淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2403201601491900
中文論文名稱 以紫外線結合不同氧化劑程序處理含雙酚A水溶液之光氧化與生物反應研究
英文論文名稱 Study on the Photooxidation and Biological Reactions of Bisphenol A in Aqueous Solutions by UV/Oxidants Processes
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 104
學期 1
出版年 105
研究生中文姓名 黃昱閔
研究生英文姓名 Yu-Min Huang
學號 603480061
學位類別 碩士
語文別 中文
口試日期 2016-01-14
論文頁數 140頁
口試委員 指導教授-陳俊成
委員-申永順
委員-李柏青
中文關鍵字 高級氧化處理  過氧化氫  過硫酸鹽  雙酚A  WST-1 Assay  細胞毒性 
英文關鍵字 Advanced oxidation processes  Hydrogen peroxide  Persulfate  Bisphenol A  HepG2  Cytotoxicity  WST-1 Assay 
學科別分類 學科別應用科學環境工程
中文摘要 高級氧化處理(AOPs)在環境污染物處理上之應用已相當成熟,然如何找出最適合的廢水光催化效率並結合處理後之生物毒性分析,過去僅少數研究者探討。本研究主要針對雙酚A(BPA)經UV/"H" _"2" "O" _"2" 及UV/SPS處理過後結合生物毒性分析,比較處理前後BPA之降解效率,並探討殘留之污染物及中間產物對生物可能造成的危害。
實驗結果顯示,在90分鐘的反應後,兩種氧化程序對於BPA之去除皆有顯著效果,然UV/SPS系統之整體去除效率皆優於UV/H2O2系統。光強度於兩種氧化程序皆呈現強度愈強其去除BPA效果愈佳之趨勢,顯示提高UV光穿透水溶液之能力可更快促使氧化劑產生自由基以去除污染物。BPA初始濃度影響著UV光催化氧化劑之能力,高濃度的BPA間接導致氧化劑之催化反應受阻,使BPA之去除效率下降。pH於AOPs降解BPA中扮演著重要角色,研究結果顯示,利用UV/H2O2系統降解BPA在pH為7之環境較為適宜;UV/SPS系統則在pH=3以及pH=11的條件有更加顯著的去除效果。UV/SPS系統礦化BPA之能力即使在低劑量的氧化劑加藥量下仍明顯優於UV/H2O2系統。
化學反應劑量利用率(RSEs)於兩種氧化程序之各條件操作結果略有不同,顯示氧化劑去除污染物之利用程度亦受各操作因子影響。電能量損耗效益(EE/O)於氧化劑濃度愈高之情況下所需耗能愈低,然過高的氧化劑量對於降低電能損耗並無明顯幫助。由實驗結果所建立之反應速率動力式中觀察得知,UV/H2O2系統對於光強度較具敏感性,UV/SPS系統則較偏向氧化劑。以UV/Thermal/SPS系統降解BPA時,BPA之降解效率隨溫度升高而降低。生物毒性分析方面,UV/H2O2系統降解BPA後仍對HepG2 細胞株肝臟細胞具有一定毒性,顯示BPA於該系統降解過程中產生之中間產物對於細胞仍具影響;UV/SPS系統無論反映前後細胞皆呈現死亡狀態,顯示SPS對細胞具有較大的毒性而失去毒性分析效果。
英文摘要 The decomposition of bisphenol A in aqueous solutions by advanced oxidation processes (UV/H2O2, UV/SPS) under various operational factors (pH, UV light intensity, initial concentration of BPA, and dose of oxidants was studied to evaluate the treatment efficiency. The biotoxicity assay in term of HepG2 cells was applied to the BAP treated wastewaters to be as an indicator of health risk.
The experimental results revealed that both UV/H2O2 and UV/SPS processes can decompose BPA effectively during90 minutes. Removal rates of BPA by UV/SPS were found to be larger than those by UV/H2O2. The removals of BPA increase with increasing UV light intensity and decreasing with initial concentration of BPA. The solution pH values affect significantly on the reaction rates of BPA by AOPs, the optimum pH was found to be at neutral conditions by UV/H2O2 compared to those at pH 3 and pH 11 by UV/SPS. The mineralization efficiency of BPA by UV/SPS was larger than those by UV/H2O2 even though at low doses of oxidants.
Reaction stoichiometric efficiencies (RSEs) were to be determined to evaluate the degree utilization of oxidants and found to be dependent on various operational conditions in the oxidation systems. The EE/O values decreases with increasing the initial concentration of BPA. The chemical kinetic equations for the decomposition of BPA by the two AOPs were established and found that the order of UV light intensity by UV/H2O2 was larger than it by UV/SPS but the order of dose of oxidant by UV/H2O2 was smaller than it by UV/SPS. In the UV/Thermal/SPS system, the treatment efficiency of BPA increases with decreasing temperature. The BPA treated wastewaters by UV/H2O2 and UV/SPS were found to be toxic to HepG2 cells based on the results of biotoxicity assay especially in the UV/SPS system possible due to the residual effect of SPS to kill HepG2 cells.
論文目次 目錄 I
圖目錄 V
表目錄 IX
第一章 前言 1
1-1.研究起源 1
1-2.研究目的 3
1-3.研究內容 4
第二章 文獻回顧 5
2-1.環境荷爾蒙 (Endocrine Disrupting Chemicals, EDCs) 5
2-2.高級氧化程序 (Advanced Oxidation Processes, AOPs) 7
2-3.雙酚A (Bisphenol A, BPA) 之物化特性 10
2-4.過氧化氫特性與應用 11
2-5.UV/H2O2 反應機制及相關研究彙整 12
2-6.UV/H2O2 程序操作因子之影響 17
2-6-1.pH之影響 17
2-6-2.H2O2 劑量之影響 18
2-6-3.污染物濃度之影響 19
2-6-4.UV光強度之影響 20
2-7.光化學反應動力模式 22
2-8.過硫酸鹽特性與應用 24
2-9.過硫酸鹽催化之反應機制及相關研究彙整 25
2-10.UV/S2O82- 程序操作因子之影響 32
2-10-1.pH 之影響 32
2-10-2.SPS劑量之影響 33
2-10-3.污染物濃度之影響 34
2-10-4.UV光強度之影響 34
2-10-5.溫度之影響 35
2-11.毒性分析 38
2-11-1.人類肝臟 HepG2 細胞特性 38
2-11-2.以AOPs處理含污染物水溶液並進行毒性分析之相關研究 38
第三章 實驗材料與方法 46
3-1.實驗設備 46
3-2.實驗藥品及藥品配置 47
3-2-1.實驗藥品 47
3-2-2.雙酚A水溶液製備 48
3-2-3.過氧化氫氧化劑儲存溶液製備 48
3-2-4.過硫酸鈉氧化劑儲存溶液製備 48
3-2-5.氧化劑殘餘量分析-碘定量法 48
3-2-6.Dulbecco’s Modified Eagle’s Medium (DMEM) 培養基配製 49
3-2-7.PBS 配製 49
3-3.實驗裝置 51
3-4.細胞株馴養 52
3-5.實驗方法 55
3-5-1.實驗架構 55
3-5-2.化學實驗流程 56
3-5-3.生物實驗流程 56
3-6.分析測定方法 57
3-6-1.光強度分析 57
3-6-2.HPLC分析 57
3-6-3.TOC分析 58
3-6-4.過氧化氫殘餘量測定-碘定量法 58
3-6-5.過硫酸鈉殘餘量測定-碘定量法 59
3-6-6.細胞毒性分析方法 (WST-1) 59
第四章 結果與討論 62
4-1.背景實驗 62
4-1-1.不照光試驗 62
4-1-2.直接光解試驗 63
4-2.以 UV/H2O2 程序降解含雙酚A水溶液之探討 67
4-2-1.光強度效應 67
4-2-2.污染物初始濃度效應 72
4-2-3.氧化劑加藥量效應 76
4-2-4.pH效應 80
4-2-5.污染物礦化情形 85
4-2-6.動力模式 86
4-2-7.生物毒性 88
4-3.以 UV/SPS 程序降解含雙酚A水溶液之探討 91
4-3-1.光強度效應 91
4-3-2.污染物初始濃度效應 96
4-3-3.氧化劑加藥量效應 100
4-3-4.pH效應 104
4-3-5.溫度效應 108
4-3-6.污染物礦化情形 116
4-3-7.動力模式 117
4-3-8.生物毒性 119
4-4.UV/H2O2、UV/SPS 程序處理含雙酚A水溶液之比較 121
4-4-1.光強度效應 122
4-4-2.氧化劑加藥量效應 123
4-4-3.pH效應 125
4-4-4.動力模式 126
第五章 結論與建議 127
5-1. 結論 127
5-2. 建議 131
參考文獻 132


圖目錄
圖2-1 污染物經AOPs處理後之影響評估示意圖 8
圖2-2 藉由UV光催化氧化劑並進行污染物之降解作用 8
圖2-3 由不同高級氧化技術產生氫氧自由基之機制 9
圖2-4 UV/H2O2 去除 EDCs 機制圖 12
圖2-5 不同程序之氧化劑花費與電能量比較圖 35
圖3-1 光反應槽示意圖 51
圖3-2 血球計數盤示意圖 54
圖3-3 整體實驗流程架構 55
圖3-4 雙酚A檢量線 57
圖3-5 Tetrazolium salt WST-1轉變成formazan之示意圖 60
圖3-6 WST-1 加入細胞後之呈色變化 60
圖4-1 BPA = 0.088 mM、molar ratio (BPA/H2O2) = 1:50時BPA之降解情形 62
圖4-2 BPA = 0.088 mM、molar ratio (BPA/SPS) = 1:20時BPA之降解情形 63
圖4-3 不同輸出電壓產生之光強度對照圖 64
圖4-4 不同光強度直接光解BPA之變化圖 65
圖4-5 不同pH直接光解BPA之變化圖 65
圖4-6 雙酚A於不同pH之理論與實際吸光值之比較圖 66
圖4-7 H2O2不同pH之理論與實際吸光值之比較圖 66
圖4-8 UV/H2O2 系統中不同光強度降解BPA之變化圖 68
圖4-9 UV/H2O2系統中不同光強度降解BPA之反應動力常數變化圖 68
圖4-10 UV/H2O2 系統中 H2O2 於不同光強度之殘餘量變化圖 70
圖4-11 UV/H2O2 系統中不同光強度之利用率變化圖 70
圖4-12 UV/H2O2 系統中不同光強度所需之電耗能變化圖 71
圖4-13 UV/H2O2 系統中實際投入水體之不同光強度所需電耗能變化圖 72
圖4-14 UV/H2O2 系統中不同BPA初始濃度經降解之變化圖 73
圖4-15 UV/H2O2 系統中不同BPA初始濃度經降解之反應動力常數變化圖 74
圖4-16 UV/H2O2 系統中 H2O2 於不同BPA初始濃度之殘餘量變化圖 75
圖4-17 UV/H2O2 系統中不同BPA初始濃度之利用率變化圖 75
圖4-18 UV/H2O2系統中不同 H2O2 加藥量去除BPA之變化圖 77
圖4-19 UV/H2O2系統中不同 H2O2 加藥量去除 BPA 之反應動力常數變化圖 77
圖4-20 UV/H2O2 系統中 H2O2 於不同氧化劑加藥量之殘餘量變化圖 78
圖4-21 UV/H2O2 系統中不同氧化劑加藥量之利用率變化圖 79
圖4-22 UV/H2O2 系統中不同氧化劑加藥量所需之電耗能變化圖 79
圖4-23 UV/H2O2系統中不同pH去除BPA之變化圖 82
圖4-24 UV/H2O2系統中不同pH去除BPA之反應動力變化圖 82
圖4-25 UV/H2O2 系統中 H2O2 於不同 pH 之殘餘量變化圖 83
圖4-26 UV/H2O2 系統中不同pH之利用率變化圖 84
圖4-27 UV/H2O2 系統中不同pH所需之電耗能變化圖 84
圖4-28 UV/H2O2 系統中不同加藥量於90分鐘後 TOC 之降解情形 86
圖4-29 UV/ H2O2 不同加藥量與降解 BPA 之動力常數線性預測圖 87
圖4-30 UV/ H2O2 不同光強度與降解 BPA 之反應動力常數線性預測圖 87
圖4-31 HepG2 於各條件之細胞生長情形 (4x) 88
圖4-32 HepG2 於各條件之生長情形 (10x) 89
圖4-33 UV/H2O2 系統中BPA經處理前後之細胞毒性影響 90
圖4-34 UV/SPS 系統中不同光強度去除BPA之變化圖 92
圖4-35 UV/SPS 系統中不同光強度去除BPA之反應動力常數變化圖 92
圖4-36 UV/SPS 系統中 SPS 於不同光強度之殘餘量變化圖 94
圖4-37 UV/SPS 系統中不同光強度之利用率變化圖 95
圖4-38 UV/SPS 系統中不同光強度所需之電耗能變化圖 95
圖4-39 UV/SPS 系統中實際投入水體之不同光強度所需電耗能變化圖 96
圖4-40 UV/SPS 系統中去除不同BPA初始濃度經降解之變化圖 97
圖4-41 UV/SPS 系統中去除不同 BPA 初始濃度之反應動力變化圖 98
圖4-42 UV/SPS 系統中 SPS 於不同BPA初始濃度之殘餘量變化圖 99
圖4-43 UV/SPS 系統中不同BPA初始濃度之利用率變化圖 99
圖4-44 UV/SPS 系統中不同SPS加藥量去除BPA之變化圖 101
圖4-45 UV/SPS 系統中不同SPS加藥量去除BPA之反應動力常數變化圖 101
圖4-46 UV/SPS 系統中 SPS 於不同BPA初始濃度之殘餘量變化圖 103
圖4-47 UV/SPS 系統中不同氧化劑加藥量之利用率變化圖 103
圖4-48 UV/SPS 系統中不同氧化劑加藥量所需之電耗能變化圖 104
圖4-49 UV/SPS 系統中不同 pH 去除 BPA 之變化圖 105
圖4-50 UV/SPS 系統中不同 pH 去除 BPA 之反應動力變化圖 105
圖4-51 UV/SPS 系統中 SPS 於不同pH之殘餘量變化圖 106
圖4-52 UV/SPS 系統中不同 pH 之利用率變化圖 107
圖4-53 UV/SPS 系統中不同 pH 所需之電耗能變化圖 107
圖4-54 Thermal/SPS 系統中不同溫度去除 BPA 之變化圖 109
圖4-55 UV/Thermal/SPS 系統中不同溫度去除BPA之變化圖 109
圖4-56 UV/Thermal/SPS 系統反應10分鐘後 BPA 與中間產物之分佈情形 110
圖4-57 UV/Thermal/SPS 系統反應20分鐘後 BPA 與中間產物之分佈情形 110
圖4-58 UV/Thermal/SPS 系統反應40分鐘後 BPA 與中間產物之分佈情形 111
圖4-59 BPA 經OH‧降解之機制圖 111
圖4-60 BPA 經 SO4-‧降解之機制圖 112
圖4-61 UV/Thermal/SPS 系統中不同溫度去除 BPA 之反應動力變化圖 113
圖4-62 UV/Thermal/SPS系統中 SPS 於不同溫度之殘餘量變化圖 114
圖4-63 UV/Thermal/SPS 系統中不同溫度之利用率變化圖 114
圖4-64 於未照光及照光之條件下升溫催化 SPS 降解 BPA 之 Arrhenius 線性圖 115
圖4-65 UV/SPS 系統中不同加藥量於90分鐘後TOC之降解情形 116
圖4-66 UV/ SPS 不同加藥量與降解 BPA 之動力常數線性預測圖 118
圖4-67 UV/SPS 不同光強度與降解 BPA 之反應動力常數線性預測圖 118
圖4-68 UV/SPS 系統中BPA於 pH 3經處理前後之細胞毒性影響 119
圖4-69 UV/SPS 系統中BPA於 pH 5經處理前後之細胞毒性影響 120
圖4-70 UV/SPS 系統中BPA於 pH 11經處理前後之細胞毒性影響 120
圖4-71 OH‧與 SO4-‧降解目標有機物之機制圖 121
圖4-72 兩種氧化劑於不同光強度之降解 BPA 反應動力常數比較圖 122
圖4-73 相同莫耳濃度之氧化劑於不同光強度之降解 BPA 反應動力常數比較圖 123
圖4-74 兩種氧化劑於不同氧化劑劑量之降解 BPA 反應動力常數比較圖 124
圖4-75 相同莫耳濃度之氧化劑於不同氧化劑劑量之降解 BPA 反應動力常數比較圖 124
圖4-76 兩種氧化劑於pH之降解 BPA 反應動力常數比較圖 125
圖4-77 相同莫耳濃度之氧化劑於pH之降解 BPA 反應動力常數比較圖 126


表目錄
表2-1 常見的氧化劑標準還原電位 7
表2-2 雙酚A之物化特性 10
表2-3 過氧化氫之物化特性 11
表2-4 以 UV/H2O2 處理 EDCs、藥物等之相關研究 13
表2-5 過硫酸鹽之物化特性 24
表2-6 有機物存在UV/S2O82-時之反應機制 27
表2-7 以UV/SPS 及 Themal/SPS處理含EDCs, 抗生素之相關研究 29
表2-8 以 AOPs 處理含污染物水溶液並進行毒性分析之文獻彙整 40
表2-9 AOPs 處理真實水體所扮演的角色以及相對應之生物分析之角色 42
表2-10 飲用水經過AOPs處理後之毒性/雌激素活性測試與結論 43
表3-1 本研究所需各項實驗設備之來源與目的 46
表3-2 實驗藥品 47
表3-3 PBS配方表 50
表3-4 使用HPLC於雙酚A水溶液之操作條件 58
表4-1 不同光強度之貢獻率比較 69
表4-2 UV/H2O2 系統中不同BPA初始濃度經降解之貢獻率比較 74
表4-3 UV/H2O2 系統中不同 H2O2 加藥量之貢獻率比較 78
表4-4 UV/H2O2系統中不同pH去除BPA之貢獻率比較 83
表4-5 UV/SPS 系統中不同光強度去除BPA之貢獻率比較 93
表4-6 UV/SPS 系統中去除不同 BPA 初始濃度之貢獻率比較 98
表4-7 UV/SPS 系統中不同SPS加藥量去除BPA之貢獻率比較 102
表4-8 UV/SPS 系統中不同 pH 去除 BPA 之貢獻率比較 106
表4-9 UV/Thermal/SPS 及Thermal/SPS系統中去除 BPA 之貢獻率比較 113



參考文獻 Abdelraheem, W. H.,X. He,X. Duan,D. D. Dionysiou (2015). "Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H2O2." J Hazard Mater 282: 233-240.
Adak, A.,K. P. Mangalgiri,J. Lee,L. Blaney (2015). "UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals." Water Res 70: 74-85.
An, D.,P. Westerhoff,M. Zheng,M. Wu,Y. Yang,C. A. Chiu (2015). "UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon." Water Res 73: 304-310.
Antoniou, M. G.,H. R. Andersen (2015). "Comparison of UVC/S2O82- with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater." Chemosphere 119 Suppl: S81-88.
Antonopoulou, M.,E. Evgenidou,D. Lambropoulou,I. Konstantinou (2014). "A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media." Water Res 53: 215-234.
Baeza, C.,D. R. Knappe (2011). "Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes." Water Res 45(15): 4531-4543.
Behrman, E. J.,D. H. Dean (1999). "Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate1) in polyacrylamide gel electrophoresis." Journal of Chromatography B: Biomedical Sciences and Applications 723(1–2): 325-326.
Błędzka, D.,M. Gmurek,M. Gryglik,M. Olak,J. S. Miller,S. Ledakowicz (2010). "Photodegradation and advanced oxidation of endocrine disruptors in aqueous solutions." Catalysis Today 151(1-2): 125-130.
Bommer, M.,J. M. Ward (2016). "Micromolar colorimetric detection of 2-hydroxy ketones with the water-soluble tetrazolium WST-1." Anal Biochem 493: 8-10.
Bouasla, C.,M. E.-H. Samar,F. Ismail (2010). "Degradation of methyl violet 6B dye by the Fenton process." Desalination 254(1-3): 35-41.
Cabaton, N.,C. Dumont,I. Severin,E. Perdu,D. Zalko,M. Cherkaoui-Malki,M. C. Chagnon (2009). "Genotoxic and endocrine activities of bis(hydroxyphenyl)methane (bisphenol F) and its derivatives in the HepG2 cell line." Toxicology 255(1-2): 15-24.
Charles, A.,B. D. Philip,M. K. Gary,T. O. B. Sondra,R. B. Dean,R. H. Lynne (2000). "Bisphenol A concentrations in receiving waters near US manufacturing and processing facilities." Chemosphere: 521-525.
Charles, A. S.,B. D. Philip,M. K. Gary,T. O. B. Sandra (1998). "A review of the environmental fate, effect, and exposures of bisphenol A." Chemosphere 36: 2149-2173.
Chen, X.,M. Murugananthan,Y. Zhang (2016). "Degradation of p-Nitrophenol by thermally activated persulfate in soil system." Chemical Engineering Journal 283: 1357-1365.
Chen, X.,J. Richard,Y. Liu,E. Dopp,J. Tuerk,K. Bester (2012). "Ozonation products of triclosan in advanced wastewater treatment." Water Res 46(7): 2247-2256.
Cheng, M.,G. Zeng,D. Huang,C. Lai,P. Xu,C. Zhang,Y. Liu (2016). "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review." Chemical Engineering Journal 284: 582-598.
Chris, D. M.,L. M. Tracy,K. Yiannis,G. K. Brenda,K. Colin,J. H. Richard,R. C. Timothy,E. M. Raymond,P. Thomas (2001). "Estrogenic potency of chemicals detected in sewage treatment plant effluents determined by in vivo assay with Japenese Medaka (Oryzias Latpites)." Environmental Toxicology and Chemistry 20: 297-308.
Clara, M.,N. Kreuzinger,B. Strenn,O. Gans,H. Kroiss (2005). "The solids retention time-a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants." Water Res 39(1): 97-106.
Erkselius, S.,O. Karlsson (2005). "Free radical degradation of hydroxyethyl cellulose." Carbohydrate Polymers 62(4): 344-356.
Fan, Y.,Y. Ji,D. Kong,J. Lu,Q. Zhou (2015). "Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process." J Hazard Mater 300: 39-47.
Gasnier, C.,C. Dumont,N. Benachour,E. Clair,M. C. Chagnon,G. E. Seralini (2009). "Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines." Toxicology 262(3): 184-191.
George, V. B.,L. G. Clive,H. W. Phillip (1988). "Critical review of rate constants for reations of hydrated electrons, hydrogen atoms and hydroxyl radicals (‧OH/‧O-) in aqueous solution." American Institute of Physics and the American Chemical Society 17: 513-886.
Ghauch, A.,A. M. Tuqan,N. Kibbi (2015). "Naproxen abatement by thermally activated persulfate in aqueous systems." Chemical Engineering Journal 279: 861-873.
Guo, Y.,J. Zhou,X. Lou,R. Liu,D. Xiao,C. Fang,Z. Wang,J. Liu (2014). "Enhanced degradation of Tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates." Chemical Engineering Journal 254: 538-544.
He, X.,S. P. Mezyk,I. Michael,D. Fatta-Kassinos,D. D. Dionysiou (2014). "Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation." J Hazard Mater 279: 375-383.
Heringa, M. B.,D. J. Harmsen,E. F. Beerendonk,A. A. Reus,C. A. Krul,D. H. Metz,G. F. Ijpelaar (2011). "Formation and removal of genotoxic activity during UV/H2O2-GAC treatment of drinking water." Water Res 45(1): 366-374.
Hernandez, O. (2005). "PERSULFATES." SIDS Initial Assessment Report For SIAM 20: 19-21.
House, D. A. (1962). "Kinetics and Mechanism of Oxidations by Peroxydisulfate." Chemical Reviews 62(3): 185-203.
Karci, A.,I. Arslan-Alaton,M. Bekbolet,G. Ozhan,B. Alpertunga (2014). "H2O2/UV-C and Photo-Fenton treatment of a nonylphenol polyethoxylate in synthetic freshwater: Follow-up of degradation products, acute toxicity and genotoxicity." Chemical Engineering Journal 241: 43-51.
Kasprzyk-Hordern, B.,R. M. Dinsdale,A. J. Guwy (2008). "The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK." Water Res 42(13): 3498-3518.
Kolkman, A.,M. Schriks,W. Brand,P. S. Bauerlein,M. M. van der Kooi,R. H. van Doorn,E. Emke,A. A. Reus,S. C. van der Linden,P. de Voogt,M. B. Heringa (2013). "Sample preparation for combined chemical analysis and in vitro bioassay application in water quality assessment." Environ Toxicol Pharmacol 36(3): 1291-1303.
Kolthoff, I. M.,I. K. Miller (1951). "The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium1." Journal of the American Chemical Society 73(7): 3055-3059.
Latimer, W. M. (1952). "Oxidation Potentials. Second Edition." Soil Science 74(4): 333.
Liang, C.,Z. S. Wang,C. J. Bruell (2007). "Influence of pH on persulfate oxidation of TCE at ambient temperatures." Chemosphere 66(1): 106-113.
Liang, C. J.,C. J. Bruell,M. C. Marley,K. L. Sperry (2003). "Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries." Soil and Sediment Contamination: An International Journal 12(2): 207-228.
Lin, H. H.,A. Y. Lin (2014). "Photocatalytic oxidation of 5-fluorouracil and cyclophosphamide via UV/TiO2 in an aqueous environment." Water Res 48: 559-568.
Lin, Y. T.,C. Liang,J. H. Chen (2011). "Feasibility study of ultraviolet activated persulfate oxidation of phenol." Chemosphere 82(8): 1168-1172.
Liu, Z. H.,Y. Kanjo,S. Mizutani (2009). "Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment - physical means, biodegradation, and chemical advanced oxidation: a review." Sci Total Environ 407(2): 731-748.
Luo, C.,J. Ma,J. Jiang,Y. Liu,Y. Song,Y. Yang,Y. Guan,D. Wu (2015). "Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5- and UV/S2O82-." Water Res 80: 99-108.
Maike, C.,K. Wolfgang,R. Jessica,D. Elke,v. Clemen, Sonntag,C. S. Torsten (2013). "Reaction of Gadolinium Chelates with Ozonw and Hydroxyl Radicals." Environ Sci Technol 47: 9942-9949.
Maroga Mboula, V.,V. Hequet,Y. Andres,L. M. Pastrana-Martinez,J. M. Dona-Rodriguez,A. M. Silva,P. Falaras (2013). "Photocatalytic degradation of endocrine disruptor compounds under simulated solar light." Water Res 47(12): 3997-4005.
Masamichi, F.,S. Yoshiharu,O. Tetsuo (1982). "Heterogeneous photocatalytic reactions on semiconductor materials. III. effect of pH and Cu2+ ions on the photo-Fenton type reaction." The Chemical Society of Japan 55: 666-671.
Monteagudo, J. M.,A. Durán,R. González,A. J. Expósito (2015). "In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2." Applied Catalysis B: Environmental 176-177: 120-129.
Nguyen, A. T.,R. S. Juang (2015). "Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation." J Environ Manage 147: 271-277.
Olmez-Hanci, T.,I. Arslan-Alaton,B. Genc (2013). "Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity." J Hazard Mater 263 Pt 2: 283-290.
Olmez-Hanci, T.,D. Dursun,E. Aydin,I. Arslan-Alaton,B. Girit,L. Mita,N. Diano,D. G. Mita,M. Guida (2015). "S2O82-/UV-C and H2O2/UV-C treatment of Bisphenol A: assessment of toxicity, estrogenic activity, degradation products and results in real water." Chemosphere 119 Suppl: S115-123.
Pan, J.,Y. Chen (2010). "Oxidation deradation of Bisphenol A (BPA) by UV/H2O2 process." ICBEE 5517101.
Pereira, V. J.,J. Galinha,M. T. Barreto Crespo,C. T. Matos,J. G. Crespo (2012). "Integration of nanofiltration, UV photolysis, and advanced oxidation processes for the removal of hormones from surface water sources." Separation and Purification Technology 95: 89-96.
Radjenovic, J.,M. Petrovic,F. Ventura,D. Barcelo (2008). "Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment." Water Res 42(14): 3601-3610.
Rajagopalan, V.,W. P. Robert (1993). "Chemical Oxidation Technologies: Ultraviolet Light/Hydrogen Peroxide,Fenton's Reagent, and Titanium Dioxide-Assisted Photocatalysis." Hazardous Waste & Hazaedous Materials 10.
Richard, J.,A. Boergers,C. Vom Eyser,K. Bester,J. Tuerk (2014). "Toxicity of the micropollutants Bisphenol A, Ciprofloxacin, Metoprolol and Sulfamethoxazole in water samples before and after the oxidative treatment." Int J Hyg Environ Health 217(4-5): 506-514.
Rizzo, L. (2011). "Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment." Water Res 45(15): 4311-4340.
Routledge., E. J.,D. Sheahan.,C. Desbrow.,G. C. Brighty.,M. Waldock.,J. P. Sumpter. (1998). "Identification of Estrogenic Chemicals in STW Effluent. 2. In Vivo Responses in Trout and Roach." Environmental Science Technology.
Sahoo, M. K.,B. Sinha,M. Marbaniang,D. B. Naik (2011). "Degradation and mineralization of Calcon using UV365/H2O2 technique: Influence of pH." Desalination 280(1-3): 266-272.
Sanches, S.,M. T. Barreto Crespo,V. J. Pereira (2010). "Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes." Water Res 44(6): 1809-1818.
Sarkar, S.,S. Ali,L. Rehmann,G. Nakhla,M. B. Ray (2014). "Degradation of estrone in water and wastewater by various advanced oxidation processes." J Hazard Mater 278: 16-24.
Sharma, J.,I. M. Mishra,V. Kumar (2015). "Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82- oxidation systems." J Environ Manage 156: 266-275.
Sharma, J.,I. M. Mishra,V. Kumar (2016). "Mechanistic study of photo-oxidation of Bisphenol-A (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS)." J Environ Manage 166: 12-22.
Shen, Y.-S.,C.-C. Lin (2003). "The Effect of pH on the Decomposition of Hydrophenols in Aqueous Solutions by Ultraviolet Direct Photolysis and the Ultraviolet–Hydrogen Peroxide Process." Water Environment Research 75(1): 54-60.
Shih, Y. J.,W. N. Putra,Y. H. Huang,J. C. Tsai (2012). "Mineralization and deflourization of 2,2,3,3-tetrafluoro-1-propanol (TFP) by UV/persulfate oxidation and sequential adsorption." Chemosphere 89(10): 1262-1266.
Sillanpaa, M. E.,T. A. Kurniawan,W. H. Lo (2011). "Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)." Chemosphere 83(11): 1443-1460.
Stalter, D.,A. Magdeburg,J. Oehlmann (2010). "Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery." Water Res 44(8): 2610-2620.
Tan, C.,N. Gao,Y. Deng,Y. Zhang,M. Sui,J. Deng,S. Zhou (2013). "Degradation of antipyrine by UV, UV/H2O2 and UV/PS." J Hazard Mater 260: 1008-1016.
Wang, C.-W.,C. Liang (2014). "Oxidative degradation of TMAH solution with UV persulfate activation." Chemical Engineering Journal 254: 472-478.
Wang, S.,N. Zhou (2016). "Removal of carbamazepine from aqueous solution using sono-activated persulfate process." Ultrasonics Sonochemistry 29: 156-162.
Xie, P.,J. Ma,W. Liu,J. Zou,S. Yue,X. Li,M. R. Wiesner,J. Fang (2015). "Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals." Water Res 69: 223-233.
Xu, M.,X. Gu,S. Lu,Z. Qiu,Q. Sui,Z. Miao,X. Zang,X. Wu (2015). "Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system." J Hazard Mater 286: 7-14.
Xu, X.-R.,S. Li,Q. Hao,J.-L. Liu,Y.-Y. Yu, .,H.-B. Li (2012). "Activation of Persulfate and Its Environmental Application." International Journal of Environment and Bioenergy 1: 60-81.
Xu, Y.,Z. Lin,H. Zhang (2016). "Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2." Chemical Engineering Journal 285: 392-401.
Yamamoto, T.,A. Yasuhara,H. Shiraishi,O. Nakasugi (2001). "Bisphenol A in hazardous waste landfill leachates." Chemosphere 42(4): 415-418.
Yuan, R.,Z. Wang,Y. Hu,B. Wang,S. Gao (2014). "Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: kinetics modeling and byproducts identification." Chemosphere 109: 106-112.
Zarei, A. R.,H. Rezaeivahidian,A. R. Soleymani (2015). "Investigation on removal of p-nitrophenol using a hybridized photo-thermal activated persulfate process: Central composite design modeling." Process Safety and Environmental Protection 98: 109-115.
Zhang, A.,Y. Li (2014). "Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix." Sci Total Environ 493: 307-323.
Zhang, H.,F. X. Kong,Y. Yu,X. L. Shi,M. Zhang,H. E. Tian (2010). "Assessing the combination effects of environmental estrogens in fish." Ecotoxicology 19(8): 1476-1486.
Zhang, J.,S. Chen,Y. Zhang,X. Quan,H. Zhao,Y. Zhang (2014). "Reduction of acute toxicity and genotoxicity of dye effluent using Fenton-coagulation process." J Hazard Mater 274: 198-204.
Zhang, Z.,Y. Feng,Y. Liu,Q. Sun,P. Gao,N. Ren (2010). "Kinetic degradation model and estrogenicity changes of EE2 (17alpha-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology." J Hazard Mater 181(1-3): 1127-1133.
Zhou, C.,N. Gao,Y. Deng,W. Chu,W. Rong,S. Zhou (2012). "Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water." J Hazard Mater 231-232: 43-48.
凌永健,謝英士,宋卓勳,鄭佾展 (2013). "我國內分泌干擾物(環境荷爾蒙)管理機制之研究."。
劉宗勇,梁永芳,楊毓齡,蕭立國,張韶文 (2011). "環境荷爾蒙之跨部會管理." 環保政策月刊 第十四卷(第三期)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-03-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-03-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信