淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2402202110375500
中文論文名稱 聚乙二醇氣體分離膜之製備與其物性分析
英文論文名稱 Preparation, characterization and gas separation properties of polyethylene oxide membranes
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 109
學期 1
出版年 110
研究生中文姓名 黃冠誌
研究生英文姓名 KUAN-CHIH HUANG
電子信箱 bobby61110@gmail.com
學號 607400420
學位類別 碩士
語文別 中文
口試日期 2021-01-14
論文頁數 92頁
口試委員 指導教授-賴偉淇
委員-童世煌
委員-楊大毅
中文關鍵字 聚乙二醇  2,4-雙(3,4-二甲基苯基)山梨醇  氣體分離 
英文關鍵字 PEO  DMDBS  gas separation 
學科別分類
中文摘要 本研究以聚乙二醇(PEO)高分子與不同比例之2,4-雙(3,4-二甲基苯基)山梨醇(1,3:2,4-bis(3,4-dimethylbenzyliden) sorbitol, DMDBS)混摻,以溶劑揮發法製備成薄膜,探討分子間作用力、薄膜的結構型態、熱性質、晶體結構、機械性質與氣體分離性能。
由FTIR分析可得知PEO與DMDBS會形成分子間氫鍵,隨著DMDBS的添加,分子間氫鍵有增強的趨勢。由結構型態可以發現在本研究中薄膜為緻密無孔洞的結構。由SEM與TEM可發現DMDBS會自組裝形成10~100奈米細纖維,纖維平均直徑與DMDBS添加量形成正比關係。由熱性質可以發現在PEO中加入DMDBS後,經由TGA測試發現能增加其起始裂解溫度,但對於最大裂解溫度不會有變化。由DSC測試結晶度與融點變化,發現添加DMDBS沒有影響PEO的結晶度與融點。由DMA機械性質分析發現添加越多DMDBS會使儲存模數與損失模數均有提升的趨勢。由XRD晶體結構分析中可以發現添加越多的DMDBS會使PEO的結晶性能變差的趨勢。由氣體分離測試發現隨DMDBS添加CO2滲透率會先上升後下降,N2滲透率則下降,因此CO2/N2的選擇率也有先上升後下降的趨勢。經由Robeson上限值計算可以知道在本研究材料均無超過Robeson上限。
英文摘要 In this study the intermolecular forces, structure morphology, thermal properties, mechanical properties, crystal structure and gas separation performance, by using solvent evaporation method to prepared PEO blend 1,3:2,4-bis(3,4-dimethylbenzyliden) sorbitol (DMDBS) thin films.
By FTIR analysis, we found that PEO and DMDBS will form intermolecular hydrogen bonds. With the addition of DMDBS, the intermolecular hydrogen bonds tend to increase. By structure morphology, we found the thin film in this study is dense and nonporous, by SEM and TEM, it can be found that DMDBS will self-assemble to form 10-100 nanometer fine fibers, and the average fiber diameter is proportional to the amount of DMDBS added. By thermal properties, it can found that adding DMDBS will increase the initial pyrolysis temperature through TGA test, but the maximum pyrolysis temperature will not change. It is found that adding DMDBS did not affect the crystallinity and melting point of PEO, by DSC test for the crystallinity and melting point. By DMA mechanical properties, we found that the more DMDBS added, the storage modulus and loss modulus tend to increase. From the XRD crystal structure analysis, it can be found that the more DMDBS added will make the crystallization performance of PEO worse. By gas separation performance, we found that CO2 permeation will first increase and then decrease, N2 permeation will decrease, and the selectionof CO2/N2 also tends to increase first then decrease when the addition of DMDBS. By calculation the Robeson upper bound, it can be known that none of the materials in this study exceeds Robeson upper bound.
論文目次 目錄
致謝 I
中文摘要: II
英文摘要: III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1前言 1
1.2研究目的 2
第二章 理論背景 3
2.1薄膜分離技術 3
2.2二氧化碳分離技術 4
2.3薄膜氣體分離應用 5
2.4薄膜的製備方式 5
2.5氣體分離膜結構 7
2.5.1混和基質膜(Mixed matrix membrane,MMMs) 7
2.5.2金屬有機骨架(Metal-Organic Framework,MOF) 8
2.6氣體分離膜材料 9
2.7實驗材料介紹 11
2.7.1聚乙二醇(Poly(ethylene oxide),PEO) 11
2.7.2 1,3:2,4-雙(3,4-二甲基苯基)山梨醇(1,3:2,4-bis(3,4-dimethylbenzyliden) sorbitol ,DMDBS) 12
第三章 文獻回顧 13
3.1氣體過濾理論 13
3.2氣體分離方式 14
3.2.1變壓吸附(Pressure Swing Adsorption (PSA)) 14
3.2.2低溫液化法(Cryogenic liquefaction) 15
3.2.3膜分離(Membrane Separation) 15
3.3氣體過濾膜材料 16
3.4聚乙二醇基底薄膜 16
第四章 實驗 19
4.1實驗藥品 19
4.2實驗設備 20
4.3實驗流程 25
4.4實驗樣品製備 25
4.4.1複合材料之官能基特性分析 25
4.4.2掃描式電子顯微鏡(SEM) 25
4.4.3穿透式電子顯微鏡(TEM) 26
4.4.4氣體過濾膜膜厚測試 26
4.4.5熱重損失分析儀 (TGA) 26
4.4.6示差掃描熱卡分析儀(DSC) 26
4.4.7X光繞射分析(XRD) 26
4.4.8氣體過濾膜機械性質測試 27
4.4.9氣體過濾測試 27
第五章 結果與討論 28
5.1複合材料間分子作用力分析 28
5.2薄膜結構分析 32
5.3薄膜熱性質分析 48
5.4薄膜機械性質分析 57
5.5薄膜晶體結構分析 62
5.6氣體過濾性質測試 65
5.7氣體過濾膜上限值計算 79
第六章 結論 80
第七章 參考文獻 82

圖目錄
圖2. 1不同混合氣體的應用 5
圖2. 2 MMMs結構示意圖 8
圖2. 3不同材料之有機金屬骨架結構示意圖 9
圖2. 4DBS結構圖 12
圖3. 1不同氣體滲透率比較圖 17
圖4. 1氣體過濾模組上模具規格 23
圖4. 2氣體過濾模組下模具規格 23
圖4. 3氣體過濾模組橡膠墊片規格 24
圖4. 4氣體過濾模組實驗裝置圖 24
圖5. 1實驗使用材料之FTIR圖 30
圖5. 2不同樣品FTIR圖譜 30
圖5. 3樣品局部IR圖 31
圖5. 4樣品0D上表面(a)倍率400(b)倍率30k 34
圖5. 5樣品5D上表面(a)倍率400(b)倍率30k 35
圖5. 6樣品10D上表面(a)倍率400(b)倍率30k 36
圖5. 7樣品15D上表面(a)倍率400(b)倍率30k 37
圖5. 8樣品20D上表面(a)倍率400(b)倍率30k 38
圖5. 9樣品0D TEM圖 39
圖5. 10樣品20D TEM圖 39
圖5. 11樣品5D纖維分佈 40
圖5. 12樣品10D纖維分佈 40
圖5. 13樣品15D纖維分佈 41
圖5. 14樣品20D纖維分佈 41
圖5. 15不同比例之纖維粗細 42
圖5. 16不同比例之薄膜厚度 42
圖5. 17樣品0D截面(a)倍率250(b)倍率10k 43
圖5. 18樣品5D截面(a)倍率250(b)倍率10k 44
圖5. 19樣品10D截面(a)倍率250(b)倍率10k 45
圖5. 20樣品15D截面(a)倍率250(b)倍率10k 46
圖5. 21樣品20D截面(a)倍率250(b)倍率10k 47
圖5. 22DMDBS TGA圖 50
圖5. 23DMDBS 一次微分TGA圖 50
圖5. 24不同樣品之TGA圖 51
圖5. 25不同樣品之一次微分TGA圖 51
圖5. 26 樣品1st DSC圖 52
圖5. 27樣品2nd DSC圖 53
圖5. 28不同比例DMDBS融點變化(DCS 1st run) 54
圖5. 29不同比例DMDBS融點變化(DSC 2nd run) 55
圖5. 30不同比例DMDBS結晶度變化(DCS 1st run) 55
圖5. 31不同比例DMDBS融點變化(DSC 2nd run) 56
圖5. 32樣品0D模數圖 58
圖5. 33樣品5D模數圖 58
圖5. 34樣品10D模數圖 59
圖5. 35樣品15D模數圖 59
圖5. 36樣品20D模數圖 60
圖5. 37不同比例儲存模數圖 60
圖5. 38不同比例損失模數圖 61
圖5. 39樣品0D與DMDBS XRD圖 63
圖5. 40不同樣品XRD圖 63
圖5. 41 不同進料壓力CO2滲透率(不含膜厚) 70
圖5. 42同進料壓力CO2滲透率(含膜厚) 70
圖5. 43不同進料壓力N2滲透率(不含膜厚) 71
圖5. 44不同進料壓力N2滲透率(含膜厚) 71
圖5. 45 CO2/N2選擇率 72
圖5. 46 樣品0D通過3atm CO2後SEM表面圖 72
圖5. 47 樣品5D通過3atm CO2後SEM表面圖 73
圖5. 48 樣品10D通過3atm CO2後SEM表面圖 73
圖5. 49 樣品15D通過3atm CO2後SEM表面圖 74
圖5. 50 樣品20D通過3atm CO2後SEM表面圖 74
圖5. 51 樣品0D通過3atm N2後SEM表面圖 75
圖5. 52 樣品5D通過3atm N2後SEM表面圖 75
圖5. 53 樣品10D通過3atm N2後SEM表面圖 76
圖5. 54 樣品15D通過3atm N2後SEM表面圖 76
圖5. 55 樣品20D通過3atm N2後SEM表面圖 77
圖5. 56氮氣測試後出現小顆粒放大圖(-2187,-2188) 78
圖5. 57 小顆粒之EDX圖 78
圖5. 58CO2/N2 Robeson上限值比較 79


表目錄
表4. 1 實驗配方與代號 25
表5. 1PEO官能基特徵峰位置表 29
表5. 2DMDBS官能基特徵峰位置表 29
表5. 3不同樣品之起始裂解與最大裂解溫度表 52
表5. 4不同比例之融點變化 53
表5. 5不同比例之結晶度變化 54
表5. 6不同樣品模數表 61
表5. 7不同樣品半高寬 64
表5. 8不同進料壓力之CO2進出口流量 67
表5. 9不同進料壓力之N2進出口流量 67
表5. 10壓力1atm下氣體過濾各項參數 68
表5. 11壓力2atm下氣體過濾各項參數 68
表5. 12壓力3atm下氣體過濾各項參數 69
表5. 13不同壓力下各樣品之選擇率 69

參考文獻 [1] L. Shao, B. T. Low, T.-S. Chung, and A. R. Greenberg, "Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future," Journal of Membrane Science, vol. 327, no. 1-2, pp. 18-31, 2009.
[2] S. L. Liu, L. Shao, M. L. Chua, C. H. Lau, H. Wang, and S. Quan, "Recent progress in the design of advanced PEO-containing membranes for CO2 removal," Progress in polymer science, vol. 38, no. 7, pp. 1089-1120, 2013.
[3] 顏芳儀, "聚偏二氟乙烯與分子篩混成富氧膜製備之研究," 淡江大學化學工程與材料工程學系碩士班學位論文, no. 2018 年, pp. 1-108, 2018.
[4] H. A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D. F. Mohshim, and A. Mushtaq, "Recent applications of polymer blends in gas separation membranes," Chemical Engineering & Technology, vol. 36, no. 11, pp. 1838-1846, 2013.
[5] 葉志強, "碳化咖啡渣對 Polysulfone 中空纖維膜結構型態與性質影響之研究," 桃園創新技術學院, 2013.
[6] B. Zhu et al., "Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation," Journal of Membrane Science, vol. 572, pp. 650-657, 2019.
[7] T. T. Moore and W. J. Koros, "Non-ideal effects in organic–inorganic materials for gas separation membranes," Journal of Molecular Structure, vol. 739, no. 1-3, pp. 87-98, 2005.
[8] T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation," Progress in polymer science, vol. 32, no. 4, pp. 483-507, 2007.
[9] M. Aroon, A. Ismail, T. Matsuura, and M. Montazer-Rahmati, "Performance studies of mixed matrix membranes for gas separation: a review," Separation and purification Technology, vol. 75, no. 3, pp. 229-242, 2010.
[10] A. A. Shamsabadi, H. Riazi, and M. Soroush, "Mixed Matrix Membranes for CO2 Separations: Membrane Preparation, Properties, and Separation Performance Evaluation," in Current Trends and Future Developments on (Bio-) Membranes: Elsevier, 2018, pp. 103-153.
[11] M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities," Macromolecules, vol. 50, no. 20, pp. 7809-7843, 2017.
[12] H. Vinh-Thang and S. Kaliaguine, "Predictive models for mixed-matrix membrane performance: a review," Chemical reviews, vol. 113, no. 7, pp. 4980-5028, 2013.
[13] B. A. Al-Maythalony et al., "Tuning the interplay between selectivity and permeability of ZIF-7 mixed matrix membranes," ACS applied materials & interfaces, vol. 9, no. 39, pp. 33401-33407, 2017.
[14] R. Lin, B. V. Hernandez, L. Ge, and Z. Zhu, "Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces," Journal of Materials Chemistry A, vol. 6, no. 2, pp. 293-312, 2018.
[15] Q. Song et al., "Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes," Nature communications, vol. 5, no. 1, pp. 1-12, 2014.
[16] O. K. Farha et al., "Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?," Journal of the American Chemical Society, vol. 134, no. 36, pp. 15016-15021, 2012.
[17] W. Xuan, C. Zhu, Y. Liu, and Y. Cui, "Mesoporous metal–organic framework materials," Chemical Society Reviews, vol. 41, no. 5, pp. 1677-1695, 2012.
[18] H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, "The chemistry and applications of metal-organic frameworks," Science, vol. 341, no. 6149, 2013.
[19] H. Dou et al., "Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane separation," Angewandte Chemie, vol. 131, no. 39, pp. 14107-14113, 2019.
[20] K. Hunger, N. Schmeling, H. B. Jeazet, C. Janiak, C. Staudt, and K. Kleinermanns, "Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation," Membranes, vol. 2, no. 4, pp. 727-763, 2012.
[21] T. Mitra, R. S. Bhavsar, D. J. Adams, P. M. Budd, and A. I. Cooper, "PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers," Chemical Communications, vol. 52, no. 32, pp. 5581-5584, 2016.
[22] Y. Jian et al., "Facile synthesis of highly permeable CAU-1 tubular membranes for separation of CO2/N2 mixtures," Journal of Membrane Science, vol. 522, pp. 140-150, 2017.
[23] M. Z. M. Pauzi et al., "Feasibility study of CAU-1 deposited on alumina hollow fiber for desalination applications," Separation and Purification Technology, vol. 217, pp. 247-257, 2019.
[24] H. Jin, A. Wollbrink, R. Yao, Y. Li, J. Caro, and W. Yang, "A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions," Journal of membrane science, vol. 513, pp. 40-46, 2016.
[25] F. Zhang, X. Zou, F. Sun, H. Ren, Y. Jiang, and G. Zhu, "Growth of preferential orientation of MIL-53 (Al) film as nano-assembler," CrystEngComm, vol. 14, no. 17, pp. 5487-5492, 2012.
[26] M. Eddaoudi et al., "Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage," Science, vol. 295, no. 5554, pp. 469-472, 2002.
[27] O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, "Reticular synthesis and the design of new materials," Nature, vol. 423, no. 6941, pp. 705-714, 2003.
[28] M. O’Keeffe, "Design of MOFs and intellectual content in reticular chemistry: a personal view," Chemical Society Reviews, vol. 38, no. 5, pp. 1215-1217, 2009.
[29] R.-B. Lin, S. Xiang, W. Zhou, and B. Chen, "Microporous metal-organic framework materials for gas separation," Chem, vol. 6, no. 2, pp. 337-363, 2020.
[30] Y. Shi, B. Liang, R.-B. Lin, C. Zhang, and B. Chen, "Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes," Trends in Chemistry, vol. 2, no. 3, pp. 254-269, 2020.
[31] G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, and A. Percheron-Guégan, "Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M (OH)(O 2 C–C 6 H 4–CO 2)(M= Al 3+, Cr 3+), MIL-53," Chemical communications, no. 24, pp. 2976-2977, 2003.
[32] J. M. Scofield, P. A. Gurr, J. Kim, Q. Fu, S. E. Kentish, and G. G. Qiao, "Blends of fluorinated additives with highly selective thin-film composite membranes to increase CO2 permeability for CO2/N2 gas separation applications," Industrial & Engineering Chemistry Research, vol. 55, no. 30, pp. 8364-8372, 2016.
[33] N. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, "Advances in high permeability polymeric membrane materials for CO 2 separations," Energy & Environmental Science, vol. 5, no. 6, pp. 7306-7322, 2012.
[34] J. Liu, X. Hou, H. B. Park, and H. Lin, "High-performance polymers for membrane CO2/N2 separation," Chemistry–A European Journal, vol. 22, no. 45, pp. 15980-15990, 2016.
[35] M. Wang, Z. Wang, S. Zhao, J. Wang, and S. Wang, "Recent advances on mixed matrix membranes for CO2 separation," Chinese journal of chemical engineering, vol. 25, no. 11, pp. 1581-1597, 2017.
[36] Z. Shi et al., "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)," Atmospheric Chemistry and Physics, no. 11, pp. 7519-7546, 2019.
[37] S. Bandehali, A. Moghadassi, F. Parvizian, S. M. Hosseini, T. Matsuura, and E. Joudaki, "Advances in high carbon dioxide separation performance of poly (ethylene oxide)-based membranes," Journal of Energy Chemistry, vol. 46, pp. 30-52, 2020.
[38] H. Lin, "Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases," 2005.
[39] H. F. Mark, Encyclopedia of polymer science and technology, concise. John Wiley & Sons, 2013.
[40] S. P. Nunes, "Block copolymer membranes for aqueous solution applications," Macromolecules, vol. 49, no. 8, pp. 2905-2916, 2016.
[41] S. Wang et al., "Advances in high permeability polymer-based membrane materials for CO 2 separations," Energy & Environmental Science, vol. 9, no. 6, pp. 1863-1890, 2016.
[42] H. Z. Chen, Y. C. Xiao, and T.-S. Chung, "Multi-layer composite hollow fiber membranes derived from poly (ethylene glycol)(PEG) containing hybrid materials for CO2/N2 separation," Journal of Membrane Science, vol. 381, no. 1-2, pp. 211-220, 2011.
[43] G. K. Kline, J. R. Weidman, Q. Zhang, and R. Guo, "Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations," Journal of Membrane Science, vol. 544, pp. 25-34, 2017.
[44] L. Sanhueza et al., "Photochromic solid materials based on poly (decylviologen) complexed with alginate and poly (sodium 4-styrenesulfonate)," The Journal of Physical Chemistry B, vol. 119, no. 41, pp. 13208-13217, 2015.
[45] G. A. Tiruye and R. Marcilla, "Ionic Liquids and Polymers in Energy," in Applications of Ionic Liquids in Polymer Science and Technology: Springer, 2015, pp. 199-229.
[46] A. M. Stephan and K. Nahm, "Review on composite polymer electrolytes for lithium batteries," Polymer, vol. 47, no. 16, pp. 5952-5964, 2006.
[47] D. Fenton, "Complexes of alkali metal ions with poly (ethylene oxide)," polymer, vol. 14, p. 589, 1973.
[48] B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, "Review of recent progress in solid-state dye-sensitized solar cells," Solar energy materials and solar cells, vol. 90, no. 5, pp. 549-573, 2006.
[49] 劉力琾, "新型態聚乙二醇複合電解液之製備與性質研究," 淡江大學化學工程與材料工程學系碩士班學位論文, pp. 1-166, 2018.
[50] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group: World Scientific, 2011, pp. 171-179.
[51] 陳建助, "利用加入膠化劑製備聚乙二醇膠態電解質及應用於染料敏化電池," 2011.
[52] T. Graham, "XVIII. On the absorption and dialytic separation of gases by colloid septa," Philosophical transactions of the Royal Society of London, no. 156, pp. 399-439, 1866.
[53] H. Lin and B. D. Freeman, "Gas solubility, diffusivity and permeability in poly (ethylene oxide)," Journal of Membrane Science, vol. 239, no. 1, pp. 105-117, 2004.
[54] M. Mulder, Basic principles of membrane technology. Springer Science & Business Media, 2012.
[55] B. D. Freeman and I. Pinnau, Polymer membranes for gas and vapor separation. ACS Publications, 1999.
[56] K. C. Chong, S. O. Lai, W. J. Lau, H. San Thiam, A. F. Ismail, and A. K. Zulhairun, "Fabrication and characterization of polysulfone membranes coated with polydimethysiloxane for oxygen enrichment," Aerosol and Air Quality Research, vol. 17, no. 11, pp. 2735-2742, 2017.
[57] Q. Wang, J. Luo, Z. Zhong, and A. Borgna, "CO2 capture by solid adsorbents and their applications: current status and new trends," Energy & Environmental Science, vol. 4, no. 1, pp. 42-55, 2011.
[58] Z. Yong, V. Mata, and A. E. Rodrigues, "Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures," Industrial & Engineering Chemistry Research, vol. 40, no. 1, pp. 204-209, 2001.
[59] J. Dewar, "Liquid hydrogen," Nature, vol. 58, no. 1499, pp. 270-270, 1898.
[60] A. Iulianelli and E. Drioli, "Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications," Fuel Processing Technology, vol. 206, p. 106464, 2020.
[61] A. J. Burggraaf and L. Cot, Fundamentals of inorganic membrane science and technology. Elsevier, 1996.
[62] F. Gallucci, E. Fernandez, P. Corengia, and M. van Sint Annaland, "Recent advances on membranes and membrane reactors for hydrogen production," Chemical Engineering Science, vol. 92, pp. 40-66, 2013.
[63] J. J. Conde, M. Maroño, and J. M. Sánchez-Hervás, "Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties," Separation & Purification Reviews, vol. 46, no. 2, pp. 152-177, 2017.
[64] S. N. Paglieri, "Palladium membranes," Nonporous inorganic membranes, pp. 77-105, 2006.
[65] K. Gilleo and P. Ongley, "Pros and cons of thermoplastic and thermoset polymer adhesives in microelectronic assembly applications," Microelectronics international, 1999.
[66] I. Taniguchi, S. Duan, S. Kazama, and Y. Fujioka, "Facile fabrication of a novel high performance CO2 separation membrane: Immobilization of poly (amidoamine) dendrimers in poly (ethylene glycol) networks," Journal of Membrane Science, vol. 322, no. 2, pp. 277-280, 2008.
[67] H. Cong and B. Yu, "Aminosilane cross-linked PEG/PEPEG/PPEPG membranes for CO2/N2 and CO2/H2 separation," Industrial & engineering chemistry research, vol. 49, no. 19, pp. 9363-9369, 2010.
[68] I. A. David, M. A. Harmer, J. S. Meth, and G. W. Scherer, "Organic-inorganic polymeric composites," ed: Google Patents, 1993.
[69] A. Boulares, M. Tessier, and E. Marechal, "Synthesis and characterization of poly (copolyethers-block-polyamides) II. Characterization and properties of the multiblock copolymers," Polymer, vol. 41, no. 10, pp. 3561-3580, 2000.
[70] S. Feng, J. Ren, K. Hua, H. Li, X. Ren, and M. Deng, "Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation," Separation and Purification Technology, vol. 116, pp. 25-34, 2013.
[71] S. Karaman, A. Karaipekli, A. Sarı, and A. Bicer, "Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage," Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1647-1653, 2011.
[72] W. G. Lee and S. W. Kang, "Highly selective poly (ethylene oxide)/ionic liquid electrolyte membranes containing CrO3 for CO2/N2 separation," Chemical Engineering Journal, vol. 356, pp. 312-317, 2019.
[73] K. W. Yoon, H. Kim, Y. S. Kang, and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO2 separation performance," Chemical Engineering Journal, vol. 320, pp. 50-54, 2017.
[74] 李易晉, "二苯亞甲基山梨醇與醇系統有機膠之結構與性質研究," 淡江大學化學工程與材料工程學系碩士班學位論文, pp. 1-115, 2013.
[75] W.-C. Lai and Y.-C. Lee, "Self-assembly behavior of gels composed of dibenzylidene sorbitol derivatives and poly (ethylene glycol)," RSC advances, vol. 6, no. 100, pp. 98042-98051, 2016.
[76] 陳柏瑜, "DBS 奈米細纖維對生物可分解高分子 PLLA 結晶行為與形態學的影響," 淡江大學化學工程與材料工程學系碩士班學位論文, pp. 1-69, 2009.
[77] E. A. Wilder, C. K. Hall, and R. J. Spontak, "Physical organogels composed of amphiphilic block copolymers and 1, 3: 2, 4-dibenzylidene-D-sorbitol," Journal of colloid and interface science, vol. 267, no. 2, pp. 509-518, 2003.
[78] E. A. Wilder, C. K. Hall, S. A. Khan, and R. J. Spontak, "Effects of composition and matrix polarity on network development in organogels of poly (ethylene glycol) and dibenzylidene sorbitol," Langmuir, vol. 19, no. 15, pp. 6004-6013, 2003.
[79] H. Balakrishnan, A. Hassan, M. U. Wahit, A. Yussuf, and S. B. A. Razak, "Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties," Materials & Design, vol. 31, no. 7, pp. 3289-3298, 2010.
[80] S. Yan, J. Yin, J. Yang, and X. Chen, "Structural characteristics and thermal properties of plasticized poly (l-lactide)-silica nanocomposites synthesized by sol–gel method," Materials Letters, vol. 61, no. 13, pp. 2683-2686, 2007.
[81] J. T. Park, J. H. Koh, D. K. Roh, Y. G. Shul, and J. H. Kim, "Proton-conducting nanocomposite membranes based on P (VDF-co-CTFE)-g-PSSA graft copolymer and TiO2–PSSA nanoparticles," International journal of hydrogen energy, vol. 36, no. 2, pp. 1820-1827, 2011.
[82] P. Joseph et al., "The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites," Composites Part A: Applied Science and Manufacturing, vol. 34, no. 3, pp. 253-266, 2003.
[83] L. Du, B. Qu, and M. Zhang, "Thermal properties and combustion characterization of nylon 6/MgAl-LDH nanocomposites via organic modification and melt intercalation," Polymer Degradation and Stability, vol. 92, no. 3, pp. 497-502, 2007.
[84] J. Maity, C. Jacob, C. Das, S. Alam, and R. Singh, "Direct fluorination of Twaron fiber and the mechanical, thermal and crystallization behaviour of short Twaron fiber reinforced polypropylene composites," Composites Part A: applied science and manufacturing, vol. 39, no. 5, pp. 825-833, 2008.
[85] L. M. Robeson, "The upper bound revisited," Journal of membrane science, vol. 320, no. 1-2, pp. 390-400, 2008.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-02-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-02-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信