Applications Customers: The case of Online Banking. Information and Management, 45(7), 419-428.
94. Venkaetesh, V. and Davis, F.D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
95. Venkatesh, V., Morris, M.G. and Davis, G.B. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27 (3), 425-478.
96. Verkasalo, Hannu, Carolina, Lopez-Nicolas, C., Molina-Castillo, F.J. and Bouwman, H. (2010). Analysis of users and non-users of smartphone applications. Telematics and Informatics 27, 243-246.
97. Westbrook, R.A. (1987). Product/Consumption-Based Affective Responses and Postpurchase Processes. Journal of Marketing Research, 24 (August), 258-270.
98. Wu, J. and Wang, S. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42, 719-729.
99. Xu, Z. and Yuan, Y. (2007). What is the Influence of Context and Incentive on Mobile Commerce Adoption? A Case study of a GPS-based Taxi Dispatching System. Sixth International Conference on the Management of Mobile Business(ICMB), 4-12.
100. Zeithaml, V.A., Berry, L.L., and Parasuraman, A. (1996). The Behavioral Consequences of Service Quality. Journal of Marketing, 60(2), 31-46.
101. Zhang, H. and Xu, X. (2011). Integrating Network Externalities into Expectation-Confirmation Model for E-Government Services Context: A Conceptual Model. Internet Technology and Applications (iTAP), 1-3.
102. Zhao, L. and Lu, Y. (2010). Perceived Interactivity Exploring Factors Affecting Micro-Blogging Service Satisfaction and Continuance Intention. PACIS 2010 Proceedings, 940-949.
103. Zhou, T. (2011). An empirical examination of users' post-adoption behaviour of mobile services. Behaviour & Information Technology, 30(2), 241-250.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信