§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2309201510372700
DOI 10.6846/TKU.2015.00749
論文名稱(中文) 15克重微飛行器之機載航電元件開發
論文名稱(英文) DEVELOPMENT OF ON-BOARD AVIONICS FOR A 15-GRAM FLAPPING MAV
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 蘇希德
研究生(英文) Suseendar Marimuthu
學號 602370750
學位類別 碩士
語言別 英文
第二語言別
口試日期 2015-07-10
論文頁數 115頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 洪國永(kuoyung@mail.mcut.edu.tw)
委員 - 蕭富元(fyhsiao@mail.tku.edu.tw)
關鍵字(中) 拍翼機
方向控制
高度控制
輕量化電路板
關鍵字(英) flapping micro-air-vehicle (MAV)
Avionics
Autonomous Control
flapping wing control
第三語言關鍵字
學科別分類
中文摘要
論文提要內容:
文章中提到了一款新的可重複編寫,並且可搭載在拍翼機上的控制晶片。一開始文章中先分別介紹晶片中所使用的ATmeg328P微型處理器、慣性量測系統和高度感測器,在這章節也會剖析並詳細介紹這些感測器的選擇和如何使用這些感測數據,並應用在實際的飛行上面。
這次主要飛行任務,是讓拍翼機具備自主方向控制,可以依照設定在不同起飛位置都能飛往設定的方向。
下面文章將介紹M1AP,也就是新設計的控制晶片,M1AP是一個多功能可編寫並且可連接Arduino平台的晶片,晶片重量僅有0.75克重,並且包含了有12C的數位輸入和輸出、模擬輸入和輸出,還有SPI接口。最後將介紹整個M1AP的操作流程和使用方法。
英文摘要
Abstract:
This thesis presents the full development cycle of a programmable, lightweight control architecture capable of autonomously guiding a 15 gram flapping MAV by using onboard sensing and computational resources. In the earlier phase of the work, the prototyping of the control board housing an ATmega328P microcontroller, interfaced with Inertial Measurement Unit (IMU) and a pressure sensor is described. These chapters also dissect and examine in detail the choice of sensors, the practical usage of sensor data and control methods to actuate the MAV. The prototype board is used for a proof-of-concept flight test where the flapping wing MAV is autonomously guided towards a preprogrammed direction. 
The following chapters describe the design and development of the integrated control chip named “M1AP” housing all the components that are required. The M1AP is a fully functional and programmable chip compatible with Arduino platform, weighing 0.75 grams in weight. It includes interfaces for I2C, digital input and output, Analog input and output and also SPI programming. The standard operating procedure for uploading the firmware to M1AP is described and consequently, the direction seeking program performed during prototype stage is repeated with the new chip and the results are discussed.
第三語言摘要
論文目次
Contents
Chinese Abstract i
Abstract ii
Acknowledgement iv
Nomenclature v
List of Figures ................................................................................................ viii
List of Tables ................................................................................................... xi
CHAPTER ......................................................................................................... 1
1.1 Introduction ......................................................................................... 1
1.2 Literature review .................................................................................. 4
CHAPTER 2 ...................................................................................................... 7
2.1 Attitude, Heading Reference system .................................................... 7
2.2 Flapping mechanism ........................................................................... 12
2.3 Auto direction control ........................................................................ 13
2.4 Flight test ........................................................................................... 20
2.5 Altitude Measurement ........................................................................ 22
2.6 Radio interface for manual control ..................................................... 24
2.7 Flapping frequency estimation ........................................................... 26
2.7.1 Frequency estimation using Light Dependent Resistor ................... 27
2.7.2 Frequency estimation using Hall Effect sensor ................................ 29
vii
2.8 Data logging ....................................................................................... 32
CHAPTER 3 .................................................................................................... 38
3.1 Printed Circuit Board ........................................................................ 38
3.2 Uploading firmware ............................................................................ 45
3.3 Sensor data ......................................................................................... 46
3.4 Flight test using M1AP ...................................................................... 48
3.5 Altitude control test ........................................................................... 52
CHAPTER 4 .................................................................................................... 54
4.1 Conclusions and Future work ............................................................. 54
4.2 PID loops ........................................................................................... 54
4.3 Using Gyroscope data and sensor fusion ............................................ 54
4.4 On-board image processing ................................................................ 57
4.5 Weight reduction ................................................................................ 58
4.6 Final remarks ..................................................................................... 59
REFERENCES ................................................................................................ 60
APPENDIX A ................................................................................................. 67
APPENDIX B ................................................................................................. 88
APPENDIX C ................................................................................................. 96
viii
List of Figures
Figure 1. Inertial frame of reference for the MAV ............................................. 7
Figure 2. Measurement of acceleration along a single axis ................................ 9
Figure 3. Reference system .............................................................................. 11
Figure 4. Golden Snitch mechanism (Left), Bi-wing mechanism (Right) ........ 13
Figure 5. Block diagram for auto direction control ......................................... 14
Figure 6. Direction control for MAV (Left), Connection details (Right) ....... 15
Figure 7. Ferromagnetic disturbance vs Distance between motor and IMU .. 17
Figure 8. Finished MAV with Direction control system ....................................
Figure 9 Weight distribution of MAV ................................................................
Figure 10. North launch ................................................................................... 20
Figure 11. South launch ................................................................................... 21
Figure 12. West launch .................................................................................... 21
Figure 13. East Launch .................................................................................... 22
Figure 14. Motor driver, MCU, BMP180 and motor mechanism .................... 23
Figure 15. 2.4 GHz radio receiver .................................................................... 24
Figure 16. Overall Autopilot block diagram .................................................... 25
Figure 17. Measurement of flapping through photo resistor ............................ 28
Figure 18. Single flap recorded by Hall Effect sensor ...................................... 30
Figure 19. Hall Effect frequency estimation ..................................................... 31
Figure 20. Change in frequency measured by Hall Effect sensor ..................... 32
Figure 21. Acceleration data log ...................................................................... 34
Figure 22. Gyroscope data log ......................................................................... 34
ix
Figure 23. Magnetometer data log ................................................................... 35
Figure 24. Pitch, Roll, Yaw data log ............................................................... 36
Figure 25. Kalman filterd and Smoothed Kalman values for Roll log ............. 37
Figure 26. Computer to Autopilot board connection ....................................... 40
Figure 27. Illustration of Autopilot PCB ......................................................... 41
Figure 28. Finished PCB ................................................................................. 43
Figure 29 M1AP pinout ................................................................................... 44
Figure 30 Pitch accuracy ................................................................................. 46
Figure 31 Roll accuracy ................................................................................... 47
Figure 32 Magnetic heading accuracy .............................................................. 47
Figure 33 Altitude accuracy............................................................................. 48
Figure 34 Weight distribution of MAV ........................................................... 50
Figure 35 Launch towards East ....................................................................... 51
Figure 36 Launch towards West ...................................................................... 51
Figure 37 Altitude test .................................................................................... 53
Figure 38. Kalman filter implementation on ATmega328P (Dataset 1) .......... 56
Figure 39. Kalman filter implementation on ATmega328P (Dataset 2) .......... 56
Figure 40. Tinylily Arduino chip ..................................................................... 88
Figure 41. Flora LSM9DS0 chip ...................................................................... 90
Figure 42. Polulu DRV 8838 motor driver ...................................................... 93
Figure 43 AVR ISP mk2 .................................................................................. 99
Figure 44 Device Programming interface ....................................................... 100
Figure 45 Reading device signature ............................................................... 101
Figure 46 Device information for M1AP ........................................................ 102
x
Figure 47 Flashing firmware into M1AP ....................................................... 103
Figure 48 Fuse of M1AP ................................................................................ 105
Figure 49 Fuse bits ........................................................................................ 106
Figure 50 M1AP in Arduino IDE .................................................................. 107
Figure 51 Raw data from IMU ...................................................................... 108
Figure 52 Raw data from Pressure sensor ..................................................... 109
Figure 53 AHRS data from M1AP ................................................................ 109
參考文獻
REFERENCES
[1]	 	D. Mellinger, M. Shomin, and V. Kumar, “Control of quadrotors for robust perching and landing,” in Proceedings of the International Powered Lift Conference, Oct 2010
[2]	 	N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp. 73–86, Jan 2011
[3]	 	U. Pesavento and Z. J. Wang, “Flapping wing flight can save aerodynamic power compared to steady flight,” Physical Review Letter, vol. 103, no. 11, p. 118102, September 2009
[4]	 	Akira Azuma, T. W., Flight Performance of a Dragonfly. Journal Experimental Biology 137, 221-252, July 1988
[5]	 	Caetano, J.V., Verboom, J., de Visser, C.C., de Croon, G.C.H.E., Remes, B.D.W., de Wagter, C., and Mulder, M., "Near-Hover Flapping Wing MAV Aerodynamic Modelling - a linear model approach", in the International Journal of Micro Air Vehicles, Volume 5, Number 4, 2014
[6]	 	de Croon, G.C.H.E., M.A. Groen, De Wagter, C., Remes, B.D.W., Ruijsink, R., and van Oudheusden, B.W. "Design, Aerodynamics, and Autonomy of the DelFly" In Bioinspiration and Biomimetics, Volume 7, Number 2, 2014
[7]	 	B. M. Finio, N. O. P. Arancibia, and R. J. Wood, “System Identification and Linear Time-Invariant Modeling of an Insect-Sized Flapping-Wing Micro Air Vehicle”, In 2011 IEEElRSJ International Conference on Intelligent Robots and Systems September 25-30, 2011.
[8]	 	S. S. Baek, K. Y. Ma, and R. S. Fearing, “Efficient resonant drive of flapping-wing robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Oct. 2009, pp. 2854–2860
[9]	 	I. Shimoyama, H. Miura, K. Suzuki, and Y. Ezura, “Insect-like microrobots with external skeletons,” IEEE Control Systems Magazine, vol. 13, no. 1, pp. 37–41, February 1993
[10]	M. Keennon and J. Grasmeyer, “Development of the Black Widow and Microbat MAVs and a vision of the future of MAV design,” in AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, Ohio, July 2003.
[11]	T. N. Pornsin-Sirirak, S. W. Lee, H. Nassef, J. Grasmeyer, Y. Tai, C. Ho, and M. Keennon, “MEMS wing technology for a battery powered ornithopter,” in The 13th IEEE Annual International Conference on MEMS, 2000, pp. 709–804.
[12]	T. Pornsin-Siririak, Y. Tai, H. Nassef, and C. Ho, “Titanium-alloy MEMS wing technology for a micro aerial vehicle application,” Journal of Sensors and Actuators A: Physical, vol. 89, pp. 95–103, March 2001.
[13]	F. van Breugel, Z. E. Teoh, and H. Lipson,Flying Insects and Robots. Edited by Dario Floreano, Jean-Christophe Zuffery, Mandyam V. Srinavasan, and Charlie Ellington, Springer, 2009, ch. 13: A Passively Stable Hovering Flapping Micro-Air Vehicle, pp. 171–184.
[14]	Sane, S. P., “The Aerodynamics of Insect Flight,” The Journal of Experimental Biology, Vol. 206, pp. 4191-4208 (2003).
[15]	G. de Croon, K. de Clerq, R. Ruijsink, B. Remes, and C. de Wagter, “Design, aerodynamics, and vision-based control of the DelFly,” International Journal of Micro Air Vehicles, vol. 1, no. 2, pp. 71 – 97, 2009
[16]	G. de Croon, E. de Weerdt, C. de Wagter, and B. Remes, “The appearance variation cue for obstacle avoidance,” in IEEE International Conference on Robotics and Biomimetics (ROBIO), 2010, pp. 1606–1611
[17]	D. Lentink, “Exploring the biofluiddynamics of swimming and flight,” Ph.D. dissertation, Wageningen University, 2008
[18]	D. Lentink, S. R. Jongerius, and N. L. Bradshaw, Flying Insects and Robots. Edited by Dario Floreano, Jean-Christophe Zuffery, Mandyam V. Srinavasan, and Charlie Ellington, Springer, 2009, ch. 14: The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight, pp. 185–205
[19]	Yang, L. J., Hsu, C. K., Han, H. C. and Miao, J. M., “A Light Flapping Micro-Aerial-Vehicle Using Electrical Discharge Wire Cutting Technique,” Journal of Aircraft, Vol. 46, pp. 18661874 (2009).
[20]	C. Ellington and J. Usherwood, Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. AIAA, 2001, ch. 12: Lift and drag characteristics of rotary and flapping wings, pp. 231–248.
[21]	J. Usherwood and C. Ellington, “The aerodynamics of revolving wings I - II,” Journal of Experimental Biology, vol. 205, no. 11, pp. 1547–1576, 2002.
[22]	R. Madangopal, Z. A. Khan, and S. K. Agrawal, “Biologically inspired design of small flapping wing air vehicles using four-bar mechanism and quasi-steady aerodynamics,” ASME Journal of Mechanical Design, vol. 127, pp. 809–816, July 2005.
[23]	R. Madangopal, Z. Khan, and S. K. Agrawal, “Energetics-based design of small flapping-wing micro air vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 4, p. 433, August 2006.
[24]	J. P. Khatait, S. Mukherjee, and B. Seth, “Compliant design for flapping mechanism: A minimum torque approach,” Mechanism and Machine Theory, vol. 41, pp. 3–16, 2006.
[25]	R. Tedrake, Z. Jackowski, R. Cory, J. W. Roberts, and W. Hoburg, “Learning to fly like a bird,” Massachusetts Institute of Technology Computer Science and Artificial Intelligence Lab, Tech. Rep., 2006
[26]	K. S. Shigeoka, “Velocity and altitude control of an ornithopter micro aerial vehicle,” Master’s thesis, The University of Utah, 2007
[27]	R. Fearing, K. Chiang, M. Dickinson, D. Pick, M. Sitti, and J. Yan, “Wing transmission for a micromechanical flying insect,” in IEEE International Conference on Robotics and Automation, vol. 2, 2000, pp. 1509–1516
[28]	Q.-V. Nguyen, H. Park, N. Goo, and D. Byun, “A flying insect-like flapper actuated by a compressed LIPCA,” in IEEE International Conference on Robotics and Biomimetics, December 2007, pp. 19 – 24
[29]	R. J. Wood and R. S. Fearing, “Flight force measurements for a micromechanical flying insect,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, November 2001, pp. 355–362
[30]	C. K. Hsu. (2008). The preliminary design, fabrication, and testing of flapping micro aerial vehicles, Ph.D. dissertation, Tamkang Univ., Taipei
[31]	F.Y. Hsiao, L.J. Yang, S.H. Lin, C.L. Chen, and J.F. Shen, “Autopilots for Ultra Lightweight Robotic Birds”, in IEEE Control Systems Magazine, October 2012, pp. 35-48.
[32]	T. M. Yang and F. Y. Hsiao, “Dynamics of flapping micro-aerial vehicles,” in Proc. 2009 American Control Conf., St. Louis, MO, pp. 4190–4195. [20] M. S. Couceiro, N. M. F. Ferreira, and J. A. Tenreiro Machado, “Application of fractional algorithms in the control of a robotic bird,” J. Commun. Nonlinear Sci. Numerical Simulation, vol. 15, no. 4, pp. 895–910, Apr. 2010
[33]	K.M. Isaac, Force measurements on a flapping and pitching wing at low Reynolds numbers,44th AIAA Aerospace Sciences Meeting, Reno, NV, 2006, pp. 1-14.
[34]	L.J. Yang, C.K. Hsu, H.C. Han, and J.M. Miao, A light flapping micro-aerial-vehicle using electrical discharge wire cutting technique, Journal of Aircraft, vol. 46(6), pp. 1866-1874, 2009.
[35]	L.J. Yang, C.Y. Kao, and C.K. Huang, Development of flapping ornithopters by precision injection molding, Applied Mechanics and Materials, vol. 163, pp. 125-132, 2012
[36]	T. M. Yang and F. Y. Hsiao, “Dynamics of flapping micro-aerial vehicles,” in Proc. 2009 American Control Conf., St. Louis, MO, pp. 4190–4195.
[37]	C. L. Chen and F. Y. Hsiao, “Attitude acquisition using stereo-vision methodology,” in Proc. Visualization, Imaging, and Image Processing (VIIP 2009), Cambridge, U.K., Paper 652-108.
[38]	M. W. Oppenheimer, D. O. Sigthorsson, I. E. Weintraub, D. B. Doman, B. Perseghetti, “Wing Velocity Control System for Testing Body Motion Control Methods for Flapping Wing MAVs”, in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 2013.
[39]	Oppenheimer, M. W., Doman, D. B., and Sigthorsson, D. O., “Dynamics and Control of a Biomimetic Vehicle Using Biased Wingbeat Forcing Functions,” Journal of Guidance, Control and Dynamics, Vol. 34, No. 1, 2010, pp. 204–217
[40]	Finio, B. M., Shang, J. K., and Wood, R. J., “Body Torque Modulation for a Microrobotic Fly,” 2010 IEEE International Conference on Robotics and Automation, May 2010
[41]	D. Yeo, E. Atkins, W. Shyy, “Aerodynamic Sensing as Feedback for Ornithopter Flight Control,” Proc. 49th AIAA Aerospace Sciences Meeting, January 2011, Orlando, Florida. (AIAA 2011-552)
[42]	J.P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-Time Indoor Autonomous Vehicle Test Environment”, in IEEE Control Systems Magazine, April 2008, pp. 51-64
[43]	Kim, H.-Y., Lee, J.-S., Choi, H.-L., and Han, J.-H., “Autonomous Formation Flight of Multiple Flapping-wing Flying Vehicles Using Motion Capture System,” Aerospace Science and Technology, Vol. 39, pp. 596-604, Dec. 2014
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信