§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2401201310541500
DOI 10.6846/TKU.2013.00953
論文名稱(中文) 不同矩形斷面之高層建築設計風荷載研究
論文名稱(英文) An Investigation on Design Wind Loads of Rectangular Cross-Section Tall Buildings
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 1
出版年 102
研究生(中文) 賴子晴
研究生(英文) Tse-Ching Lai
學號 600380041
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-01-15
論文頁數 113頁
口試委員 指導教授 - 鄭啟明
委員 - 王人牧
委員 - 方富民
關鍵字(中) 高層建築
順風向
橫風向
扭轉向
設計風載重
風洞實驗
關鍵字(英) Tall Building
Alongwind
Acrosswind
Torsion
Design Wind Load
Wind Tunnel Test
第三語言關鍵字
學科別分類
中文摘要
作用於高層建築物之風荷載,主要受順風向、橫風向與扭轉向3種不同方向之風力影響。現今國內風力規範除順風向風力可依循準穩定定理與條狀定理進行合理計算,橫風向及扭轉向風力則尚須受限於使用條件之幾何形狀,依照經驗公式及圖表進行最簡化之計算,因此無法完全描述風力的複雜多樣性。
    本文以國內現行規範定義之地況A、B、C作為逼近流場,並選取斷面深寬比為1/5、1/4、1/3、1/2.5、1/2、2/3、1/1、3/2、2/1、2.5/1、3/1、4/1、5/1,高寬比為3、3.5、4、4.5、5、5.5、6、6.5、7之矩柱模型,進行量測建築物表面風壓之風洞實驗,從中探討作用於建築物各方向風力特性與其空間相關性。
    透過風壓實驗獲得設計風荷載所需之參數,於文章最後實行數值分析計算10棟不同幾何形狀建築物之設計風載重,其建物斷面深寬比為1/5、1/3、1/1、3/1、5/1,高寬比為3、6,流場則依台灣現行規範定義之3種地況特性進行模擬。估算風荷載之模式經由淡江大學風工程研究中心多年之研究成果,選用其分析公式撰寫程式做風力載重的運算,評估結果分別與風洞實驗歷時風力資料之結構分析結果及台灣風力規範計算結果做比較。結果顯示,本文分析程式預測結果尚可反應出風洞實驗動力歷時結構分析,因此程式計算之風載重應能有效顯示建築物的實際受力,但分析程式與國內現行風力規範之設計風載重有相當不同之差異,尤其規範在地況A幾乎過於保守,而地況B、C甚至出現過於低估的情況,因此本文計算程式應可較風力規範準確。
英文摘要
The wind load acting on high-rise building, mainly used for alongwind, acrosswind, torsional the 3 different types of wind effects. Among the three design wind loads, only the alongwind load can be estimated analytically based on the quasi-steady theorem and strip theory. Due to the complexity of the vortex shedding phenomenon, estimation of acrosswind and torsional wind loads are depended heavily on the empirical formulae. In the current Taiwan building wind code, the acrosswind and torsional design wind loads are limited to certain building geometric shapes.
This thesis conducted systematic wind tunnel test on tall buildings with various geometric shapes in turbulent boundry layers generated over urban, suburban and open terrains. The side ratio of building models covers L/B= 1/5、1/4、1/3、1/2.5、1/2、2/3、1/1、3/2、2/1、2.5/1、3/1、4/1、5/1 ; and the aspect ratio covers h/√BL= 3、3.5、4、4.5、5、5.5、6、6.5、7. For each bulding model, hundreds of surface pressures were measured simultaneously by high speed pressure scanner, and then the local and global wind force coefficients and various correlations were carefully investigated to gain the insights of building loads.
Through these wind tunnel experiments and the data analysis, the necessary data for developing the design wind loads were acquired. The design wind load estimation models adopted in this thesis were developed by Tamkang University Wind Engineering Research Center over past years. These calculated design wind loas were then compared with wind tunnel measurements and Taiwan building wind code. The results show that these formulae are in good agreement with the wind tunnel measurements. In other words, these desing wind load formulae are adequate to be applied to building wind resistant design. On the other hand, the estimated design wind loads show significant differences in many cases with the current Taiwan building wind code. It can be concluded that the formulae used in this thesis can produce more accurate building design wind loads than the Taiwan building wind code.
第三語言摘要
論文目次
目   錄
第一章 緒論	1
1.1前言	1
1.2研究內容與方法	2
1.3 本文內容簡述	3
第二章 文獻回顧	4
2.1 風洞實驗之模擬	4
2.1.1 大氣邊界層之模擬	4
2.1.2 阻塞效應(blockage effcct )	5
2.1.3 雷諾數效應	5
2.2 矩柱之風力特性	6
2.2.1 模型幾何形狀對風力係數之影響	6
2.2.2紊流對風力係數之影響	7
2.2.3紊流對風力頻譜之影響	8
第三章 理論背景	11
3.1大氣邊界層	11
3.1.1平均風速剖面	11
3.1.2 紊流強度	12
3.1.3 紊流長度尺度(Length scales of turbulence)	13
3.1.4 縱向擾動風速頻譜	14
3.1.5 縱向擾動風速交相關頻譜(cross-spectra)	15
3.2 結構動力特性	16
3.3 風與結構體的相互關係	19
3.3.1 風流經結構體的特殊行為	19
3.3.2 風力作用下的位移反應計算	20
3.4 散漫數據分析	23
第四章 設計風載重計算模式	25
4.1順風向設計風力模式	26
4.2橫風向計風力模式	29
4.3扭轉向計風力模式	30
第五章 風洞試驗之儀器配置與量測分析	32
5.1 逼近流場	32
5.2 風壓模型	34
5.3 參考風速量測	36
5.4 實驗設備	37
5.4.1 風洞	37
5.4.2 量測儀器	38
5.5 訊號處理及數據分析	41
5.5.1 風壓訊號之管線修正	41
5.5.2 數據採樣技術	42
5.5.3 數據分析之方法	43
第六章 風洞試驗結果與討論	45
6.1風力係數	45
6.1.1順風向	46
6.1.2橫風向	50
6.1.3扭轉向	54
6.2模型局部風力之特性	57
6.2.1順風向局部風力係數	58
6.2.2橫風向局部擾動風力係數	63
6.2.3扭轉向局部擾動風力係數	65
6.3風力頻譜	67
6.3.1順風向基底彎矩無因次化頻譜	67
6.3.2橫風向基底彎矩無因次化頻譜	68
6.3.3扭轉向基底扭矩無因次化頻譜	68
6.4空間上之相關函數特性	79
6.4.1 弦向風壓相關函數(chord-wise coherence)	79
6.4.2 迎風面與背風面間之相關函數	82
6.4.3徑向相關函數(Span-wise coherence)	84
第七章 設計風載重案例分析	87
7.1 結構物幾何尺寸與動力特性	87
7.2 設計風載重案例分析之風場條件	90
7.3 設計風載重案例分析結果	91
7.3.1 順風向基底風載重	91
7.3.2 橫風向基底風載重	95
7.3.3 扭轉向基底風載重	97
7.3.4 各分析之差異來源	99
第八章 結論與建議	102
8.1結論	102
8.2建議	106
參考文獻	107
 
圖 表 目 錄
表3-1 不同地況之指數率參數	12
表7-1 建築物相關幾何資料及動力特性	88
表7-2 不同地況之風場特性	90
表7-3 順風向本文模式與歷時分析風力誤差表	92
表7-4 順風向規範與模式計算(利用風洞紊流強度)誤差表	94
表7-5 順風向規範與模式計算(利用規範紊流強度)誤差表	94
表7-6 橫風向本文模式與歷時分析風力誤差表	95
表7-7 橫風向規範與本文模式計算風力誤差表	96
表7-8 扭轉向本文模式與歷時分析計算風力誤差表	97
表7-9 扭轉向本文模式與國內規範計算風力誤差表	99
表7- 10 增加紊流強度對載重影響比例表	100
表7- 11 改變總擾動風力對總風載重影響表	101

圖3-1 紊流長度尺度參數C、W和高度Z0關係圖	14
圖4-1 模型幾何尺寸及座標系統	25
圖5-1 逼近流場平均風速、紊流強度及長度尺度剖面	33
圖5-2 風壓模型幾何尺寸、風壓孔佈設位置及實驗配置	36
圖5-3 淡江大學一號邊界層風洞實驗室	38
圖5-4 IFA-300智慧型風速儀、探針及校正儀	38
圖5-5 壓力量測系統[文獻5-8]	39
圖5-6 壓力訊號處理系統(RADBASE3200)[文獻5-8]	40
圖5-7 64頻道壓力感應器模組[文獻5-8]	40
圖5-8 本文130cm風壓管之管線修正使用之頻率域轉換函數	42
圖6- 1 不同長寬比對順風向平均基底拖曳力係數之影響	48
圖6- 2 不同地況對順風向平均基底拖曳力係數之影響	49
圖6-3 深寬比對順風向擾動基底拖曳力係數之影響	50
圖6-4 深寬比對橫風向擾動基底拖曳力係數之影響	52
圖6-5 不同地況對橫風向擾動基底拖曳力係數之影響	53
圖6-6 深寬比對扭轉向擾動基底拖曳力係數之影響	55
圖6-7 不同地況對扭轉向擾動基底拖曳力係數之影響	56
圖6- 8 不同高寬比之迎風面局部平均風力係數	59
圖6-9 不同高寬比之背風面局部平均風力係數	60
圖6-10 不同高寬比之迎風面局部擾動風力係數	61
圖6-11 不同高寬比之背風面局部擾動風力係數	62
圖6-12 不同高寬比之橫風向局部擾動風力係數	64
圖6-13 不同深寬比之橫風向局部擾動風力係數( =6).	64
圖6-14 不同高寬比之扭轉向局部擾動風力係數	66
圖6-15 不同高寬比模型之順風向基底彎矩頻譜(地況A)	70
圖6-16 不同高寬比模型之順風向基底彎矩頻譜(地況B)	71
圖6-17 不同高寬比模型之順風向基底彎矩頻譜(地況C)	72
圖6-18 不同高寬比模型之橫風向基底彎矩頻譜(地況A)	73
圖6-19 不同高寬比模型之橫風向基底彎矩頻譜(地況B)	74
圖6-20 不同高寬比模型之橫風向基底彎矩頻譜(地況C)	75
圖6-21 不同高寬比模型之扭轉向基底扭矩頻譜(地況A)	76
圖6-22 不同高寬比模型之扭轉向基底扭矩頻譜(地況B)	77
圖6-23 不同高寬比模型之扭向基底扭矩頻譜(地況C)	78
圖6-24 迎風面與背風面個別之弦向相關函數 (2/3 H, BL-B).	81
圖6-25 不同模型之最佳指數衰減係數 (2/3 H)	81
圖6-26 不同模型之最佳指數衰減係數 (2/3 H)	81
圖6-27 迎風面與背風面間之相關函數(BL-B)	83
圖6-28 迎風面與背風面間之相關函數值Cy.	83
圖6-29 順風向與橫風向個別之徑向壓力相關函數 (BL-B)	85
圖6-30 順風向徑向壓力相關函數最佳之指數衰減係數CzD	86
圖6-31 橫風向徑向壓力相關函數最佳之指數衰減係數CzL	86
圖7-1 本文分析模式與結構歷時分析之基底順風向風載重比值	92
圖7-2 本文分析模式與國內風力規範之基底順風向風載重比值	93
圖7-3 本文分析模式與國內風力規範之基底順風向風載重比值	94
圖7-4 本文分析模式與結構歷時分析之基底橫風向風載重比值	95
圖7-5 本文分析模式與國內風力規範之基底橫風向風載重比值	96
圖7-6 本文分析模式與結構歷時分析之基底扭轉向風載重比值	97
圖7-7 本文分析模式與國內風力規範之基底扭轉向風載重比值	98
圖7- 8 增加紊流強度-載重增加率影響圖	100
參考文獻
第一章
[1-1]內政部營建署,(2006),「建築物耐風設計規範及解說」,營建雜誌社.

[1-2] ASCE (2002). “Minimum design loads for buildings and other structures.” ASCE 7-02, Reston, Va., USA.

[1-3] Architectural Institute of Japan. (1996) “Recommendations for loads on buildings.” , Japan.

第二章
[2-1] C. F. Cowdery, (1986), “Two topics of interesting experimental industrial aerodynamic”, symposium on wind effects on buildings and structures, National physical laboratory, Teddington.

[2-2] D. J. Cockrell and S. E. Lee, (1964), “Methods and consequences of atmospheric boundary layer simulation”, paper 13-AGARD conference proc. No.48 on aerodynamic of atmospheric shear flows, Munich.

[2-3] J. Counihan﹐(1970)﹐" Further Measurements in a Simulated Atmospheric Bounday Layer "﹐Atmospheric Environment﹐Vol.4﹐pp.159-275.

[2-4] J. Counihan﹐(1970)﹐" An Improved Method of Simulation Atmospheric Boundary Layer "﹐Atmospheric Environment﹐Vol.4﹐pp.159-275.

[2-5] J. Counihan﹐(1973)﹐" Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel "﹐Atmospheric Environment﹐Vol.7﹐pp.673-689.

[2-6] N. M. Standen﹐(1972)﹐" A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels"﹐Rep. LTR-LA-94﹐National Aeronautical Establishment﹐Ottawa﹐Canada.

[2-7] R. V. Barret, (1972), " A Versatile Compact Wind Tunnel for Industrial Aerodynamics"﹐Technical note﹐Atmospheric Environment﹐Vol.6﹐pp.491-495.

[2-8] N. J. Cook﹐(1973)﹐"On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel"﹐Atmospheric Environment﹐Vol.7﹐ pp.691-705.

[2-9] J. E. Cermak﹐J. A. Peterka﹐(1974)﹐ " Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections"﹐Center for Building Technology﹐IAT﹐National Bureau of Standards Washington﹐D.C.﹐June.

[2-10] Irwin,H.P.A.H., (1981), "The Design of Spire for Wind Simulation", J. of Wind Engineering and Industrial Aerodynamics, Vol.7 , p361-366.

[2-11] Jesen﹐M.﹐1958﹐"The Model Law for Phenomena in Natural Wind " Ingeioen International Edition﹐Vol.2﹐No.4﹐pp.121-123.

[2-12] R. E. Whitbread﹐(1963)﹐" Model Simulation of Wind Effects on Structures" Proceeding of the Conference on Wind Effects on Buildings and Structures﹐pp.284-306.

[2-13] J. M. Biggs﹐(1954)﹐" Wind Load on Truss Bridges"﹐ASCE﹐pp.879.

[2-14] A. Hunt﹐(1982)﹐" Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales " J. Wind Eng. Ind. Aero.﹐Vol. 10﹐pp.137-163.

[2-15] Y. Nakamura﹐Y. Ohya﹐(1984)﹐" The effects of turbulence on the mean flowpast two dimensional rectangular cylinders ", J. of Fluid. Mech.﹐Vol.149﹐pp.255-273.

[2-16] A. Townsend, (1956), “The structure of turbulent shear flow”, Cambridge Univ. Press. Pp. 315

[2-17] H. Nakaguchi, K. Hashimoto, and Muto, (1968), “An experimental study of aerodynamic drag of rectangular cylinders”, J. Japan Soc. Aero. Sci., Vol. 168, pp. 1-5

[2-18] J. D. Holmes , (2001), ”Wind loading of structures”, Spon Press, London.

[2-19]N. Lin, C. Letchford, Y. Tamura, B. Liang, O. Nakamura, (2005), “Characteristics of wind forces acting on tall buildings.”, Journal of Wind Engineering and Industrial Aerodynamics 93, 217–242.

[2-20] C. Scruton and E. W. E. Rogers, (1972), “Steady and unsteady wind loading of buildings and structures”, Philosophical Transactions Royal Society, A 269, pp. 353-383

[2-21] P. W. Bearman, (1980), “Aerodynamic loads on buildings and structures”, Wind engineering in the eightiex porc. CIRIA conf. London U.K.

[2-22] B. J. Vickery, (1966), “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream’’, J. of Fluid Mech.,Vol.25,pp.481-494.

[2-23] A. Kareem, 1990, “Measurement of pressure and force filed on building model in simulated atmospheric flows”, J. of Indust. Aerodynamic, vol.36,pp.589-599.

[2-24]N. Isyumov, and M. Pool, (1983), “Wind induced Torque on Squar and Rectangular Buildings Shapes” J. of Indust. Aerodynamic, vol.13,pp.183-196.

[2-25]呂銘洋, (1992), “以力平衡儀探討建築物在邊界層流場中所受風力特性’’,淡江大學土木工程研究所碩士論文

[2-26] B. E. Lee, (1975), “The effect of turbulence on the surface pressure field of a square prism.”, J. Fluid Mech., vol. 69, part 2, pp.263-282.

[2-27]A. Laneville, I. S. Gartshore, and G. V. Parkinson, (1977), “An explanation of some effects of turbulence on bluff bodies”, Proceedings forth international conference, wind effects on buildings and structures, Cambridge, U.K.

[2-28]P. W. Bearman, (1980), “Aerodynamic loads on buildings and structures”, Wind engineering in the eightiex porc. CIRIA conf. London U.K.

[2-29]Y. Nakamura,Y. Ohya, (1984), “The effect of turbulence on the mean fiow past two dimensional rectangular cylinders’’, J. of Fluid Mech.,Vol.149,pp.255-273.

[2-30]Gartshore, I .S December (1984), “Some effect of upstream turbulence on steady lift force imposed on prismatic two dimensional bodies”,Transactions of the ASME 418/Vol.106.

[2-32] B. J. Vickery, (1966), “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream’’, J. Of Fluid Mech.,Vol.25,pp. 481-494.

[2-33] A. Kareem, (1985), “Lateral-torsional motion of tall buildings to Wind Load”, J. Struct. Div., ASCE, Vol.111, No.11, pp.2479-2496.

[2-34] J. P. Huot, C. Rey, and H. Arbey, (1986), “Experimental analysis of the pressure field induced on a square cylinder by a turbulent flow”, J. Fluid Mech.   vol.162, pp. 283-298.

[2-35] 陳若華, (1990), “紊流強度及尺度對二維方柱所受擾動性風力之影響” ,淡江大學碩士論文

[2-36] J. P. Hout, C. Rey, H. Arbey, (1986), “Experimental Analysis of the Pressure Field Induced on Square Cylinder by Turbulent Flow”, J. of Fluid Mech. Vol.162,pp.283-298.

[2-37] A. Kareem, (1984), “Pressure Fluctuating on a Square Building Modeling in Boundary Layer Flows”, J. of Indust. Aerodynamic, vol.16,pp.17-41.

[2-38]張榮男, (1993), “矩斷面高層建築在紊流邊界層之氣動力研究”,淡江大學土木工程研究所碩士論文

第三章
[3-1] A. G. Davenport, (1956), "The Relationship of Wind Structure to Wind Loading", Proc. Symp. on Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty's Stationary Office, London, p53-102.

[3-2] American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.

[3-3] J. Counihan, "Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972 ", Atmospheric Environment, Vol. 9, 1975, pp. 871-905.

[3-4] A. G. Davenport, (1961), "The Spectrum of Horizontal Gustiness Near the Ground in High Winds", J. Royal Meteorol. Soc., 87 , p194-211.

[3-5] J. C. Kaimal, (1972), "Spectral Characteristics of Surface Layer Turbulence " J. Royal Meterol Soc. ﹐Vol.87﹐pp.563-589.

[3-6] J.D. Holmes, (2001), Wind loading of structures, Spon Press.

[3-7] A. Kareem, (1981), “Wind excited response of buildings in higher modes”, J. Struct. Div., ASCE, vol. 107, no. ST4, pp. 701-706.

[3-8] B. J. Vickery, (1970), "On the Reliability of Gust Loading  Factors ",Proc. Technical Meeting Concerning Wind Loads on Buildings and Structures,National Bereau of Standards  Building Science Series 30,Washington, D. C. .

[3-9] A. G. Davenport, (1968), “The dependence of wind load upon meteorological parameters.”, in proceedings of the international research seminar on wind effects on buildings and structures, University of Toronto Press, Toronto,  19-82.

第四章
[4-1]鄭啟明, 王人牧, (2012), “設計風載重資料庫之應用研究”, 內政部建築研究所委託研究報告.

[4-2]鄭啟明, 蔡明樹, (2006), “高層建築順風向設計風載重之修正研究”, 中華民國第八屆結構工程研討會, Sep. 1-3, 2006.

[4-3]鄭啟明, 蔡明樹, (2007), “高層建築順風向設計風載重分析模式與風洞實驗之研究”, 九十六年電子計算機於土木水利工程應用研討會.

[4-4]蔡明樹, (2008), “高層建築順風向等值靜態設計風載重之研究”, 淡江大學土木工程學系博士班博士論文, Jun. 2008.

第五章
[5-1]A. Kareem, (1990) ‘‘Measurements of pressure and force fields on building models in simulated atmospheric flows.’’ Journal of Wind Engineering and Industrial Aerodynamics 36, 589–599.

[5-2]Yin Zhou, Tracy Kijewski, Ahsan Kareem, (2003) “Aerodynamic Loads on Tall Buildings: Interactive Database”, Journal of Structural Engineering, Vol. 129, No. 3. 

[5-3]Shuguo Liang, Shengchun Liu, Q.S. Li, Liangliang Zhang, Ming Gu , (2002) ”Mathematical model of acrosswind dynamic loads on rectangular tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics 90  1757–1770.

[5-4]M. Gu , Y. Quan, (2004) “Across-wind loads of typical tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics 92 1147–1165

[5-5]Jenmu Wang, Chii-Ming Cheng, (2003) “Knowledge Mangement In A Wind Tunnel Laboratory: The WERC-TKU Knowledge Project.”, The International Wind Engineering Symposium, November 17-18, 2003, Tamsui, Taipei county, Taiwan.	

[5-6]鄭啟明, 吳重成, 2007, “高層建築耐風設計風力頻譜與風載重之修訂研究”, 內政部建築研究所研究計畫成果報告。

[5-7]鄭啟明, 陳瑞華, 2008, “建築物耐風設計風載重條文之修訂研究”, 內政部建築研究所研究計畫成果報告。

[5-8]“RAD3200 System Instruction and Service Manual”, Scanivalve Corp.

第六章
[6-1]G. Solari, (1993a) “Gust buffeting I: peak wind velocity and equivalent pressure.” Journal of Structural Engineering, ASCE, Vol. 110, 2, 365-382.

[6-2]G. Solari, (1993b) “Gust buffeting II: dynamic alongwind response.” Journal of Structural Engineering, ASCE, Vol. 110, 2, 383-398.

[6-3]J. Vellozzi and E. Cohen, (1968),“Gust response factors.”, J. Struct. Div., ASCE, 94, no. ST6, Proc. Paper 5980,  1295-1313.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信