§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2401200819240500
DOI 10.6846/TKU.2008.00814
論文名稱(中文) 薄膜萃取操作系統二維質傳之研究
論文名稱(英文) Two-Dimensional Mass Transfer Analysis in Membrane Extraction Systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系博士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 1
出版年 97
研究生(中文) 郭家展
研究生(英文) Jia-Jan Guo
學號 890360018
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2008-01-08
論文頁數 206頁
口試委員 指導教授 - 何啟東
委員 - 葉和明
委員 - 鄭東文
委員 - 何啟東
委員 - 蔡少偉
委員 - 莊瑞鑫
關鍵字(中) 增加質傳效率
萃取效率
二維質傳模型
關鍵字(英) Mass-Transfer Efficiency Enhancement Extraction Efficiency
Two-Dimensional Mass Transfer Model
第三語言關鍵字
學科別分類
中文摘要
薄膜萃取技術的原理乃是應用薄膜兩側溶質的濃度差為驅動力促使溶質通過薄膜,並選擇適當孔徑之薄膜以分離特定的溶質,達到分離純化之效果。目前已大量應用於酸類萃取與重金屬等分離純化程序。但由於傳統的分析方法只用簡化之數學模型,因此通常需要搭配實驗,才能準確的估算薄膜萃取器之萃取效率,可是由於萃取劑的價格而貴,因此需要花費不少金錢,因此建立一個不需要以實驗數據為輔助的數學模型,顯得更為重要。
本研究主要是討論薄膜萃取系統之解析解研究,可分為理論分析與實驗兩大部分。在理論分析部分包含具反應與不具反應之二維質傳理論,並針對平板型、套管型與中空纖維型三種不同薄膜透萃取器作解析,求出在不同操作之條件下,流體於管道中的溶質於萃取相和萃餘相的濃度分佈,並探討不同設計與操作參數對於質傳效率改善的影響。此外,實驗部分包括平板型與中空纖維型兩系統,其中平板實驗是利用甲基異丁酮萃取醋酸與二(2乙基己基)磷酸萃取銅離子,中空纖維實驗是利用己烷/丁烷共溶劑萃取大豆異黃酮與二(2乙基己基)磷酸萃取銅離子,其實驗結果乃用於印證理論分析之準確性。故本研究的貢獻在於(1)建立二維座標系統的薄膜萃取理論分析模型與(2)獲得溶質於萃取相和萃餘相在薄膜萃取器的濃度分佈。
英文摘要
The effects of design and operation parameters on solute mass transfer in three membrane extraction systems, say flat-plate module, tubular module and hollow fiber module, under the concurrent- and countercurrent-flow are investigated theoretically and experimentally.  The analytical solution of the two dimensional model is obtained using the separation variable and eigenfunction expansion in terms of power series.  The theoretical predictions were represented graphically with the mass-transfer Graetz number (volumetric flow rate), flow pattern, subchannel thickness ratio (permeable-barrier locations) and packing density as parameters and compared with those obtained by numerical approximation and experimental runs.  The solute concentration profile, average outlet concentration and mass-transfer efficiency enhancement of the membrane extraction system are also discussed.  The experiments in flat-plate module and hollow fiber module are performed to confirm the accuracy of the theoretical results, and the mathematical model derived in the present study was applied to soybean isoflavances to predict the separation efficiency.  A RP-HPLC (reversedphase high-performance liquid chromatography) system coupled with an UV detector were utilized to quantify five isoflavances in the extracts.  The effect on the amount of five isoflavances of the operation parameters in the cosolvent extraction systems under the hollow fiber modules is also delineated.
第三語言摘要
論文目次
目    錄
中文摘要		I
英文摘要		II
目錄		III
圖目錄		VII
表目錄		XI
符號說明		XII
第一章  緒論		1
    1-1溶液之性質與液-液分佈系統		3
        1-1-1溶液之ㄧ般性質		3
        1-1-2物質之溶解		4
        1-1-3有機溶劑的選擇		6
        1-1-4液-液界面		7
    1-2薄膜分離原理、構造、應用與優點		8
        1-2-1薄膜分離程序中的驅動力與流通量		8
    1-3研究動機		10
第二章  文獻回顧		12
    2-1格拉茲問題		12
    2-2薄膜萃取之研究		14
第三章  不具反應之二維質傳理論薄膜萃取器理論模型		18
    3-1 平板式薄膜萃取器		18
        3-1-2 順流操作		18
        3-1-2 逆流操作		26
    3-2 套管式薄膜萃取器		31
        3-2-1 順流操作			31
        3-2-2 逆流操作			37
    3-3中空纖維式薄膜萃取器		43
        3-3-1 順流操作		44
        3-3-2 逆流操作		46
    3-4質傳係數、萃取速率與萃取效率		48
第四章  具反應之二維質傳理論薄膜萃取器理論模型		50
    4-1 平板式薄膜萃取器		50
        4-1-1 逆流操作		50
        4-1-2 逆流操作		57
    4-2 套管式薄膜萃取器		62
        4-2-1 順流操作			62
        4-2-2 逆流操作			68
    4-3中空纖維式薄膜萃取器		74
        4-3-1 順流操作		75
        4-3-2 逆流操作		77
    4-4質傳係數、萃取速率與萃取效率		79
第五章  實驗		81
    5-1 實驗裝置圖		81
    5-2 實驗裝置與藥品		82
        5-2-1 不具反應之系統		82
        5-2-2 具反應之系統		85
    5-3 實驗參數		89
        5-3-1 平板型操作		89
        5-3-2 中空纖維型操作		89
    5-4實驗步驟		89
        5-4-1 平板型操作		89
        5-4-2 中空纖維型操作		90
5-5 應用		90
        5-5-1 何謂類黃酮		90
        5-5-2 大豆異黃酮		91
        5-5-3 大豆異黃酮的藥理功效		93
        5-5-4 傳統由大豆粉提煉異黃酮之方法		94
        5-5-5 實驗部份		95
    5-6實驗誤差分析		102
第六章 結果與討論		104
    6-1 平板型薄膜萃取器		104
        6-1-1 不具反應之系統		104
        6-1-2具反應之系統		107
    6-2 套管型薄膜萃取器		108
        6-2-1 不具反應之系統		108
        6-2-2 具反應之系統		109
    6-3 中空纖維型薄膜萃取器		110
        6-3-1 不具反應之系統		110
        6-3-2 具反應之系統		111
        6-3-3 應用		113
第七章 總結		161
    7-1理論解析方法		161
    7-2創見與貢獻		161
參考文獻		163
附錄(一)  係數求解		172
附錄(二)  正交性質		185
附錄(三)  積分公式		195
附錄(四)  個人資料		198

圖目錄
圖1-3.1	質傳理論架構圖	11
圖3-1-1.1	平板式順流型薄膜萃取器裝置圖	19
圖3-1-2.1	平板式逆流型薄膜萃取器裝置圖	27
圖3-2-1.1	套管式順流型薄膜萃取器裝置圖	31
圖3-2-2.1	套管式逆流型薄膜萃取器裝置圖	37
圖4-1-1.1	平板式順流型薄膜萃取器裝置圖	51
圖4-1-2.1	平板式逆流型薄膜萃取器裝置圖	58
圖4-2-1.1	套管式順流型薄膜萃取器裝置圖		62
圖4-2-1.1	套管式逆流型薄膜萃取器裝置圖		68
圖5-1.1	平板型薄膜萃取器裝置圖	81
圖5-1.2	中空纖維薄膜萃取器裝置圖	81
圖5-5-4.1	大豆異黃酮的化學結構	92
圖6-1-1.1	順流操作在接觸器內不同位置時的濃度分佈	121
圖6-1-1.2	逆流操作在接觸器內不同位置時的濃度分佈	122
圖6-1-1.3	平板型薄膜萃取器之萃取相無因次出口濃度與Gza之關係	123
圖6-1-1.4	平板型薄膜萃取器之萃取相無因次出口濃度與Gzb之關係	124
圖6-1-1.5	平板型薄膜萃取器之萃取速率與Gza之關係	125
圖6-1-1.6	平板型薄膜萃取器之萃取效率與Gzb之關係	126
圖6-1-1.7	平板型薄膜萃取器之平均謝塢數與Gzb之關係	127
圖6-1-1.8	平板型薄膜萃取器之平均謝塢數與Gza之關係	128
圖6-1-1.9	平板型薄膜萃取器之數學模型與實驗比較圖		129
圖6-1-1.10	平板型薄膜萃取器之解析解與數值解與實驗比較圖	130
圖6-1-2.1	順流操作在接觸器內不同位置時的濃度分佈	131
圖6-1-2.2	逆流操作在接觸器內不同位置時的濃度分佈	132
圖6-1-2.3	平板型薄膜萃取器之萃取相無因次出口濃度與Gza之關係	133
圖6-1-2.4	平板型薄膜萃取器之萃取速率與Gza之關係	134
圖6-1-2.5	平板型薄膜萃取器之數學模型與實驗比較圖	135
圖6-2-1.1	套管型順流操作在接觸器內不同位置時的濃度分佈	136
圖6-2-1.2	套管型逆流操作在接觸器內不同位置時的濃度分佈	137
圖6-2-1.3	套管型薄膜萃取器之萃取相無因次出口濃度與Gza之關係	138
圖6-2-1.4	套管型薄膜萃取器之萃取速率與Gza之關係	139
圖6-2-1.5	套管型薄膜萃取器之平均謝塢數與Gzb之關係	140
圖6-2-2.1	套管型順流操作在接觸器內不同位置時的濃度分佈	141
圖6-2-2.2	套管型逆流操作在接觸器內不同位置時的濃度分佈	142
圖6-2-2.3	套管型薄膜萃取器之萃取相無因次出口濃度與Gza之關係	143
圖6-2-2.4	套管型薄膜萃取器之萃取速率與Gza之關係	144
圖6-3-1.2	中空纖維型順流操作在接觸器內不同位置時的濃度分佈	145
圖6-3-1.2	中空纖維型逆流操作在接觸器內不同位置時的濃度分佈	146
圖6-3-1.3	中空纖維型之萃取相無因次出口濃度與Gza之關係	147
圖6-3-1.4	中空纖維型之萃取速率與Gza之關係		148
圖6-3-1.5	中空纖維型之平均謝塢數與Gzb之關係	149
圖6-3-2.1	中空纖維型順流操作在接觸器內不同位置時的濃度分佈	150
圖6-3-2.2	中空纖維型順流操作在接觸器內不同位置時的濃度分佈	151
圖6-3-2.3	中空纖維型之萃取相無因次出口濃度與Gza之關係	152
圖6-3-2.4	中空纖維型之萃取速率與Gza之關係	153
圖6-3-2.5	中空纖維型之數學模型與實驗比較圖	154

圖6-3-3.1	
中空纖維型逆流操作對大豆異黃酮成分Daidzin在接觸器內不同位置時的濃度分佈	



155
圖6-3-3.2	中空纖維型逆流操作對大豆異黃酮成分Daidzein在接觸器內不同位置時的濃度分佈	156
圖6-3-3.3	中空纖維型對大豆異黃酮成分Daidzin之萃取相無因次出口濃度與Gza之關係	157
圖6-3-3.4	中空纖維型對大豆異黃酮成分Daidzein之萃取相無因次出口濃度與Gza之關係	158
圖6-3-3.5	中空纖維型對大豆異黃酮成分Daidzin之數學模型與實驗比較	159
圖6-3-3.6	中空纖維型對大豆異黃酮成分Daidzein之數學模型與實驗比較圖	160

表目錄
表1-2-1.1	常見的現象方程式	9
表2-2.1	液膜應用在液液萃取之發展歷程	16
表5-4-5.1	大豆異黃酮之HPLC分析條件	100
表5-4-5.2	固-液萃取之五種大豆異黃酮的含量	101
表5-4-5.3	共溶劑對五種大豆異黃酮的分配係數	102
表6-1-1.1	不具反應之平板型薄膜萃取器特徵質數目對萃餘相無因次平均出口濃度之比較值	115
表6-1-2.1	具反應之平板型薄膜萃取器特徵質數目對萃餘相無因次平均出口濃度之比較值	116
表6-2-1.1	不具反應之套管型薄膜萃取器特徵質數目對萃餘相無因次平均出口濃度之比較值	117
表6-2-2.1	具反應之套管型薄膜萃取器特徵質數目對萃餘相無因次平均出口濃度之比較值	118
表6-3-1.1	不具反應之中空纖維型薄膜萃取器特徵質數目對萃餘相無因次平均出口濃度之比較值	119
表6-3-2.1	具反應之中空纖維型薄膜萃取器特徵質數目對萃餘相無因次平均出口濃度之比較值	120
參考文獻
1.	W. S. W. Ho and K. K. Sirkar, Membrane Handbook, New York: Van Nostrand Reinhold, 1992.
2.	R. Govind and N. Itoh, Membrane Reactor Technology, New York: American Institute of Chemical Engineers, 1989.
3.	W. K. Wang, Membrane Separations in Biotechnology, New York: M. Dekker, 2001.
4.	A. E. Fouda, Membrane Separations in Chemical Engineering, New York : American Institute of Chemical Engineers, 1989.
5.	Z. Qi and E. L. Cussler, Broine Recovery with Hollow Fiber Gas Membrane, J. Membrane Sci., 24, 43-57 (1985).
6.	H. M. Yeh, and Y. S. Shu, Analysis of Membrane Extraction Through Rectangular Mass Exchangers, Chem. Eng. Sci. 54, 897(1999).
7.	H. C. Van Der Horst and J. H. Hanemaaijer, Cross-flow Microfiltration in the Food Industry. State of the Art, Desalination, 77, 235(1990).
8.	R. Parasad and K. K. Sirkar, Hollow Fibers Solvent Extraction: Performances and Design, J. Membrane Sci., 50, 153(1990).
9.	H. M. Yeh, Y. Y. Peng and Y. K. Chen, Solvent Extraction through a Double-pass Parallel-plate Membrane Channel with Recycle, J. Membrane Sci., 163, 177 (1999).
10.	P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639 (2002).
11.	L. E. Applegate, Membrane Separation Processes, Chem. Eng., 91, 64 (1984).
12.	P. M. Bungay, H. K. Lonsdale and M. N. De Pinho, Synthetic Membrane: Science, Engineering and Applications, D. Redel Publishing Company, Holland, 1986.
13.	M. Abbas, and V. P. Tyagi, Analyses of a Hollow-Fiber Artificial Kidney Performing Simultaneous Dialysis and Ultrafiltration, Chem. Eng. Sci., 42(1), 133(1987).
14.	D. O. Cooney, S. S. Kim, and E. J. Davis, Analyses of Mass Transfer in Hemodialyzers for Laminar Blood Flow and Homogeneous Dialysate Chem. Eng. Sci., 29, 1731(1974).
15.	J. M. Zheng, Y. Y. Xu, and Z. K. Xu, Shell Side Mass Transfer Characteristics in a Parallel Flow Hollow Fiber Membrane Module Sep. Sci & Tech., 38(6), 1247(2003).
16.	J . Happel, Viscous Flow Relative to Arrays of Cylinders, AIChE J., 5, 174(1959).
17.	G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6, 179(1960).
18.	T. L. Perelman, On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer, 3, 293(1961).
19.	A. P. Hatton and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in an Annulus, Int. J. Heat Mass Transfer, 5, 973(1962).
20.	R. J. Nunge and W. N. Gill, Analysis of Heat or Mass Transfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer, 8, 873(1964).
21.	R. J. Nunge and W. N. Gill, An Analytical Study of Laminar Counterflow Double-Pipe Heat Exchangers. AIChE J., 12, 279(1966).
22.	C. J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, AIChE J., 11, 690(1965).
23.	E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51, 562(1973).
24.	M. A. Ebadian and H. Y. Zhang, An Exact Solution of Extend Graetz Problem with Axial Heat Conduction, Int. J. Heat Mass Transfer, 32, 1709(1989).
25.	X. Yin and H. H. Bau, The Conjugated Graetz Problem with Axial Conduction, Journal of Heat Transfer, 118, 428(1996).
26.	C. D. Ho, H. M. Yeh and W. S. Sheu, An Analytical Study of Heat and Mass Transfer through a Parallel-Plate Channel with Recycle, Int. J. Heat Mass Transfer, 44, 2589(1998).
27.	W. J. Ward and W. L. Robb, Carbon Dioxide-Oxygen Separation: Facilitated Transport of Carbon Dioxide Across a Liquid Film. Science, 156, 1481(1967).
28.	J. S. Schultz, J .D. Goddard and S. R. Suchdeo, Facilitated Transport vis Carrier-Mediated Diffusion in Membranes: Part I Mechanistic Aspects, Experimental Systems and Characteristic Regimes. AIChE J., 20, 417(1974).
29.	Y. Kuo and H. P. Gregor, Acetic Acid Extraction by Solvent Membrane. Sep. Sci. Technol., 18, 421(1983).
30.	W. C. Babcock, R .W. Baker, J. W. Brooke, D. J. Kelly, E. D. Lachapelle and H. K. Lonsdale, Coupled Transport Membranes for Metal Recovery -Phase II, National Technical Information Service, PB81-179947(1980).
31.	E. M. Sparrow and A. L. Loeffler, Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array, AIChE J., 5, 325(1959).
32.	V. Chen and M. Hlavacek, “Application of Voronoi Tessellation for Modeling Randomly Packed Hollow-Fiber Boundles,” AIChE J., 40, 606 (1994).
33.	L. Bao and G. G. Lipscomb, Mass Transfer in Axial Flows through Randomly Packed Fiber Boundles with Constant Wall Concentration, J. Membr. Sci., 204, 207(2002).
34.	Y. Wang, F. Chen, Y. Wang, G. Luo and Y. Dai, Effect of Random Packing on Shell-Side Flow and Mass Tansfer in Hollow Fiber Module Described by Normal Distribution Function, J. Membr. Sci., 216, 81(2003).
35.	Z. Liao, C. K. Poh, P. A. Hardy, W. R. Clark and D. Gao, A Numerical and Experimental Study of Mass Transfer in the Artificial Kidney, Trans. ASME, 125, 472(2003).
36.	H. M. Yeh, S. W. Tsai and M. C. Hsiey, On the Examination of Recycle on Heat (and Mass) Transfer in Concentric Tubes, Can. J. Chem. Eng., 66, 258(1988).
37.	J. M. Zheng, Z. K. Xu, J. M. Li, S. Y. Wang and Y. Y. Xu, Influence of Random Arrangement of Hollow Fiber Membranes on Shell Side Mass Transfer Performance: a Novel Model Prediction, J. Membr. Sci., 236, 145(2004).
38.	M. Labecki, J. M. Piret and B. D., Bowen, Two-Dimensional Analysis of Fluid Flow in Hollow-Fiber Modules, Chem. Eng. Sci., 50, 3369(1995).
39.	M. Labecki, B. D., Bowen and J. M. Piret, Two-Dimensional Analysis of Protein Transport in the Extracapillary Space of Hollow-Fiber Bioreactors, Chem. Eng. Sci., 51, 4197(1996).
40.	C. D. Ho and W. Y. Yang, Heat transfer of conjugated Graetz problems with laminar counterflow in double-pass concentric circular heat exchangers, Int. J. Heat Mass Transfer, 48, 4474(2005). 
41.	R. O. C. Guedes and M. N. Ozisik, Conjugated Turbulent Heat Transfer with Axial Condition in Wall and Convection Boundary Conditions in a Parallel-Plate Channel, Int. J. Heat and Fluid Flow, 13, 322(1992).
42.	E. J. Davis and S. Venkatesh, The Solution of Conjugated Multiphase Heat and Mass Transfer Problems, Chem. Eng. Sci., 34, 775(1978).
43.	E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-I General Formalism and a Class of Solid-Fluid Problems, Chem. Eng. Sci., 36, 1381(1981).
44.	E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-II Fluid-Fluid Problems, Chem. Eng. Sci., 36, 1393(1981).
45.	M. R. Doshi, P. M. Daiya and W. N. Gill, Three Dimensional Laminar Dispersion in Open and Close Rectangular Conduits, Chem. Eng. Sci., 33, 795(1978).
46.		C. W. Tan and C. J. Hsu, Low Peclet Number Mass Transfer in Laminar Flow Through Circular Tubes, Int. J. Heat Mass Transfer, 15, 2187(1972).
47.	A. Pozzi and M. Lupo, The Coupling of Conduction with Forced Convection in Graetz Problems, Journal of Heat Transfer, 112, 1535 (1990).
48.	V. Kumar and S. N. Upadhyay, “Computer Simulation of Membrane Process: Ultrafiltration and Dialysis Units,” Computers and Chemical Engineering, 23, 1713(2000).
49.	H. M. Yeh, T. W. Chen, and Y. J. Chen, “Mass Transfer for Dialysis with Ultrafiltration Flux Declined in Cross-Flow Membrane Modules”, J. Chem. Eng. Jpn., 33, 440 (2000).
50.	Z. Liao, C.K. Poh, Z. Huang, P.A. Hardy, W.R. Clark and D. Gao, “A Numerical and Experimental Study of Mass Transfer in the Artificial Kidney,” Transaction of the ASME, 125, 472(2003).
51.	A. S. Berman, “Laminar Flow in Channels with Porous Walls,” J. Applied Physics, 24(9), 1232(1953).
52.	S. W. Yuan, A. B. Finkelstein, and N.Y. Brooklyn, “Laminar Pipe Flow with Injection and Suction through a Porous Wall,” Transaction of the ASME, 78, 719(1956).
53.	C. D. Ho, H. M. Yeh, and S.C. Chiang, “A Study of Mass Transfer Efficiency in a Parallel-Plate Channel with External Refluxes,” Chem. Eng. J., 85. 207(2002).
54.	C. D. Ho and J. J. Guo, “An Analytical Study of Separation Efficiency on the Enrichment of Heavy Water in Double-Flow Thermal-Diffusion Columns with Flow-Rate Fraction Variations,” Chem. Eng. Commun., 192. 424(2005).
55.	R. S. Juang, J. D. Chen and H.C. Huan, “Dispersion-Free Membrane Extraction: Case Studies of Metal Ion and Organic Acid Extraction,” J. Membrane Sci., 165, 59(2000).
56.	S. H. Lin and R. S. Juang, “Simultaneous Extraction and Stripping of EDTA-Chelated Metallic Anions with Aliquat 336 in Hollow Fiber Contactors,” Chemical Engineering Science, 57, 143(2002).
57.	P. C. H. Hollman, M. G. L. Hertog and M. B. Katan, Analysis and Health of flavomoids, Food Chemistry, 57, 43(1996).
58.	T. B. Clarkson, M. S. Anthony and C. L. Hughes, Estrogenic Soybean Isoflavones and Chromic Disease (Risks and Benefits), TEM, 6, 11(1995).
59.	S. Kudou, M. Shimoyamada, T. Imura, T. Uchida and K. Okubo, A New Isoflavone Glycoside in Soybean Seeds (Glycine max Merrill), Glycitein 7-O-β-D-6’’-O-acetyl)-Glucopyranosid, Agric. Biol. Chem., 55, 859(1991).
60.	A. C. Eldridge and W. F. Kwolek, Soybean Isoflavonces: Effect of Environment and Variety on Composition, J. Agric Food Chem., 31, 394(1983).
61.	H. J. Wang and P. A. Murphy, Isoflavone Content in Commercial Soybean Food, J. Agric Food Chem., 42, 1666(1994a).
62.	H. J. Wang and P. A. Murphy, Isoflavone Composition of American and Japanese Soybean in Iowa: Effect of Variety, Crop, year and Location, J. Agric Food Chem., 42, 1674(1994b).
63.	M. Naim, B. Gestetner, Y. Birk and A. Bondi, A New Isoflavone from Soya Beans, Phytochemistry, 12, 169(1973).
64.	N. Ohta, G. Kuwata, H. Akahori and T. Watanabe, Isolation of a New Isoflavone acetyl Glucoside, 6’’-O-acetyl genistein, from Soybeans, Agric Biol. Chem., 44, 469(1980).
65.	H. J. Wang and P. A. Murphy, Mass Balance Study of Isoflavones during Soybean Process, J. Agric Food Chem., 44, 12377(1996).
66.	M. Naim, B. Gestetner, S. Zilkah, Y. Birk and A. Bondi, Soybean Isoflavone. Characterization, Determinaton and Antifungal Activity, J. Agric Food Chem., 22, 806(1974).
67.	A. S. Huang, O. A. L. Hsieh and S. S. Chang, Characterization of the Nonvolatile minor Constituents Responsible for the Objectionable Taste of Defatted Soybean Flour, J. Food Science, 47, 19(1981).
68.	M. Matsuura, A. Obata and D. Fukushima, Objectionable Flavor of Soy Milk Developed during the Soaking of Soybeans and its Control, J. Food Science, 54, 602(1989).
69.	M. Fukutake, M. Takahashi, K. Ishida, H. Kawamura, T. Sugimura and K. Wakabayashi, Quantification of Genistein and Genistin in Soybeans and Soybean Products, Food and Chem. Toxicol., 34, 457(1996).
70.	M. Messina, Soyfoods and Soybean Phyto-oestrogens (Isflavones) as Possible Alternatives to Hormone Replacement Therapy (HRT), European J. Cancer, 36, S71(2000).
71.	M. J. Tikkanen and H. Adlercreutz, Dietary Soy-Derived Isoflavone Phytooestrogens-Could They Have a Role in Coronary Disease Prevention ?, Biochemical Pharmacology, 60, 1(2000).
72.	L. Coward, N, C. Barnes, K. D. R. Stechell and S. Barnes, Genistein, Daidzin and their β-Glycoside Conjugates: Antitumor Isoflavones in Soybean Foods from American and Asian dielts, J. Agric Food Chem., 41, 1961(1993).
73.	T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S. I. Watanabe, N. Itoh, M. Shibuya and Y. Fukami, Genistein, A Specific Inhibitor of Tyrosine-Specific Protein Kinases, J. Biological Chemistry, 262, 5592(1987).
74.	M. Naim, B. Gestetner, A. Bondi and Y. Birk, Antioxidative and Antihemolytic Activities of Soybean Isoflavones, J. Agric Food Chem., 24, 1174(1976).
75.	H. Wei, L. Wei, K. Frenkel, R. Brown and S. Barnes, Inhibition of Tumor Promoter-Induced Hydrogen Hydrogen Peroxide Formation in vitro and in vivo by Genistein, Nutrition and Cencer, 20, 1(1993).
76.	李樂 譯,大豆食療新革命-The Simple Soybean and Your Health,台北市:生活醫學書房,1997年5月第一版。
77.	程沅,大豆中的抗癌成分,國外醫學-衛生學分冊,26:224(1999)。
78.	李忠平、溫源壽、崔新菊、羅承紅,大豆甘元的合成方法-Studies on the Synthesis of m-Chlorobenzoic Acid,河北化工,1,11(1999)。
79.	江文德,簡介大豆中的異黃酮素-Introduction of Isoflavones in Soybean,食品工業月刊,30:6(1998) 。
80.	B. L. Zheng, J. A. Yegge, D. T. Bailey and J. L. Sullivan, Process for the Isolation and Purification of Isoflavones, U. S. patent, 5679806(1997).
81.	Y. Ozawa, Y Kouda, K. Kobayashi and Y Morinaga, A Composition Aomprising Soybean Isoflavones and for the production Thereof, E. patent 1038531 A2(2000).
82.	R. J. Moffat, Describing the Uncertainties in Experimental Results, Exp. Thermal Fluid Sci. 1, 3(1988).
83.	C. R. Wike and p. Chang, Correlation of Diffusion Coefficients in Dilute Solution, AIChE J., 1, 264(1955).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信