淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2406200916133600
中文論文名稱 Fenton 混凝去除水中福瑞松及托福松之研究
英文論文名稱 Removal of Phorate and Terbufos by Fenton Coagulation
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 許振豪
研究生英文姓名 Chen-Hao Hsu
學號 696480218
學位類別 碩士
語文別 中文
口試日期 2009-06-19
論文頁數 101頁
口試委員 指導教授-康世芳
委員-黃文鑑
委員-李柏青
中文關鍵字 福瑞松、托福松、鐵鹽混凝、Fenton、Fenton-like 
英文關鍵字 Phorate、Terbufos、iron salts coagulation、Fenton、Fenton-like 
學科別分類 學科別應用科學環境工程
中文摘要 本研究以有機磷農藥之福瑞松 (Phorate)及托福松(Terbufos)為目標物,研究目的為(1)探討Fenton混凝去除福瑞松與托福松、及(2)比較鐵鹽混凝、Fenton及Fenton-like混凝去除福瑞松與托福松。所有實驗採瓶杯試驗,人工原水含有機磷農藥濃度為100 μg/L,操作參數為pH、鐵鹽種類、過氧化氫(H2O2)加藥量及腐植酸有機物共存,鐵鹽加藥量以Fe2+或Fe3+計之。
研究結果顯示鐵鹽(Fe2+/Fe3+)混凝去除福瑞松及托福松之最適pH為 4.0,主要去除機制為吸附與絆除沉澱,Fe3+混凝去除福瑞松及托福松效果優於Fe2+混凝。此外,Fe2+、Fe3+混凝或H2O2氧化對福瑞松及托福松去除率皆低於55%。Fenton及Fenton-like混凝氧化福瑞松及托福松之最適pH值為4.0,福瑞松及托福松殘留率皆低於5%以下。比較五種程序於pH=4.0時,福瑞松及托福松去除率大小依序為Fenton>Fenton-like>Fe3+>Fe2+>H2O2。
原水中含天然有機物腐植酸共存,濃度在1.0~5.0 mg/L as NPDOC,因腐植酸與福瑞松及托福松競爭混凝劑吸附,使Fe2+/Fe3+混凝去除福瑞松之殘留率增加且達到90%,故腐植酸共存會影響Fe2+/Fe3+混凝去除福瑞松及托福松。相對地,腐植酸共存時,Fenton及Fenton-like混凝對福瑞松及托福松之去除率僅減少2~10%,顯示腐植酸共存對Fenton及Fenton-like混凝去除福瑞松及托福松無顯著影響,故H2O2可提高Fe2+/Fe3+混凝去除福瑞松及托福松,且不受腐植酸共存影響。
英文摘要 Phorate and terbufos are organophosphorus pesticides. Using the synthetic raw waters containing 100 μg/L of phorate or terbufos, the purposes of this study are (1) to investigate the removals of phorate and terbufos by the Fenton coagulation process, and (2) to compare the removals of phorate and terbufos among iron salts (Fe2+/Fe3+) coagulation, the Fenton((Fe2+/H2O2) coagulation and the Fenton-like (Fe3+/H2O2) coagulation processes. The operational variables studied include pH, type of iron salts, hydrogen peroxide (H2O2) dosage and coexisting organics of humic acid. All experiments are conducted by the Jar test.
The results show that the optimum pH for the removal of phorate and terbufos was at 4.0. The mechanism for the removal of phorate and terbufos was mainly by adsorption and precipitation. The removal of phorate and terbufos by ferric coagulation was better than that by ferrous coagulation. Furthermore, the removals of both phorate and terbufos by peroxidation and iron salts coagulation were less than 55%. The optimum pH for the removal of phorate and terbufos by the Fenton coagulation and Fenton-like coagulation was at 4.0 and the residuals of phorate and terbufos were less than 5%. The removal of phorate and terbufos was mainly by hydroxyl radical oxidation. Comparing the removals of phorate and terbufos among different processes at pH 4, the sequence of the removals of phorate and terbufos were Fenton coagulation>Fenton-like coagulation>ferric coagulation>Ferrous coagulation>peroxidation. The increase of phorate removal was not affected significantly by increasing H2O2 dosage.
As the synthetic raw water contained coexisting organics of humic acid of 1.0~5.0 mg/L as NPDOC, the residuals of phorate and terbufos increased and reached to 90% for ferric coagulation and ferrous coagulation processes. This was due to the competition of adsorption sites on coagulants between humic acid and organophosphorus pesticides. Therefore, coexisting of organics of humic acid affected the removals of phorate and terbufos by iron salts coagulation. In contract, in the presence of humic acid, the removals of phorate and terbufos decreased slightly 2-10%.It implied that the effect of the removals of phorate and terbufos on coexisting humic acid was not significant for the Fenton coagulation and Fenton-like coagulation. It is concluded that H2O2 could enhance the phorate removal by iron salts coagulation and was less affected by coexisting of humic acid.
論文目次 目 錄
目 錄 Ⅰ
表 目 錄 Ⅴ
圖 目 錄 Ⅵ

第一章 前 言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 淨水程序去除有機磷農藥 4
2-1-1 福瑞松與托福松有機磷農藥之特性 4
2-1-2 飲用水水質標準福瑞松與托福松之管制值 9
2-1-3 淨水程序去除福瑞松與托福松 10
2-2 Fenton 程序原理 11
2-2-1 鐵鹽混凝原理 11
2-2-2 混凝機制 12
2-2-3 Fenton 程序前氧化原理 18
2-2-4 Fenton 程序前氧化影響因素 22
2-3 Fenton 與相關高級氧化程序於淨水處理之應用 25
2-3-1 Fenton 程序去除農藥與有機物 25
2-3-2相關高級氧化程序去除農藥與有機物 26
第三章 實驗方法與材料 30
3-1 實驗方法 30
3-1-1含有機磷農藥人工原水 30
3-1-2鐵鹽混凝瓶杯實驗 31
3-1-3 Fenton 混凝瓶杯實驗 31
3-2 實驗設備及藥品 33
3-2-1實驗設備 33
3-2-2實驗藥品 34
3-3 水質分析 36
3-3-1 福瑞松與托福松有機磷農藥分析 36
3-3-2 非氣提溶解性有機碳(NPDOC)分析 42
3-3-3 鐵鹽之分析 44
3-3-4 品質管制(QAQC) 47
第四章 結果與討論 48
4-1 Fenton或Fenton-like程序去除有機磷農藥效率探討 48
4-1-1 鐵鹽混凝或過氧化氫氧化去除農藥效率 48
4-1-2 Fenton程序去除農藥之效率 53
4-1-3 Fenton-like程序去除農藥之效率 56
4-1-4 綜整不同組合程序對農藥之影響 58
4-2 H2O2加藥量對Fenton及Fenton-like去除有機磷農藥之效率
探討 63
4-2-1 H2O2加藥量對Fenton程序去除農藥之影響 63
4-2-2 H2O2加藥量對Fenton-like程序去除農藥之影響 70
4-2-3 比較H2O2加藥量對Fenton及Fenton-like去除農藥之
影響 76
4-3 天然有機物-腐植酸對去除有機磷農藥之影響 82
4-3-1腐植酸對Fenton程序去除農藥之影響 82
4-3-2 腐植酸對Fenton-like程序去除農藥之影響 89
第五章 結論與建議 96
參考文獻 97

表 目 錄
表2-1 福瑞松及托福松基本性質 8
表2-2 各國飲用水水質標準 9
表2-3 常用之無機金屬鹽混凝劑 11
表2-4 膠體穩定性和界達電位平均值之相關性 13
表2-5 氧化劑及其衍生自由基之氧化還原電位 21
表2-6 常用去除農藥的高級氧化法(AOPs) 28
表3-1 氣相層析儀(GC)之操作參數 40
表3-2 脈衝式火焰光度偵測器(PFPD)之操作參數 40
表4-1 福瑞松及托福松於各程序間之去除效率比較 60
表4-2 福瑞松及托福松於各程序之操作條件與殘留率之比較 60
表4-3 福瑞松及托福松最適參數(pH=4.0) 76

圖 目 錄
圖2-1 有機磷農藥依鍵結之官能基分類 5
圖2-2 DLVO理論之位能曲線圖 14
圖2-3 電解質濃度對電雙層壓縮效應 14
圖2-4 懸浮液中帶負電之固體顆粒的界達電位 15
圖3-1 實驗流程圖 32
圖3-2 PFPD訊號脈衝循環過程 37
圖3-3 GC/PFPD層析圖(a)福瑞松(b)托福松(25μg/L) 39
圖4-1 鐵鹽在各pH值條件混凝去除福瑞松及殘留溶解性鐵鹽。(Phorate = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L) 50
圖4-2 鐵鹽在各pH值條件混凝去除托福松及殘留溶解性鐵鹽。(Terbufos = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L) 50
圖4-3 H2O2加藥量在兩種pH值條件對福瑞松之去除效率。(Phorate = 100 μg/L) 52
圖4-4 H2O2加藥量在兩種pH值條件對托福松之去除效率。(Terbufos = 100 μg/L) 52
圖4-5 Fenton程序在各pH條件去除福瑞松之去除及殘留溶解性鐵鹽。(Phorate = 100 μg/L, Fe2+ = 2 mg/L, H2O2= 2 mg/L) 55
圖4-6 Fenton程序在各pH條件去除托福松之去除及殘留溶解性鐵鹽。(Terbufos = 100 μg/L, Fe2+ = 2 mg/L, H2O2= 2 mg/L) 55
圖4-7 Fenton-like程序在各pH條件去除福瑞松之去除及殘留溶解性鐵鹽。(Phorate = 100 μg/L, Fe3+ = 2 mg/L, H2O2= 2 mg/L) 57
圖4-8 Fenton-like程序在各pH條件去除托福松之去除及殘留溶解性鐵鹽。(Terbufos = 100 μg/L, Fe3+ = 2 mg/L, H2O2= 2 mg/L) 57
圖4-9 五種試程去除福瑞松之比較。(Phorate = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L, H2O2= 2 mg/L;ND:Not Detected:Not Analyzed) 61
圖4-10 五種試程去除托福松之比較。(Terbufos = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L, H2O2= 2 mg/L;ND:Not Detected, NA:Not Analyzed) 62
圖4-11 H2O2加藥量對Fenton程序去除福瑞松之影響。(Phorate = 100 μg/L, Fe2+ = 2 mg/L) 65
圖4-12 H2O2加藥量對Fenton程序去除福瑞松之殘留溶解性鐵鹽。(Phorate = 100 μg/L, Fe2+ = 2 mg/L) 65
圖4-13 H2O2加藥量對Fenton程序去除托福松之影響。(Terbufos = 100 μg/L, Fe2+ = 2 mg/L) 68
圖4-14 H2O2加藥量對Fenton程序去除托福松之殘留溶解性鐵鹽。(Terbufos = 100 μg/L, Fe2+ = 2 mg/L) 68
圖4-15 H2O2加藥量對Fenton-like程序去除福瑞松之影響。(Phorate = 100 μg/L, Fe3+ = 2 mg/L) 71
圖4-16 H2O2加藥量對Fenton-like程序去除福瑞松之殘留溶解性鐵鹽。(Phorate = 100 μg/L, Fe3+ = 2 mg/L) 71
圖4-17 H2O2加藥量對Fenton-like程序去除托福松之影響。(Terbufos = 100 μg/L, Fe3+ = 2 mg/L) 74
圖4-18 H2O2加藥量對Fenton-like程序托福松之殘留溶解性鐵鹽。(Terbufos = 100 μg/L, Fe3+ = 2 mg/L) 74
圖4-19 H2O2加藥量對Fenton及Fenton-like去除福瑞松之比較。(Phorate = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L, pH 4) 78
圖4-20 福瑞松於Fenton及Fenton-like對H2O2加藥量所提升氧化效率之比較。(Phorate = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L, pH 4) 78
圖4-21 H2O2加藥量對Fenton及Fenton-like去除托福松之比較。(Terbufos = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L, pH 4) 80
圖4-22 托福松於Fenton及Fenton-like對H2O2加藥量所提升氧化效率之比較。(Terbufos = 100 μg/L, Fe2+ or Fe3+ = 2 mg/L, pH 4) 80
圖4-23 背景有機物(HA)對Fenton程序去除福瑞松之影響。(Phorate = 100 μg/L, pH 4) 84
圖4-24 背景有機物(HA)對Fenton程序去除福瑞松殘留溶解性鐵鹽之影響。(Phorate = 100 μg/L, pH 4) 84
圖4-25 背景有機物(HA)對Fenton程序去除托福松之影響。(Terbufos = 100 μg/L, pH 4) 87
圖4-26 背景有機物(HA)對Fenton程序去除托福松殘留溶解性鐵鹽之影響。(Terbufos = 100 μg/L, pH 4) 87
圖4-27 背景有機物(HA)對Fenton-like程序去除福瑞松之影響。(Phorate = 100 μg/L, pH 4) 91
圖4-28 背景有機物(HA)對Fenton-like程序去除福瑞松殘留溶解性鐵鹽之影響。(Phorate = 100 μg/L, pH 4) 91
圖4-29 背景有機物(HA)對Fenton-like程序去除托福松之影響。(Terbufos = 100 μg/L, pH 4) 94
圖4-30 背景有機物(HA)對Fenton-like程序去除托福松殘留溶解性鐵鹽之影響。(Terbufos = 100 μg/L, pH 4) 94
參考文獻 參考文獻
Acero J. L., Benitez F. J., Real F. J. and González M.,” Chlorination of organophosphorus pesticides in natural waters”, Journal of Hazardous Materials, 153(1-2), 320-328. (2008)
Adin A., Soffer Y. and Aim R. B.,” Effluent pretreatment by iron coagulation applying various dose-pH combinations for optimum particle separation”, Water Science and Technology, 38(6), 27-34. (1998)
Barbusinski K. and Filipek K.,” Use of Fenton's Reagent for Removal of Pesticides from Industrial Wastewater “, Polish Journal of Environmental Studies, Original Research, 10(4), 207-212. (2001)
Benitez F. J., Acero J. L., Real F. J., Rubio F. J. and Leal A. I.,” The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions”, Water Research, 35(5), 1338-1343.(2001)
Bozkaya-Schrotter B., Daines C., Lescourret A.-S., Bignon A., Breant P. and Schrotter J. C.,” Treatment of trace organics in membrane concentrates I: pesticide elimination”, Water Science and Technology: Water Supply, 8(2), 223-230. (2008)
Casero I., Sicilia D., Rubio S. and Pérez-Bendito D.,” Chemical degradation of aromatic amines by Fenton's reagent “, Water Research, 31(8), 1985-1995. (1997)
Chiron S., Fernandez-Alba A., Rodriguez A. and Garcia-Calvo E., “Pesticide chemical oxidation: state-of-the-art”, Water Research, 34(2), 366-377. (2000)
Doong R. A. and Chang W. H.,” Photoassisted iron compound catalytic degradation of organophosphorous pesticides with hydrogen peroxide”, Chemosphere, 37(13), 2563-2572. (1998)
Esplugas S., Giménez J., Contreras S., Pascual E. and Rodríguez M.,” Comparison of different advanced oxidation processes for phenol degradation”, Water Research, 36(4), 1034-1042. (2002)
Fukushima M. and Tatsumi K.,” Degradation Characteristics of Humic Acid during Photo-Fenton Processes”, Environmental Science & Technology, 35(18), 3683-3690. (2001)
Gallard H., De Laat J., Legube B.,” Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions” Water Research, 33(13), 2929-2936.(1999)
Health Canada, FPT Committee on Drinking Water,” Guidelines for Canadian drinking water quality”. (2007)
Hong S. H., Kwon B. H.., Lee J. K. and Kim I. K.,” Degradation of 2-chlorophenol by Fenton and photo-Fenton processes”, Korean Journal of Chemical Engineering, 25(1), 46-52. (2008)
Li R., Yang C., Chen H., Zeng G., Yu G. and Guo J.,” Removal of triazophos pesticide from wastewater with Fenton reagent”, Journal of Hazardous Materials, DOI:10.1016/j.jhazmat.2009.01.090.(2009)
Lunar L., Sicilia D., Rubio S., Pérez-Bendito D. and Nickel U.,” Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metol oxidation”, Water Research, 34(6), 1791-1802.(2000)
Ikehata K. and Gamal El-Din M.,” Aqueous Pesticide Degradation by Ozonation and Ozone-Based Advanced Oxidation Processes: A Review (Part I)” Ozone: Science and Engineering, 27, 83-114. (2005a)
Ikehata K. and Gamal El-Din M.,” Aqueous Pesticide Degradation by Ozonation and Ozone-Based Advanced Oxidation Processes: A Review (Part II)” Ozone: Science and Engineering, 27, 173-202. (2005b)
Ikehata K. and Gamal El-Din M.,” Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review ”, Journal of Environmental Engineering and Science, 5(2), 81-135. (2006)
Kajitvichyanukul P., Lu M. C., Liao C. H., Wirojanagud W. and Koottatep T.,” Degradation and detoxification of formaline wastewater by advanced oxidation processes”, Journal of Hazardous Materials, 135(1-3), 337-343. (2006)
Kamel A., Byrne C., Vigo C., Ferrario J., Stafford C., Verdin G., Siegelman F., Knizner S. and Hetrick J.,” Oxidation of selected organophosphate pesticides during chlorination of simulated drinking water”, Water Research, 43(2), 522-534. (2009)
Koppenol W. H.," The Haber-Weiss cycle – 70 years later", Redox Report, 6(4), 229-234. (2001)
Ku Y. and Lin H. S.,” Decomposition of phorate in aqueous solution by photolytic ozonation”, Water Research, 36(16), 4155-4159.(2002)
Kuo W. S.,” Photocatalytic Oxidation of Pesticide Rinsate”, Journal of Environmental Science and Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes, 37(1), 65-74. (2002)
Moramarco N. and Ravina L.,”Everything You Need to Know About Coagulation and Flocculation”, 4th ed., Zeta-Meter, Inc., USA. (1993)
Murray C. A. and Parsons S. A.,” Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes”, Chemosphere, 54(7), 1017-1023. (2004)
Neyens E. and Baeyens J. ,” A review of classic Fenton’s peroxidation as an advanced oxidation technique”, Journal of Hazardous Materials, 98(1-3), 33-50. (2003)
O.I. Analytical,” Model 5380 Pulsed Flame Photometric Detector (PFPD) Operator’s Manual”, 3.(2004)
Pignatello J. J. and Sun Y.,” Complete oxidation of metolachlor and methyl parathion in water by the photoassisted Fenton reaction”, Water Research, 29(8), 1837-1844. (1995)
Sedlak D. L. and Andren A. W.,” Oxidation of chlorobenzene with Fenton's reagent”, Environmental Science and Technology, 25(4), 777-782.(1991a)
Sedlak D. L. and Andren A. W.,” Aqueous-phase oxidation of polychlorinated biphenyls by hydroxyl radicals “, Environmental Science and Technology, 25(8), 1419-1427. (1991b)
Sparling D.W. and Fellers G.,” Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii”, Environmental Pollution, 147(3), 535-539. (2007)
Tambo N. and Kamei T.,” Coagulation and flocculation on water quality matrix”, Water Science and Technology, 37(10), 31-41. (1998)
USEPA (U.S. Environmental Protection Agency),” Reregistration Eligibility Decision for Phorate”, U.S. Environmental Protection Agency, Prevention, Pesticides and Toxic Substances, 0103. (2006a)
USEPA (U.S. Environmental Protection Agency),” Reregistration Eligibility Decision for Terbufos”, U.S. Environmental Protection Agency, Prevention, Pesticides and Toxic Substances, 0109. (2006b)
Wu R. J., Chen C. C., Chen M. H. and Lu C. S.,” Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways”, Journal of Hazardous Materials, 162(2-3), 945-953. (2009)
蘇弘毅編譯,有害廢棄物處理(Haas and Vamos 原著),高立圖書有限公司,台北縣,第186頁。(2003)
德芮克國際股份有限公司,「雷射粒徑分析儀(Laser Particle Size Analyzer)」,產品資訊。(2007)
康世芳、張怡怡、蔣本基及王根樹,「飲用水水源及水質標準中列管污染物篩選與監測計畫(1/3)」,行政院環保署專案研究計畫,計畫編號:EPA-96-U1J1-02-102。(2007)
朱敬平及林哲量,「污泥調理與脫水效率評估」,97年度桃園縣大學校院產業環保技術服務團,桃園。(2009)
謝再添,「殺蟲劑化學分類及其特性」,九十三年度「農藥及植物保護知能研習會」,行政院農委會藥毒所。(2004)
劉達修,「農藥安全使用」,行政院農業委員會臺中區農業改良場。(2009)
http://tdares.coa.gov.tw/view.php?catid=82
蘇怡成,「化學混凝與Fenton程序組合處理受污染源水之研究」,碩士論文,私立淡江大學水資源及環境工程研究所。(1996)
陳俞蓁,「混凝對表面水濁度去除之研究」,碩士論文,國立成功大學環境工程學系碩博士班。(2001)
莊智琄,「利用同步電混凝/電過濾程序處理含奈米級TiO2之有機廢水」,碩士論文,國立中山大學環境工程所。(2004)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-06-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-06-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信