淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2406201013362000
中文論文名稱 資料採礦應用於消費者網路團購因素探勘之研究
英文論文名稱 The Study of Data Mining Approach Investigates the Online Group Buying Factors on the Consumer Behavior
校院名稱 淡江大學
系所名稱(中) 管理科學研究所企業經營碩士在職專班
系所名稱(英) Executive Master's Program of Business Administration in Management Sciences
學年度 98
學期 2
出版年 99
研究生中文姓名 張家蓁
研究生英文姓名 Chia-Chen Chang
學號 797620027
學位類別 碩士
語文別 中文
口試日期 2010-06-05
論文頁數 108頁
口試委員 指導教授-廖述賢
共同指導教授-陳怡妃
委員-陳登源
委員-吳啟絹
中文關鍵字 資料採礦  關聯法則  集群分析  網路團購  團購因素 
英文關鍵字 data mining  association rules  K-means rules  online group buying  group buying factors 
學科別分類 學科別社會科學管理學
中文摘要 團購早就行知有年,以往可能侷限於一家公司或者相識的親朋好友一起相邀團購,受到2008年金融海嘯造成全球不景氣影響,促使台灣網路團購市場快速成長。消費者初期是追求低價,漸漸開始要求品質和服務等需求,唯有瞭解消費者的團購行為偏好和探索消費者尚未滿足的需求,店家和網路平台經營者才有機會和消費者達成雙贏的局面。
過去研究多從價格、社群口碑、認知風險方面來切入,較少深入消費者進行網路團購之消費偏好與團購需求相關因素來探討。本研究採問卷調查法,透過資料採礦的方法以集群分析與關聯法則,在樣本中試圖挖掘出潛在消費者族群與目標消費者族群,這二個不同族群於網路團購的消費習性、購物行為和購買因素並加以分析,作為相關業者開發潛在消費者拓展潛在商機、維持目標消費者忠誠度,以及行銷和網路團購通路經營的參考。
本研究發現潛在消費族群的上網頻率與目標消費族群差不多,可支配金額也比目標消費族群還要多,目前尚未上網團購商品的原因在於「商品品質」和「網路安全機制」考量;未來若有機會進行網路團購,其消費偏好與服務需求皆與目標消費族群的需求相差不遠。另外,從關聯法則中找出目標消費族群曾消費過哪些團購平台,進行挖掘其消費行為偏好和購買需求之關聯性,作為店家永續經營團購市場和選擇上架商品於團購平台的參考,最後提供給各類型團購平台提昇或加強競爭優勢的具體作法。
英文摘要 The group buying has become a fad for years, usually, it was limited and only popular among one company and each other’s relatives and friends. Affected by the global depression caused by the financial crisis in 2008, these transitions enable the group buying market become vigorous and fast expanded. At first, they only pursued the low price, gradually, they started to notice and ask for the “quality” and “service”. How to survive in this change? The “price war” is not the care-all anymore. So for the shop owners and the network platform runners, only to observe customers’ shopping preference and explore the unsatisfied needs will achieve the win-win aspect between consumers and the profits.
In the past, the researchs were discussed more from the price、public praise and the cognition risk, less to work in the field to analyze the purchase preference and the requirement of group buying. This research employed the questionnaire survey, and through data mining approach of K-means rules and Apriori, attempt to dig out and analyze the purchase habit, purchase behavior, and the purchase factor of group buying between the two different populations: potential consumers and the target consumers, in these survey candidates. The analysis will provide the owners some useful references to discover the potential consumers, develop the latent business possibility, maintain the loyalty of target consumers, management of marketing and the k/A of group buying.
This research found that the frequency of net surfing of the potential comsumers is similar to the target comsumers, the former also have much more disposable income than the latter. So far, the reasons stop people from joinimg group buying stands for two concerns: “Merchandise Quality” and the “network safety mechanism”; in fact, if this potential group have the chance to do group buying, their preference and service request won’t be for to those of the target consumers’. Besides, by selecting the network platform which the target group have consumed from the association rule, the owners can find out the connection between purchase preference and the requirement indeed. This way is able to offer the reference resources to build up the frame of a long-term group buying market and merchandise selections, further more, provide the concrete method which will upgrade or strengthen the competitive advantage, to all type of group buying platform or shops.
論文目次 謝辭 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究問題與目的 3
1.3 研究方法與流程 4
第二章 文獻探討 5
2.1 網路消費者行為 5
2.1.1 消費者網路團購行為定義 5
2.1.2 消費者網路團購模式 7
2.1.3 影響消費者參與網路團購的因素 9
2.1.4 小結 13
2.2 團購之購物行為 13
2.2.1 團購的定義 14
2.2.2 實體團購 15
2.2.3 網路團購 15
2.2.4 目前台灣團購網站的分類與發展現況 16
2.2.5 小結 21
2.3 資料採礦 21
2.3.1 資料採礦的定義 22
2.3.2 資料採礦的功能 23
2.3.3 資料採礦的流程 24
2.3.4 小結 25
第三章 研究方法 26
3.1 研究設計與架構 26
3.2 系統架構圖與資料庫設計 26
3.2.1 系統架構與流程 26
3.2.2 關聯式資料庫的建立與設計 28
3.3 問卷設計與發放 34
3.3.1 問卷設計 34
3.3.2 抽樣方法 36
3.3.3 研究樣本 36
3.4 K-means集群分析 37
3.5 關聯法則分析工具 38
3.5.1 關聯法則Apriori概念 39
3.5.2 Apriori演算法 40
3.6 資料分析軟體 SPSS CLEMENTINE 42
第四章 資料採礦與實證分析 45
4.1 回收樣本結構描述 45
4.2 顧客資料採用K-MEANS 集群分析之探勘 47
4.2.1 分群後的顧客輪廓 50
4.2.2 分群後的消費行為 54
4.3 消費者網路團購傾向與需求之探勘-APRIORI演算分析 63
4.3.1 性別與各年齡層欲在網路團購的商品排序 63
4.3.2 消費者對網路服務機制之需求 67
4.4 小結 76
第五章 結論與建議 77
5.1 研究結論 77
5.2 管理意涵建議 77
5.2.1 實體團購行銷地圖 78
5.2.2 網路團購行銷知識地圖 80
5.2.3 網路團購需求行銷知識地圖 83
5.2.4 店家投入網路團購市場的商品參考 85
5.2.5 提昇各團購平台服務經營的競爭力 86
5.3 總結 89
5.4 後續研究建議 89
參考文獻 91
一、中文文獻 91
二、英文文獻 91
三、網路資料 95
附錄一 前測問卷 97
附錄二 正式問卷 104

表目錄
表2-1 消費者網路團購行為定義 6
表2-2 團購模式分類架構 8
表2-3 團購之定義 14
表2-4 資料採礦的定義 22
表2-5 資料採礦流程 25
表3-1 實體、關聯與屬性的概述 29
表3-2 產品類別一覽表 35
表3-3 問卷發放與回收情形 37
表3-4 支持度與信賴度定義 39
表3-5 資料庫中的交易記錄 41
表3-6 APRIORI演算法產生的候選項目集合和高頻項目集合 42
表3-7 KDNUGGET資料採礦軟體使用調查結果 42
表4-1 研究問卷回收統計表 45
表4-2 顧客基本資料統計表 46
表4-3 K-MEANS分群結果(顧客輪廓) 51
表4-4 網路團購潛在開發族群實體團購經驗之蛛網圖演算分析表 52
表4-5 網路團購目標鎖定族群實體團購經驗之蛛網圖演算分析表 53
表4-6 K-MEANS分群結果(消費者行為) 56
表4-7 網路團購潛在開發族群的網路團購經驗之蛛網圖分析表 59
表4-8 網路團購目標鎖定族群的網路團購經驗之蛛網圖分析表 60
表4-9 網路團購潛在開發族群對團購平台機制需求之蛛網圖分析表 61
表4-10 網路團購目標鎖定族群對團購平台機制需求之蛛網圖表 62
表4-11 CLUSTER-1網路團購潛在開發族群欲在網路團購的商品排序 64
表4-12 CLUSTER-2網路團購目標鎖定族群欲在網路團購的商品排序 65
表4-13 網路團購潛在開發族群對於團購網站服務機制需求 68
表4-14 曾消費合購平台的團購目標鎖定族群之網站服務機制需求 69
表4-15 曾消費團購專門店的團購目標鎖定族群之網站服務機制需求 71
表4-16 曾消費大型入口網站的團購目標鎖定族群之網站服務機制需求 73
表4-17 曾消費小型自營商網站的團購目標鎖定族群之網站服務機制需求 75

圖目錄
圖1-1 國人常團購商品的種類 2
圖1-2 研究流程圖 4
圖2-1 愛合購(IHERGO)網站 17
圖2-2 福利網FREEMART網站 18
圖2-3 EHS東森購物網路商城-集購專區 19
圖2-4 小漁村 20
圖3-1 系統架構圖 27
圖3-3 邏輯性資料庫 31
圖3-4 資料庫轉換圖 33
圖3-5 資料庫關聯圖 33
圖3-6 SPSS CLEMENTINE12.0 使用者介面 44
圖4-1 資料節點串流圖 48
圖4-2 K-MEANS 集群分佈圖 49
圖4-3 網路團購潛在開發族群實體團購經驗之蛛網圖演算圖 53
圖4-4 網路團購目標鎖定族群實體團購經驗之蛛網圖演算圖 54
圖4-5 網路團購潛在開發族群的網路團購經驗之蛛網圖演算圖 59
圖4-6 網路團購目標鎖定族群的網路團購經驗之蛛網圖演算圖 60
圖4-7 網路團購潛在開發族群對團購平台機制需求之蛛網圖演算圖 62
圖4-8 網路團購目標鎖定族群對團購平台機制需求之蛛網圖演算圖 63
圖5-1 實體團購行銷知識地圖 78
圖5-2 網路團購行銷知識地圖 81
圖5-3 網路團購需求行銷知識地圖 83
參考文獻 一、中文文獻
汪美香、葉桂珍(2003)。年輕網路族對網站特性之認知與網路購物意圖之關連性研究。資訊管理展望,第5卷,第1期,頁19-44。
林正弘(2006)。主購信任度與認知風險對線上集購行為影響之研究。國立中山大學資訊管理研究所碩士論文。
邱顯傑(2006)。網路集購價值之成因分析:消費者知覺取向。東吳大學國際貿易學系碩士論文。
韋端、鄭宇庭、鄧家駒、匡宏波、謝邦昌(2003)。DATA MINING 概述-以Clementine7.0 為例。台北:中華資料採礦協會。
陳品山(1976)。於ACM Transactions on Database Systems上發表《The Entity-Relationship Model--Toward a Unified View of Data》。
黃聆怡(2008)。電子口碑效果與網路合購行為之研究。國立臺灣大學管理學院國企所碩士論文。
楊惠琴(2006)。網路合購知覺風險與合購意向影響因素之研究。東吳大學國際貿易學系研究所碩士論文。
林慶德譯(2003)。資料庫管理與應用。台北市:培生。(原著出版年:2002)
廖述賢(2007)。資料採礦與商業智慧。台北:雙葉書廊有限公司。
闕志勳(2005)。從認知風險探索集體購物不同定價策略之成效。國立中山大學資訊管理研究所碩士論文。

二、英文文獻
Agrawal, R., Imielinski, T., and Swami, A., (1993). Mining association rules between sets of items in large databases. ACM SIGMOD Conference, Washington DC, USA, 254¬-259.
Agrawal, R. & Srikant, R., (1994). Fast Algorithms for Mining Association Rules. Proceedings of the 20th International Conference on Very Large Data Bases , 487–499.
Anand, K.S., and Aron, R., (2003). Group Buying on the Web: A Comparison of Price-Discovery Mechanisms, Management Science (49:11), pp. 1546-1562.
Assael, Henry., (1992). Consumer Behavior and Marketing Actions, 4th Ed. MA: PWS-KENT.
Bauer, R. A., (1960). Consumer Behavior as Risk Taking, In Dynamic Marketing for a Changing World. Chicago: American Marketing Association, pp.389-393.
Berry, M.J.A. and Linoff, G., (1997). Data Mining Technique Techniques for Marketing, Sales and Customer Support, N.Y.:Wiley Computer Publishing.
Bhuian, S. N., (1997). Marketing Cues and Perceived Quality: Perceptions of Saudi Consumers toward Products of the U.S., Japan, Germany, Italy, U.K. and France, Journal of Quality Management, Vol. 2, No. 2, pp. 217-235.
Cabena, P., Hadjinian, P.O., Stadler, R., Verhees, J. and A. Zanasi., (1997). Discovering Data Mining from Concept to Implementation, New Jersey, Prentice Hall.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J. and Zanasi, A., (1998). Discovering Data Mining from Concept to Implementation. NJ : Prentice Hall Press.
Cox, D.F. and Rich, S., (1964). Perceived risk and consumer decision making, Journal of Marketing Research 1, pp. 32–39.
Dodge, J., (1999). Strength in Numbers? A Look at What Group-Buying Sites Have to Offer Consumers in Search of Computer Gear. Inc. Tech, September 15, pp.135-136.
Drakopoulos, S.A., (1992). Psychological thresholds, demand and price rigidity. The Manchester School of Economic and Social Studies, June, pp.152-168.
Fayyad, U.M., (1996). Data Mining and Knowledge Discovery: Making Sense out of Data, IEEE Expert, Vol.11, No.5, pp. 20-25.
Fayyad, U & Stolorz, P., (1997). Data mining and KDD: Promise and challenges. Further Generation Computer System, 13, 99-115.
Frawley, W. J., Gregory, Piatetsky-Shapiro, and Matheus, C. J., (1991). Knowledge Discovery in Databases: An Overview, AAAI/MIT Perss, California, pp. 1-30.
Ganesan, S., (1994). Determinants of Long-Term Orientation in Buyer-Seller Relationships, Journal of Marketing, April, pp.1-19.
Garvin, D. A., (1984). What does Product Quality Really Mean, Sloan Management Review, Vol. 26, pp. 25- 43.
Gefen, D., Karahanna, E., and Straub, D. W., (2003). Trust and TAM in Online Shopping: An Integrated Model, MIS Quarterly, 27, 1, 52-90.
Grupe, F.H. and M.M. Owrang., (1995). Data Base Mining Discovering New Knowledge and Cooperative Advantage, Information Systems Management, Vol. 12, No. 4, pp.26-31.
Horn, T.V., & Gustafsson, N., (2000). Demand Aggregation through Online Buying Groups, U.S. Patent 6047266.
Hui, S. C., and Jha, G., (2000). Data mining for customer service support. Information and Management, 38(1), 1-13.
James, E. L. & Isabella, C. M. C., (1987). Profile of Direct Marketing Television Shopper, Journal of Direct Marketing, 1, pp. 12-23.
Kannan, P. K., Kopalle, P. K., (2001). Dynamic Pricing on the Internet: Importance and Implications for Consumer Behavior, International Journal of Electronic Commerce.
Kantardzic, M., (2003). Data mining: concepts, models, methods and algorithms. NJ: Wiley Press.
Kauffman, R.J., and Wang, B., (2001). New Buyers Arrival Under Dynamic Pricing Market Microstructure: The Case of Group-Buying Discounts on the Internet, Proceedings of the 34th Hawaii International Conference on System Sciences, pp.1-10.
Keima, D. A., Pansea, C., Sipsa, M., and Northb, S. C., (2004). Pixel based visual data mining of geo-spatial data. Computers and Graphics, 28, 327-344.
Kleissner, C., (1998). Data mining for the enterprise. Proc. of the Thirty-First Hawaii International Conference, 7, 295-304.
Kouris, I. N., Makris, C. H. & Tsakalidis, A. K., (2005). Using Information Retrieval techniques for supporting data mining. Data & Knowledge Engineering, 52, 353-383.
Kukar-Kinney M. and Grewal, D., (2006). Consumer Willingness to Claim a Price-Matching Refund: A Look into the Process, Journal of Business Research, Vol. 59, No.1, pp. 11–18.
Lai, H., (2002). Collective Bargaining Models on e-Marketplace, SSGRR 2002S, International Conference on Advances in Infrastructure for e-Business, e-Education, e-Science, e-Medicine on the Internet, Aquila, Italy.
Liang, T. P. & Lai, H. J., (2002). Effect of store design on consumer purchases: van empirical study of on-line bookstores, Information and Management, 39, pp. 431-444.
McHugh, J., (1999). Consumer collusion!, Forbes, 164(5), September 6, pp.222-223.
Nicholson, S., (2006). The basis for bibliomining: Frameworks for bringing together usage-based data mining and bibliometrics through data warehousing in digital library services. Information Processing and Management, 42(3), 785-804.
Oliver, R. L., (1981). Measurement and Evaluation of Satisfaction Processes in Retailing Setting, Journal of Retailing, Vol. 57, pp. 25-48.
Parasuraman, A., V. A. Zeithaml, and L. L. Berry., (1988). SERVQUAL A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality, Journal of Retailing, Vol. 64, No. 1, pp. 12-40.
Rezabakhsh, B., Bornemann, D., Hansen, U. & Schrader, U., (2006). Consumer Power: A Comparison of the Old Economy and the Internet Economy, Journal of Consumer Policy, spring, pp.3-36.
Rha, J.Y., & Widdows, R., (2002). The Internet and the consumer: Countervailing power revisited, Prometheus, 20, pp.107-118.
Rogers, J. H., (1992). The currency substitution hypothesis and relative money demand in Mexico and Canada, Journal of Money, Vol. 24, No. 3, pp. 300-318.
Shaw M. J., and Subramaniam C., and Tan G. W. and Welge M. E., (2001). Knowledge management and data mining for marketing, Decision Support Systems, 31 ,pages 127-137.
Tsvetovat, M., Sycara, K., Chen, Y., and Ying, J., (2000). “Customer Coalitions in the Electronic Marketplace, Proceedings of the 3rd Workshop on Agent Mediated Electronic Commerce(AMEC), pp. 263-264.
Wang, Y. F., Chuang, Y. L., Hsu, M. H., & Keh, H. C., (2004). A personalized recommender system for the cosmetic business. Expert Systems with Applications, 26, 427-434.
Winer, R.S., (1985). A price vector model of demand for consumer durables: Preliminary developments, Marketing Science, 4, 1, Winter, pp.74-90.
Williamson, Oliver., (1975). Transaction-Cost Economics:The Governance of Contractual Process, Journal of Law and Economics, XXII(2), October, 233-61.
Yamamoto, J., and Sycara, K., (2001). A stable and efficient buyer coalition formation scheme for e-marketplaces, Proceedings of the fifth international conference on Autonomous agents (AGENT'01), Montreal, Quebec, Canada, pp. 576-583.

三、網路資料
EHS東森購物網路商城,取自:www.etmall.com.tw/Pages/gbsale.aspx?PH=R6UniversalMenu_gbsale
小漁村網站,取自:www.fishingnet.com.tw
台灣網路資訊中心,取自:www.twnic.net.tw
波仕特線上市調網,取自:www.pollster.com.tw/report/129/index.htm
美國Kdnuggets網站,取自:www.kdnuggets.com
理財周刊,取自:www.moneyweekly.com.tw/Article/Article.aspx?UID=20203
凱絡媒體週報,取自:www.carat.com
無名小站,取自:www.wretch.cc/join
愛合購(ihergo)網站,取自:www.ihergo.com
經濟合作暨發展組織(OECD),取自: www.moeasmea.gov.tw/ct.asp?xItem=6175&ctNode=489&mp=1
資策會產業情報研究所(MIC),取自:www.mic.iii.org.tw
酪梨壽司的日記(沒團購過,別說你當過上班族!),取自:www.cwyuni.tw/blog/post/23127032
福利網FreeMart網站,取自:www.freemart.com.tw
數位時代(團購風潮席捲全台 你揪了沒?),取自: www.bnext.com.tw/article/view/cid/0/id/12618
賽門鐵克Symantec台灣網站,取自:www.symantec.com/zh/tw
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信