淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2402202116592900
中文論文名稱 醇/水共溶劑取代毒性有機溶劑溶解壓克力進行精密塗佈製作高分子塗膜
英文論文名稱 Use of alcohol/water co-solvents instead of toxic organic solvents to dissolve acrylic polymers for preparing polymer coatings by accurate coating.
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 109
學期 1
出版年 110
研究生中文姓名 劉雲平
研究生英文姓名 Yun-Ping Liu
學號 607400529
學位類別 碩士
語文別 中文
口試日期 2021-01-14
論文頁數 45頁
口試委員 指導教授-張朝欽
委員-鄭廖平
委員-游洋雁
中文關鍵字 聚甲基丙烯酸甲酯  聚甲基丙烯酸乙酯  旋轉塗佈  浸漬塗佈  高分子薄膜  1-甲氧基-2-丙醇  丙二醇甲基醚乙酸酯 
英文關鍵字 PMMA  PEMA  spin-coating  dip-coating  PM  PGMEA  Polymer film 
學科別分類
中文摘要 以精密塗佈技術製作薄膜已在許多方面有應用,但所使用溶劑許多為有毒溶劑。本研究利用1-甲氧基-2-丙醇及丙二醇甲基醚乙酸酯溶解聚甲基丙烯酸甲酯及聚甲基丙烯酸乙酯。1-甲氧基-2-丙醇/水共溶劑雖然能將高分子溶解,但旋轉塗佈的薄膜穿透率不佳,而丙二醇甲基醚乙酸酯能夠有效的溶解高分子,在旋轉塗佈後,有良好的穿透率。薄膜的厚度符合h=〖Ac〗^a ω^(-b)的經驗式。另外,研究中以丙二醇甲基醚乙酸酯溶解聚甲基丙烯酸甲酯作浸漬塗佈法,分析不同提拉速度、濃度及溫度下薄膜厚度的變化,以及利用Landau - Levich理論分析,建立出薄膜厚度方程式。觀察到無因次通量J會隨著高分子溶液濃度上升而下降,但會隨塗佈溫度下降而下降。
英文摘要 The production of thin films with precision mixing technology has been applied in many ways, but many of the solvents used are toxic solvents. In this study, propylene glycol methyl ether (PM) and propylene glycol methyl ether acetate (PGMEA) were used to dissolve polymethyl methacrylate (PMMA) and polyethyl methacrylate (PEMA). Although the PM/water co-solvent can dissolve the polymer, the transmittance of the prepared thin film was not good, PGMEA can dissolve the polymer, and the prepared thin films were highly transparent. The thickness of the film conforms to the empirical formula of h=〖Ac〗^a ω^(-b). In addition, PMMA thin films were prepared by dip coating, the changes in film thickness under different pulling speeds, concentrations and temperatures, and using Landau-Levich theoretical analysis was employed to establish the film thickness equation. It was observed that the dimensionless flux J decreased as the polymer solution concentration increased, but it decreased as the coating temperature decreased.
論文目次 中文摘要I
英文摘要II
目錄III
圖目錄IV
表目錄V
第一章 序論1
第二章 文獻回顧5
2.1高分子薄膜塗佈技術5
2.1.1旋轉塗佈法5
2.2.2浸漬塗膜法9
2.2塗佈文獻15
2.3浸漬塗佈文獻18
2.4研究方向19
第三章 實驗20
3.1實驗藥品20
3.2實驗方法與流程22
3.2.1實驗溶液配置22
3.2.2旋轉塗佈製程23
3.2.3浸置塗膜製程23
3.3實驗及檢測儀器25
第四章 結果與討論27
4.1旋轉塗佈實驗27
4.1.1 不同高分子溶解在不同溶劑的性質27
4.1.2旋轉塗佈薄膜厚度測量32
4.2浸漬塗佈實驗36
4.2.1薄膜厚度比較37
4.2.2薄膜厚度分析40
第五章 結論42
第六章 參考文獻43
附錄A45

圖目錄
圖2- 1旋轉塗佈流程6
圖2- 2浸塗的基本階段9
圖2- 3 浸漬塗佈過程溶液流動分析11
圖2- 4 薄膜厚度對提拉速度的關係圖12
圖2- 5彎液面形成示意圖13
圖2- 6 浸入基材後彎液面位置14
圖2- 7旋轉塗佈PMMA薄膜厚度與的初始溶液濃度的關係16
圖2- 8在9000(o),5000(□)和3000(Δ)的三個轉速下旋塗有PMMA溶液的氯仿和壬烷的玻璃的透射率17
圖2- 9顯示了通過三種不同旋轉速度旋塗製備的PMMA膜的橫截面。17
圖2- 10熱處理塗層厚度與提拉速度的關係18
圖4- 1PMMA溶於PM/水= 8.5/1.5製作的薄膜穿透率測試結果28
圖4- 2不同轉速下PMMA(Mw:120,000)的厚度分佈32
圖4- 3指對數下不同轉速下PMMA(Mw:120,000)的厚度分佈32
圖4- 4不同濃度下PMMA(Mw:120,000)的厚度分佈33
圖4- 5指對數下不同濃度下PMMA(Mw:120,000)的厚度分佈33
圖4- 6不同轉速下PMMA(Mw:400,000)薄膜厚度分佈34
圖4- 7指對數下不同轉速下PMMA(Mw:400,000)薄膜厚度分佈34
圖4- 8不同濃度下PMMA(Mw:400,000)薄膜厚度分佈35
圖4- 9指對數下不同濃度下PMMA(Mw:400,000)薄膜厚度分佈35
圖4- 10 濃度對黏度作圖36
圖4- 11在相同濃度及提拉速度下不同溫度對於咖啡環效應的影響39
圖4- 12 (a) 5 wt% 提拉速度為0.667 cm/s環境溫度為25°C (b) 5 wt% 提拉速度為0.667 cm/s環境溫度為0°C39
圖4- 13不同公式計算出來的薄膜厚度40
圖A- 1旋轉塗佈與浸塗經熱處理後以FTIR拍攝後的特徵圖45

表目錄
表1- 1常見溶劑毒性及資料3
表2- 1工業上薄膜製程優缺點5
表2- 2旋轉塗佈現象影響8
表4- 1分子量120,000的PMMA在PM/水共溶劑的溶解度及旋轉塗佈測試結果27
表4- 2分子量120,000的PMMA在PGMEA的溶解度及旋轉塗佈測試結果28
表4- 3分子量400,000的PMMA在PM/水共溶劑(1.5 wt%)的溶解度及旋轉塗佈測試結果29
表4- 4分子量400,000的PMMA在PGMEA的溶解度及旋轉塗佈測試結果29
表4- 5分子量515,000的PEMA在PM/水共溶劑(1.5 wt%)的溶解度及旋轉塗佈測試結果30
表4- 6分子量515,000的PEMA在純PM的溶解度及旋轉塗佈測試結果30
表4- 7分子量515,000的PEMA在PGMEA的溶解度及旋轉塗佈測試結果31
表4- 8不同轉速影響下高分子薄膜厚度分佈32
表4- 9不同濃度影響下高分子薄膜厚度分佈33
表4- 10不同轉速影響下高分子薄膜厚度分佈34
表4- 11不同濃度影響下高分子薄膜厚度分佈35
表4- 12 室溫下不同濃度和速度製作的薄膜的平均薄膜厚度37
表4- 13冰浴中不同濃度和速度製作的薄膜的平均薄膜厚度38
表4- 14 不同溫度及濃度下方程式的比較41



參考文獻 [1] 環境保護署, "國家化學物質管理政策綱領," 行政院. 行政院院臺環字第1070008670 號函核定, 2018.
[2] H. Yamamoto., "Radiation-induced synthesis of metal nanoparticles in ethers THF and PGMEA," J Radiation Physics Chemistry, vol. 91, pp. 148-155, 2013.
[3] A. Boudrioua, M. Chakaroun, and A. Fischer, An Introduction to Organic Lasers. Elsevier, 2017.
[4] M. A. Aegerter and M. Mennig Eds, Sol-gel technologies for glass producers and users. Springer Science & Business Media, 2004.
[5] L. Scriven, "Physics and applications of dip coating and spin coating," MRS Online Proceedings Library Archive vol. 121, 1988.
[6] J. P. H. Lima and A. M. de Andrade, "Morphological analysis of poly (o-methoxyaniline) thin-films deposited by spin coating technique," Journal of Materials Science: Materials in Electronics vol. 17, no. 8, pp. 593-596, 2006.
[7] C. B. Walsh and E. I. Franses, "Ultrathin PMMA films spin-coated from toluene solutions," Thin Solid Films vol. 429, no. 1-2, pp. 71-76, 2003.
[8] T. Tippo, C. Thanachayanont, C. Junin, S. Prichanont, M. Hietschold, and A. Thanachayanont, "Effect of substrates on preparation of dissolved PMMA in DMF solution used as a dielectric layer in OTFTs," in Advanced Materials Research, vol.802, pp.79-83, 2013.
[9] C.-C. Chang, C.-L. Pai, W.-C. Chen, and S. A. Jenekhe, "Spin coating of conjugated polymers for electronic and optoelectronic applications," Thin solid films vol. 479, no. 1-2, pp. 254-260, 2005.
[10] T. Tippo, C. Thanachayanont, P. Muthitamongkol, C. Junin, M. Hietschold, and A. Thanachayanont, "The effects of solvents on the properties of ultra-thin poly (methyl methacrylate) films prepared by spin coating," Thin Solid Films vol. 546, pp. 180-184, 2013.
[11] C. E. Equipment co.Report, "Spin Coating Theory."
[12] M. Guglielmi, P. Colombo, F. Peron, and L. M. Degli Esposti, "Dependence of thickness on the withdrawal speed for SiO 2 and TiO 2 coatings obtained by the dipping method," Materials science, vol. 27, no. 18, pp. 5052-5056, 1992.
[13] X. Liu, Y. Zhang, X. Zhang, R. Li, and W. Hu, "Continuous and highly ordered organic semiconductor thin films via dip-coating: the critical role of meniscus angle," SCIENCE CHINA-MATERIALS, 2020.
[14] M. S. Park, Y. Lee, and J. K. Kim, "One-step preparation of antireflection film by spin-coating of polymer/solvent/nonsolvent ternary system," Chemistry of materials, vol. 17, no. 15, pp. 3944-3950, 2005.
[15] M. Guglielmi and S. Zenezini, "The thickness of sol-gel silica coatings obtained by dipping," Non-Crystalline Solids, vol. 121, no. 1-3, pp. 303-309, 1990.
[16] V. Rai, C. Mukherjee, and B. Jain, "Optical properties (UV-vis and FTIR) of gamma irradiated polymethyl methacrylate (PMMA)," arXiv:1611.02129, 2016.
[17] R. A. A. Tahrin, N. S. Azma, S. Kassim, and N. A. Harun, "Preparation and properties of PMMA nanoparticles as 3 dimensional photonic crystals and its thin film via surfactant-free emulsion polymerization," in AIP Conference Proceedings, 2017, vol. 1885

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2023-01-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2023-01-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信