淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2401200803250100
中文論文名稱 不同尺寸之氧化鋅量子點電子結構與電子聲子交互作用
英文論文名稱 Size dependence of electronic structures and Electron-Phonon Coupling in ZnO quantum dots
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 96
學期 1
出版年 97
研究生中文姓名 劉毓凡
研究生英文姓名 Yvonne Low
學號 694180257
學位類別 碩士
語文別 中文
口試日期 2008-01-19
論文頁數 55頁
口試委員 指導教授-彭維鋒
委員-張經霖
委員-李志甫
中文關鍵字 結晶方向性  電子-聲子交互作用  拉曼光譜  量子點  X光吸收光譜 
英文關鍵字 crystal orientation  Electron-Phonon interactions  Raman spectra  quantum dots  XANES 
學科別分類 學科別自然科學物理
中文摘要 利用X光吸收光譜(X-ray Absorption Spectroscopy, XAS)、光激發螢光光譜(Photoluminescence Spectroscopy, PL)以及拉曼光譜(Raman Spcetroscopy)來研究不同尺寸之氧化鋅量子點的電子結構與光學特性。在拉曼光譜中,第一拉曼縱向光學聲子(the first-order Raman spectra of longitudinal optical mode, 1LO)與其泛頻(overtones, 2LO)之強度比值,2LO/1LO隨著量子點的尺寸變大而增加,與電子–聲子耦合的強度有關聯。在O K-edge X光近邊吸收光譜中也有相同的結果,即O 2pπ(Iπ)與2pσ(Iσ)軌道之吸收強度比值亦隨量子點尺寸變大而增加。經由電子–聲子耦合與X光吸收近邊光譜之研究結果,推論出氧化鋅量子點的電隅極躍遷應與c軸同向。
英文摘要 The electronic structures and optical properties of various sizes of ZnO quantum dots (QDs) were studied using x-ray absorption, photoluminescence and Raman spectroscopy. The increase in the intensity ratio of the first-order Raman spectra of longitudinal optical (1LO) modes and their overtones (2LO), such as 2LO/1LO, which is related to the strength of Electron-Phonon Coupling (EPC), increased with the size of the QDs. This EPC behavior is also associated with the O K-edge x-ray absorption near-edge structure which increase with the intensity ratio of the O 2pπ(Iπ) and 2pσ(Iσ) orbitals as the sizes of the QDs increased, suggesting that the c-axis of the wurtzite ZnO QDs is the unique axis in the dipole transition.
論文目次 第一章 緒論 1
(一) 電子–聲子耦合 3
(二) 表面積及體積比 4
(三) 氧化鋅的晶體結構與相關特性 6
第二章 X光吸收光譜簡介 9
(一) 吸收邊緣與E0值 11
(二) X光吸收近邊緣結構 12
(三) 延伸X光吸收精細結構 13
(四) 實驗方法 17
(五) 數據分析 21
第三章 氧化鋅量子點電子與原子結構之研究 25
(一) 研究目的 25
(二) 樣品製備與量測 25
(三) 實驗數據分析與討論 32
第四章 結論 50
參考文獻 51
圖表目錄
圖1-1 侷限不同維度之半導體能態密度··············· 1
圖1-2 電子聲子交互作用示意圖···················································· 5
圖1-3 電子聲子碰撞過程································································ 5
圖1-4 (a) HCP 結構,(b) ZnO Wurtzite 結構·································· 8
圖2-1 光子能量與典型物質吸收截面關係圖································· 10
圖2-2 XANES 與EXAFS 分界圖··················································· 15
圖2-3 光電子平均自由路徑與能量關係圖····································· 15
圖2-4 單一散射與多重散射之圖像················································ 16
圖2-5 射出電子受鄰近原子的背向散射而產生干涉現象············· 16
圖2-6 X 光吸收光譜實驗示意圖···················································· 18
圖2-7 三種光譜量測方法································································ 18
圖2-8 X 光吸收光譜之數據分析流程············································· 21
圖2-9 選擇能量底限E0 值的不同方法··········································· 22
圖3-1 氧化鋅量子點的顯微影像···················································· 29
圖3-2 ZnO QDs 的X 光繞射譜圖··················································· 31
圖3-3 歸一化後ZnO QDs 的Zn K-edge XANES··························· 35
圖3-4 Zn K-edge EXAFS 傅立葉轉換圖、k3χ(k)圖與擬合結果·· 36
圖3-5 Zn K-edge EXAFS 擬合之德拜–沃勒因子比較圖············· 37
圖3-6 歸一化後ZnO QDs 的Zn L3-edge XANES·························· 40
圖3-7 歸一化後ZnO QDs 的PL 譜圖············································ 41
圖3-8 歸一化後ZnO QDs 的O K-edge XANES ···························· 47
圖3-9 ZnO QDs 的Raman 譜圖······················································ 48
圖3-10 O K-edge、Zn L3-edge XANES 及Raman 比較圖··············· 49
參考文獻 1. R. C. Ashoori, Nature 379, 413 (1996).
2. P. L. Mceuen, Science 278, 1729 (1997).
3. G. Scamarcio, V. Spagnolo, G. Ventruti, M. Lugará, and G. C. Righini, Phys. Rev. B 53, R10489 (1996).
4. H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 78, 2464 (2001).
5. S. Kalliakos, X. B. Zhang, T. Taliercio, P. Lefebvre, B. Gil, N. Grandjean, B. Damilano, and J. Massies, Appl. Phys. Lett. 80, 428 (2002).
6. H. M. Cheng, K. F. Lin, H. C. Hsu, C. J. Lin, L. J. Lin, and W. F. Hsieh, J. Phys. Chem. B 109, 18385 (2005).
7. H. M. Cheng, K. F. Lin, H. C. Hsu, and W. F. Hsieh, Appl. Phys. Lett. 88, 261909 (2006).
8. K. F. Lin, H. M. Cheng, H.C. Hsu, and W. F. Hsieh, Appl. Phys. Lett. 88, 263117 (2006).
9. C. W. Chen, K. H. Chen, C. H. Shen, A. Ganguly, L. C. Chen, J. J. Wu, H. I. Wen, and W. F. Pong, Appl. Phys. Lett. 88, 241905 (2006).
10. P. C. Chang, C. J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Appl. Phys. Lett. 90, 113101 (2007).
11. M.-H. Tsai, Z. F. Jhang, J. Y. Jiang, Y. H. Tang, and L. W. Tu, Appl. Phys. Lett. 89, 203101 (2006).
12. R. A. Rosenberg, G. K. Shenoy, L.-C. Tien, D. Norton, S. Pearton, X. H. Sun, and T. K. Sham, Appl. Phys. Lett. 89, 093118 (2006).
13. V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, Phys. Rev. B 73, 165317 (2006).
14. B. Kumar, H. Gong, S. Y. Chow, S. Tripathy, and Y. Hua, Appl. Phys. Lett. 89, 071922 (2006).
15. S. C. Ray, Y. Low, H. M. Tsai, C. W. Pao, J. W. Chiou, S. C. Yang, F. Z. Chien, W. F. Pong, M.-H. Tsai, K. F. Lin, H. M. Cheng, W. F. Hsieh, and J. F. Lee, Appl. Phys. Lett. 91, 262101 (2007).
16. K. Huang and A. Rhys, Proc. R. Soc. London, Ser. A 204, 406 (1950).
17. B. S. Zou, and S. S. Xie, 科學通報 45, 2267 (2000).
18. T. Takagahara, J. Lumi. 70, 129 (1996).
19. W. S. Li, K. D. Zhu, Comm. Theo. Phys. 29, 343 (1998).
20. S. Y. Wu, W. H. Li, 物理雙月刊 28, 860 (2006).
21. Y. C. Lee, "Effect of Biaxial Stress on ZnO Thin Films and in-Plane Optical Gain", unpublished master’s thesis, National Chiao Tung University, Hsinchu (2004).
22. K. F. Lin, “Department of Photonics and Instutute of Electro-Optical Engineering”, unpublished master’s thesis, National Chiao Tung University, Hsinchu (2005).
23. "X-Ray Absorption : Principles, Application, Techniques of EXAFS, SEXAFS, SEXAFS and XANES" , edited by D. C. Koningsberger, and R. Prins, Chem. Analysis 92 (Wiley, New York, 1988).
24. D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27, 1024 (1971).
25. "NEXAFS Spectroscopy" , edited by Joachim Stöhr (Springer-Verlag, New York, 1992).
26. E. A. Stern, M. Newville, B. Ravel, Y. Yaceby, and D. Haskel, Phys. B. 208 & 209, 117 (1995).
27. "EXAFS and Near edge Structure" , edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay, Heidelberg, 1983).
28. "EXAFS , Basic Pri nciple and Data Analysis" , edited by Boon K. Teo (Springer-Verlag, Berlin, 1986).
29. "安全訓練手冊", 新竹同步輻射(2001).
30. C. S. Hwang, F. Y. Lin, C. H. Lee, K. L. Yu, P. K. Tseng, J. T. Lin, H. C. Tseng, W. C. Su, J. R. Chen, T. L. Lin, and W. F. Pong, Rev. Sci. Instrum. 69, 1230 (1998).
31. "X射線吸收精細結構及其應用", 王其武編著 (科學出版社, 北京, 1994).
32. J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Phog, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004).
33. J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Phog, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 84, 3462 (2004).
34. H. F. McMurdie M. C. Morris, E. H. Evans, B. Paretzkin, W. Wong-Ng, and C. R. Hubbard, Powder Diffraction 1, 76 (1986).
35. T. Mizoguchi, M. Yoshiya M, J. Li, F. Oba, I. Tanaka, and H. Adachi, Ultramicroscopy 86, 363 (2001).
36. P. Schröer, P. Krüger, and J. Pollmann, Phys. Rev. B 47, 6871 (1993).
37. E. Y. M. Lee, N. Tran, J. Russell, and R. N. Lamp, J. Appl. Phys. 92, 2996 (2002).
38. S.-W. Han, H.-J. Yoo, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 86, 021917 (2005).
39. A. L. Ankudinov, B. Ravel, J. J. rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).
40. M. Faiz, N. Tabet, A. Mekki, B. S. Mun, and Z. Hussain, Thin Solid Films 515, 1377 (2006).
41. K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).
42. S. W. Han, H. J. Yoo, S. J. An, J. Yoo, and G. C. Yi, Appl. Phys. Lett. 86, 021917 (2005).
43. A. Singha, P. Dhar, and Anushree Roy, Am. J. Phys. 73, 224 (2005)
44. V. A. Fonoberov and A. A. Balandin, J. Nanoelectronics and Optoelectronics 1, 19 (2006).
45. L. GuO, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. L. Wang, Appl. Phys. Lett. 76, 2901 (2000).
46. Ü. Özgür, Ya. I Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys 98, 041301 (2005).
47. P. C. Cang, C. J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Appl. Phys. Lett. 90, 113101 (2007).
48. R. A. Rosenberg, G. K. Shenoy, L.-C. Tien, D. Norton, S. Pearton, X. H. Sun, and T. K. Sham, Appl. Phys. Lett. 89, 093118 (2006).
49. J. G. Chen, B. Fruhberger, and M. L. Colaianni, J. Vac. Sci. Technol. A 14, 1668 (1996).
50. J. H. Guo, L. Vayssieres, C. Persson, R. Ahuja, B. Johansson, and J. Nordgren, J. Phys.: Condens. Matter 14, 6969 (2002).
51. J. F. Scott, Phys. Rev. B 2, 1209 (1970).
52. R. P. Wang, G. Xu, and P. Jin, Phys. Rev. B 69, 113303 (2004).
53. R. H. Callender, S. S. Sussman, M. Selders, and R. K. Chang, Phys. Rev. B 7, 3788 (1973).
54. S. Kalliakos, X. B. Zhang, T. Taliercio, P. Lefebvre, B. Gil, N. Grandjean, B. Damilano, and J. Massies, Appl. Phys. Lett. 80, 428 (2002).
55. T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Phys. Rev. B 66, 233305 (2002).
56. V. A. Fonoberov and A. A. Balandin, J. Nanoelectronics and Optoelectronics 1, 19 (2006).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-01-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-01-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信