§ 瀏覽學位論文書目資料
系統識別號 U0002-2308201915242500
DOI 10.6846/TKU.2019.00743
論文名稱(中文) 電容去離子技術去除噬菌體之評估
論文名稱(英文) Evaluation of Capacitive Deionization for Bacteriophage Removal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 宋哲倫
研究生(英文) Che-Lun Sung
學號 606480134
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-23
論文頁數 129頁
口試委員 指導教授 - 彭晴玉
指導教授 - 簡義杰
委員 - 林居慶
委員 - 秦靜如
委員 - 簡義杰
關鍵字(中) 電容去離子技術
粒狀活性碳
氧化石墨烯
噬菌體MS2
噬菌體T4
關鍵字(英) Capacitive Deionization
Granular activated carbon
Graphene oxide
Bacteriophage MS2
Bacteriophage T4
第三語言關鍵字
學科別分類
中文摘要
電容去離子(Capacitive deionization, CDI)技術是近幾年被廣泛討論的海水淡化技術,此技術可應用於去除水中的帶電離子,如: Cl-、Na+、Ca2+、Mg2+等,具有低耗能、低運作成本、無二次汙染物等優點,而本研究將探討CDI系統對於病毒的影響,並選用常被用於模擬水中腸道病毒的噬菌體MS2以及尺寸較大的噬菌體T4作為水中病毒的模擬對象。
        本研究將粒狀活性碳電極應用於CDI系統,並且利用批次式(Batch mode)以及單流式(Single-pass mode)的系統探討去除噬菌體的可行性。
        批次式CDI系統中,電吸附及脫附時間分別為60分鐘及30分鐘,並進行兩次循環,在施加1.2 V、1.5 V和1.8 V時,無噬菌體的1000 mg/L 氯化鈉溶液,平均去除率為26.68%、46.63%和55.62%;加入噬菌體MS2的氯化鈉平均去除率為28.67%、43.21%及42.85%,噬菌體MS2的對數去除效率為0.32 log、1.77 log以及2.61 log;加入噬菌體T4的氯化鈉平均去除率為14.76%、28.26%及32.03%,噬菌體T4的對數去除效率為0.58 log、0.42 log及0.78 log。結果發現,提高電壓可以提升系統的氯化鈉去除率,但噬菌體的存在會降低氯化鈉去除效率;而CDI系統對噬菌體MS2的去活性效果較對噬菌體T4表現佳。
        單流式CDI系統中,連續15分鐘施加1.2 V的氯化鈉去除率平均為69.81%,噬菌體MS2的對數去除效率平均為0.28 log;連續15分鐘施加1.8 V的氯化鈉去除率平均為82.85%,噬菌體MS2的對數去除效率平均為1.96 log;先連續12分鐘施加1.2 V再3分鐘施加1.8 V的系統,氯化鈉去除率平均為81.07%,噬菌體MS2的對數去除效率平均為1.36 log。結果顯示,在單流式系統中只施加短時間的高電壓也能有與施加長時間高電壓相當的去除效果。
        添加10% GO於GAC電極材料的批次式實驗中,有噬菌體MS2時,施加1.2 V的氯化鈉平均去除率為32.12%,噬菌體去除效率為2.9 log,施加1.8 V之氯化鈉平均去除率為44.88%,噬菌體去除效率為4.07 log;有噬菌體T4的氯化鈉平均去除率為28.54%,噬菌體去除效率為0.4 log,施加1.8 V之氯化鈉平均去除率為49.2%,噬菌體去除效率為0.38 log。結果發現,添加GO可以增加氯化鈉的去除率,對於噬菌體MS2也有良好的去除效果,但是對於噬菌體T4的去除成效並不明顯。
        本研究顯示噬菌體的存在會降低CDI系統的氯化鈉去除效率,而噬菌體MS2比噬菌體T4更容易受系統的影響而數量減少,單流式實驗的結果說明了可在低耗能操作條件下,得到相當的處理效率,而在電極中加入GO可以增加氯化鈉和噬菌體MS2的去除效率;綜合上述,CDI系統對於去除噬菌體具有可行性,但會對系統的鹽類去除效率造成影響。
英文摘要
Capacitive deionization (CDI) technology is a seawater desalination technology widely discussed in recent years. This technology can be applied to remove charged ions in water, such as: Cl-, Na+, Ca2+, Mg2+ etc. It has several advantages, such as low energy consumption, Low operating cost, no secondary pollutants.  This study explored the impact of CDI system on the virus, and selected the bacteriophage MS2, which is often used to simulate enterovirus in water, and the larger size bacteriophage T4 as simulation of waterborne viruses.
        In this study, a granular activated carbon electrode was applied to a CDI system, and the feasibility of removing bacteriophage was investigated using a batch mode and a single-pass mode system.
        In the batch mode CDI system, the electrosorption and desorption times were 60 minutes and 30 minutes, respectively, and two cycles were performed. At applied 1.2 V, 1.5 V, and 1.8 V, when the bacteriophage-free 1000 mg/L NaCl solution was tested, the average removal efficiencies were 26.68%, 46.63% and 55.62%, respectively; the average removal efficiencies of NaCl which bacteriophage MS2 is added were 28.67%, 43.21% and 42.85%, respectively, and the log removal efficiency of bacteriophage MS2 was 0.32 log, 1.77 log and 2.61 log; the average removal efficiencies of NaCl which bacteriophage T4 is added were 14.76%, 28.26%, and 32.03%, respectively, and the log removal efficiency of bacteriophage T4 was 0.58 log, 0.42 log, and 0.78 log. It was found that increasing the voltage can increase the NaCl removal rate of the system, but the presence of bacteriophage will reduce the removal efficiency of NaCl; while the deactivation effect of CDI system on bacteriophage MS2 is better than that of bacteriophage T4.
        In the single-pass mode CDI system, the average removal rate of NaCl applied with 1.2 V for 15 minutes was 69.81%, and the average log removal efficiency of bacteriophage MS2 was 0.28 log; the average removal rate of NaCl applied with 1.8 V for 15 minutes was 82.85%, the average log removal efficiency of bacteriophage MS2 was 1.96 log; when the system applied with 1.2 V for 12 minutes and then applied for 1.8 V for 3 minutes, the average NaCl removal rate was 81.07%, and the average log removal efficiency of bacteriophage MS2 was 1.36 log. The results show that the application of only a short time of high voltage in a single-pass mode system can also have a removal effect equivalent to the application of a longer time period of high voltage.
        Addition of 10% GO with GAC electrode material in the CDI batch experiment at 1.2 V and 1.8 V, the average removal efficiency of NaCl by bacteriophage MS2 at 1.2 V was 32.12%, the bacteriophage removal efficiency was 2.9 log, and the average removal efficiency of NaCl at 1.8 V was 44.88%, the bacteriophage removal efficiency was 4.07 log; the average removal rate of NaCl with bacteriophage T4 was 28.54%, bacteriophage removal efficiency was 0.4 log, and the average removal efficiency of NaCl at 1.8 V was 49.2%, the bacteriophage removal efficiency was 0.38 log. It was found that the addition of GO increased the removal rate of NaCl, and also had a good removal effect on bacteriophage MS2, but the removal effect on bacteriophage T4 was not improved.
        This study showed that the presence of bacteriophage reduces the NaCl removal efficiency of the CDI system, while the bacteriophage MS2 is more susceptible to CDI system than the bacteriophage T4, and the result of single-pass mode experiments demonstrates that considerable efficiency is received under low-energy operating conditions, and adding GO in the electrode may increase the removal efficiency of NaCl, and inactivation of bacteriophage MS2; in summary, the CDI system is feasible for removing the bacteriophage, but bacteriophage will adversely affect the removal efficiency of salts in the CDI system.
第三語言摘要
論文目次
目錄
第一章	緒論	1
1.1	前言	1
1.2	研究緣起	1
1.3	研究之目的	2
第二章	文獻回顧	3
2.1	電容去離子(Capacitive deionization)	3
2.2	電容去離子(CDI)之電極材料	6
2.2.1	活性碳(Activated carbon)	6
2.2.2	活性碳布(Activated carbon cloth)	9
2.2.3	奈米碳管(Carbon nanotubes)	10
2.2.4	石墨烯(Graphene)	13
2.3	噬菌體(Bacteriophage)	15
2.3.1	噬菌體 MS2	17
2.3.2	噬菌體 T4	19
2.4	電化學反應對噬菌體之影響	21
第三章	實驗材料及方法	23
3.1	實驗藥品及設備	23
3.1.1	實驗藥品	23
3.1.2	實驗設備	25
3.2	實驗架構	26
3.3	電極製備	28
3.3.1	粒狀活性碳清洗	28
3.3.2	粒狀活性碳粉製備	28
3.3.3	粒狀活性碳電極製備	28
3.4	宿主E.coli的培養與保存	30
3.4.1	E.coli培養	30
3.4.2	E.coli保存	30
3.5	噬菌體的培養與保存	31
3.5.1	噬菌體培養	31
3.5.2	噬菌體保存	31
3.6	噬菌體的檢測方法	32
3.7	實驗分析方法	33
3.7.1	孔徑與表面積分析(BET)	33
3.7.2	接觸角儀(Contact angle system)	33
3.7.3	掃描式電子顯微鏡(SEM)	33
3.7.4	螢光光學顯微鏡(Fluorescence microscopy)	35
3.7.5	循環伏安法(CV)	35
3.7.6	電化學阻抗譜分析(EIS)	36
3.8	電容去離子技術(CDI)	37
3.8.1	噬菌體混合液製備	38
3.8.2	批次式系統(batch-mode)	38
3.8.3	單流式系統(single-pass-mode)	38
第四章	結果與討論	42
4.1	電極材料之物理與化學分析	42
4.1.1	粒狀活性碳電極表面特性分析	42
4.1.2	粒狀活性碳電極電化學特性分析	48
4.1.3	粒狀活性碳於CDI系統之效率	52
4.1.4	粒狀活性碳於吸附噬菌體之效率	57
4.2	批次式(batch-mode)CDI系統去除噬菌體MS2之研究	61
4.3	批次式(batch-mode)CDI系統去除噬菌體T4之影響	78
4.4	單流式(single-pass-mode)CDI系統去除噬菌體MS2之研究	94
4.5	GO/GAC複合材料電極應用於CDI系統去除噬菌體之研究	102
第五章	結論與建議	114
References	116
附錄	126
 
List of Figure
Figure 2.1.1 Schematic diagram illustrating the principal of capacitive deionization (Farmer et al., 1996).	5
Figure 2.2.1 The SEM micrograph of carbon electrode, (a) cross-section and  (b) surface structure (Choi, 2010).	7
Figure 2.2.2 The changes in concentration of effluent during the CDI experiments at various operating conditions (Choi, 2010).	8
Figure 2.2.3 The SEM micrograph of activated carbon cloth (Oh et al., 2006).	9
Figure 2.2.4 The Schematic diagram of the structure of Carbon nanotubes (Hirsch, 2002).	11
Figure 2.2.5 Tapping-mode atomic force microscope amplitude images of examples of nanotube junction devices (Yao et al., 1999).	12
Figure 2.2.6 TEM image of graphene (Li et al., 2010).	14
Figure 2.3.1 Transmission electron micrograph of an unfiltered Chesapeake Bay water sample (magnification, ca. ×336,000). (a) Short-tailed or nontailed virus-like particle (b) Tailed virus-like particle (c) Bacterium, coccal morphotype (d) Bacterium, vibrio morphotype (Wommack et al., 1986).	16
Figure 2.3.2 Schematic drawing of one half of the MS2 protein shell (Golmohammadi, 1993).	18
Figure 2.3.3 Structure of bacteriophage T4 (Leiman et al., 2003).	20
Figure 3.2.1 Schematic experimental architecture of CDI system.	27
Figure 3.3.1 Fabrication of granular activated carbon electrode.	29
Figure 3.8.1 The structure of CDI cell.	39
Figure 3.8.2 The schematic of CDI batch-mode experiment.	40
Figure 3.8.3 The schematic of CDI single-pass-mode experiment.	41
Figure 4.1.1 SEM images of granular activated carbon with magnification (a) x500, (b) x3,000, (c) x50,000, and (d) x100,000.	43
Figure 4.1.2 N2 adsorption/desorption isotherms of the GAC.	45
Figure 4.1.3 Types of physisorption isotherms (Ertl, G., Knözinger, H., &Weitkamp, 1997).	46
Figure 4.1.4 The contact angle measurements of (a) untreated and (b) treated with 1.0 M KOH GAC electrodes.  .	47
Figure 4.1.5 Cyclic voltammograms of GAC at various scan rates in 1 M NaCl.	49
Figure 4.1.6 Specific capacitance of GAC at different scan rates in 1 M NaCl.	49
Figure 4.1.7 The electrochemical impedance spectra (EIS) measured at frequency range of 1 MHz to 1 Hz for GAC .	51
Figure 4.1.8 The change of conductivity of two electrosorption-desorption cycles with GAC electrodes by applying different voltages in 1000 ppm NaCl.	54
Figure 4.1.9 The changes of removal efficiencies of two electrosorption-desorption cycles with GAC electrodes by applying different voltages in 1000 ppm NaCl.	55
Figure 4.1.10 Concentration of bacteriophage MS2 at 0 V in CDI experiment.	58
Figure 4.1.11 Concentration of bacteriophage T4 at 0 V in CDI experiment.	58
Figure 4.2.1 The concentration of bacteriophage MS2 in the blank experiment without GAC electrodes and voltage applied.	62
Figure 4.2.2 The change of conductivity within two electrosorption-desorption cycles in CDI system by applying different voltages in 1000 ppm NaCl with MS2.	64
Figure 4.2.3 The changes of removal efficiencies of conductivity within two electrosorption-desorption cycles in CDI system by applying different voltages in 1000 ppm NaCl with MS2.	65
Figure 4.2.4 The changes of average removal efficiencies of conductivity in CDI system by applying different voltages in 1000 ppm NaCl with/without MS2.	66
Figure 4.2.5 (a) Conductivity changes with/without MS2 and bacteriophage concentration changes of MS2 (b) Conductivity removal efficiencies (%) with/without MS2 and bacteriophage log inactivation of MS2 in 1000 ppm NaCl at applied 1.2 V in batch mode CDI system.	71
Figure 4.2.6 (a) Conductivity changes with/without MS2 and bacteriophage concentration changes of MS2 (b) Conductivity removal efficiencies (%) with/without MS2 and bacteriophage log inactivation of MS2 in 1000 ppm NaCl at applied 1.5 V in batch mode CDI system.	73
Figure 4.2.7 (a) Conductivity changes with/without MS2 and bacteriophage concentration changes of MS2 (b) Conductivity removal efficiencies (%) with/without MS2 and bacteriophage log inactivation of MS2 in 1000 ppm NaCl at applied 1.8 V in batch mode CDI system.	75
Figure 4.2.8 (a) Conductivity removal efficiencies (%) with/without MS2 of each round by applying different voltages in 1000 ppm NaCl (b) Bacteriophage log inactivation of MS2 by applying different voltages in 1000 ppm NaCl.	77
Figure 4.3.1 The concentration of bacteriophage T4 in the blank experiment without GAC electrodes and voltage applied.	79
Figure 4.3.2 The change of conductivity within two electrosorption-desorption cycles in CDI system by applying different voltages in 1000 ppm NaCl with T4.	81
Figure 4.3.3 The changes of removal efficiencies of conductivity within two electrosorption-desorption cycles in CDI system by applying different voltages in 1000 ppm NaCl with T4.	82
Figure 4.3.4 The changes of average removal efficiencies of conductivity in CDI system by applying different voltages in 1000 ppm NaCl with/without T4.	83
Figure 4.3.5 (a) Conductivity changes with/without T4 and bacteriophage concentration changes of T4 (b) Conductivity removal efficiencies (%) with/without T4 and bacteriophage log inactivation of T4 in 1000 ppm NaCl at applied 1.2 V in batch mode CDI system.	87
Figure 4.3.6 (a) Conductivity changes with/without T4 and bacteriophage concentration changes of T4 (b) Conductivity removal efficiencies (%) with/without T4 and bacteriophage log inactivation of T4 in 1000 ppm NaCl at applied 1.5 V in batch mode CDI system.	89
Figure 4.3.7 (a) Conductivity changes with/without T4 and bacteriophage concentration changes of T4 (b) Conductivity removal efficiencies (%) with/without T4 and bacteriophage log inactivation of T4 in 1000 ppm NaCl at applied 1.8 V in batch mode CDI system.	91
Figure 4.3.8 (a) Conductivity removal efficiencies (%) with/without T4 of each round by applying different voltage in 1000 ppm NaCl (b) Bacteriophage log inactivation of T4 by applying different voltage in 1000 ppm NaCl.	93
Figure 4.4.1 Conductivity and quantity of bacteriophage MS2 in 1000 ppm NaCl at applied 1.2 V for 15 minutes each round by single pass mode CDI system.	96
Figure 4.4.2 Conductivity and quantity of bacteriophage MS2 in 1000 ppm NaCl at applied 1.8 V for 15 minutes each round by single pass mode CDI system.	98
Figure 4.4.3 Conductivity and quantity of bacteriophage MS2 in 1000 ppm NaCl at applied 1.2 V for 12 minutes and 1.8 V for 3minutes each round  by single pass mode CDI system.	100
Figure 4.5.1 (a) Conductivity changes with/without MS2 by GAC or GO/GAC electrodes and bacteriophage concentration changes of MS2 by GO/GAC electrodes at 1.2 V in batch mode CDI system (b) Conductivity removal efficiencies (%) with/without MS2 by GAC or GO/GAC electrodes and bacteriophage log inactivation of MS2 by GO/GAC electrodes at applied 1.2 V in batch mode CDI system.	104
Figure 4.5.2 (a) Conductivity changes with/without MS2 by GAC or GO/GAC electrodes and bacteriophage concentration changes of MS2 by GO/GAC electrodes at 1.8 V in batch mode CDI system (b) Conductivity removal efficiencies (%) with/without MS2 by GAC or GO/GAC electrodes and bacteriophage log inactivation of MS2 by GO/GAC electrodes at applied 1.8 V in batch mode CDI system.	105
Figure 4.5.3 (a) Conductivity removal efficiencies (%) with/without MS2 of each round by GAC or GO/GAC electrodes at 1.2 V and 1.8 V (b) Bacteriophage log inactivation of MS2 by GAC or GO/GAC electrodes at 1.2 V and 1.8 V.	106
Figure 4.5.4 (a) Conductivity changes with/without T4 by GAC or GO/GAC electrodes and bacteriophage concentration changes of T4 by GO/GAC electrodes at 1.2 V in batch mode CDI system (b) Conductivity removal efficiencies (%) with/without T4 by GAC or GO/GAC electrodes and bacteriophage log inactivation of T4 by GO/GAC electrodes at applied 1.2 V in batch mode CDI system.	109
Figure 4.5.5 (a) Conductivity changes with/without T4 by GAC or GO/GAC electrodes and bacteriophage concentration changes of T4 by GO/GAC electrodes at 1.8 V in batch mode CDI system (b) Conductivity removal efficiencies (%) with/without T4 by GAC or GO/GAC electrodes and bacteriophage log inactivation of T4 by GO/GAC electrodes at applied 1.8 V in batch mode CDI system.	110
Figure 4.5.6 (a) Conductivity removal efficiencies (%) with/without T4 of each round by GAC or GO/GAC electrodes at 1.2 V and 1.8 V (b) Bacteriophage log inactivation of T4 by GAC or GO/GAC electrodes at 1.2 V and 1.8 V.	111
 
List of Table
Table 3.1.1 Manufacturers and purity of experimental medicines.	23
Table 3.1.2 Manufacturers and purity of experimental medicines.	24
Table 3.1.3 Manufacturers and models of instruments.	25
Table 4.1.1 Pore characteristics of the granular activated carbon powder sample.	46
Table 4.1.2 Specific capacitance of GAC in 1 M NaCl at different scan rates.	49
Table 4.1.3 Parameters of equivalent circuits of GAC .	51
Table 4.1.4 The pH values of electrosorption-desorption cycles at various applied voltages in 1000 ppm NaCl.	56
Table 4.1.5 Concentration and log inactivation of bacteriophage MS2 at 0 V in CDI experiment.	59
Table 4.1.6 Concentration and log inactivation of bacteriophage T4 at 0 V in CDI experiment.	60
Table 4.2.1 The concentration and log inactivation of bacteriophage MS2 in the blank experiment without GAC electrodes and voltage applied.	62
Table 4.2.2 The pH values of electrosorption-desorption cycles at various applied voltages in 1000 ppm NaCl with MS2.	67
Table 4.2.3 Concentration and log inactivation of bacteriophage MS2 at 1.2 V in batch mode CDI experiment.	72
Table 4.2.4 Concentration and log inactivation of bacteriophage MS2 at 1.5 V in batch mode CDI experiment.	74
Table 4.2.5 Concentration and log inactivation of bacteriophage MS2 at 1.8 V in batch mode CDI experiment.	76
Table 4.3.1 The concentration and log inactivation of bacteriophage T4 in the blank experiment without GAC electrodes and voltage applied.	79
Table 4.3.2 The pH values of electrosorption-desorption cycles at various applied voltages in 1000 ppm NaCl with T4.	84
Table 4.3.3 Concentration and log inactivation of bacteriophage T4 at 1.2 V in batch mode CDI experiment.	88
Table 4.3.4 Concentration and log inactivation of bacteriophage T4 at 1.5 V in batch mode CDI experiment.	90
Table 4.3.5 Concentration and log inactivation of bacteriophage T4 at 1.8 V in batch mode CDI experiment.	92
Table 4.4.1 Conductivity and removal efficiencies in 1000 ppm NaCl at applied 1.2 V for 15 minutes each round by single pass mode CDI system.	97
Table 4.4.2 Concentration and log inactivation of bacteriophage MS2  in 1000 ppm NaCl at applied 1.2 V for 15 minutes each round  by single pass mode CDI system.	97
Table 4.4.3 Conductivity and removal efficiencies in 1000 ppm NaCl at applied 1.8 V for 15 minutes each round by single pass mode CDI system.	99
Table 4.4.4 Concentration and log inactivation of bacteriophage MS2  in 1000 ppm NaCl at applied 1.8 V for 15 minutes each round  by single pass mode CDI system.	99
Table 4.4.5 Conductivity and removal efficiencies in 1000 ppm NaCl  at applied 1.2 V for 12 minutes and 1.8 V for 3minutes each round  by single pass mode CDI system.	101
Table 4.4.6 Concentration and log inactivation of bacteriophage MS2 in 1000 ppm NaCl at applied 1.2 V for 12 minutes and 1.8 V for 3minutes each round by single pass mode CDI system.	101
Table 4.5.1 Concentration and log inactivation of bacteriophage MS2 at 1.2 V by GO/GAC electrodes in batch mode CDI experiment.	107
Table 4.5.2 Concentration and log inactivation of bacteriophage MS2 at 1.8 V by GO/GAC electrodes in batch mode CDI experiment.	108
Table 4.5.3 Concentration and log inactivation of bacteriophage T4 at 1.2 V by GO/GAC electrodes in batch mode CDI experiment.	112
Table 4.5.4 Concentration and log inactivation of bacteriophage T4 at 1.8 V by GO/GAC electrodes in batch mode CDI experiment.	113
參考文獻
References
  Ackermann, H., Tremblay, D., &Moineau, S. (2004). Long-Term Bacteriophage Preservation. (January 2016).
Ackermann, H. W. (2007). 5500 Phages examined in the electron microscope. Archives of Virology, 152(2), 227–243.
Ackermann, H. W., &Krisch, H. M. (1997). A catalogue of T4-type bacteriophages. Archives of Virology, 142(12), 2329–2345.
Akhavan, O., &Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736.
Alencherry, T., A.R., N., Ghosh, S., Daniel, J., &Venkataraghavan, R. (2017). Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization. Desalination, 415(March), 14–19.
AlMarzooqi, F. A., AlGhaferi, A. A., Saadat, I., &Hilal, N. (2014). Application of Capacitive Deionisation in water desalination: A review. Desalination, 342, 3–15.
Anggoro, D., &Endarko. (2015). Evaluating Capacitive Deionization for Measurements of the Salt-Removal of NaCl, KCl and MgCl at Various Cell Voltages. Advanced Materials Research, 1112, 271–274.
Babić, B. M., Milonjić, S. K., Polovina, M. J., &Kaludierović, B.V. (1999). Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon, 37(3), 477–481.
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., …Pellegrini, V. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347(6217).
Boudaud, N., Machinal, C., David, F., Fréval-Le Bourdonnec, A., Jossent, J., Bakanga, F., …Gantzer, C. (2012). Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Research, 46(8), 2651–2664.
Childs, J. D., &Birnboim, H. C. (1975). Polyacrylamide gel electrophoresis of intact bacteriophage T4D particles. Journal of Virology, 16(3), 652–661.
Chingombe, P., Saha, B., &Wakeman, R. J. (2005). Surface modification and characterisation of a coal-based activated carbon. Carbon, 43(15), 3132–3143.
Choi, J. H. (2010). Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Separation and Purification Technology, 70(3), 362–366.
Conway, B. E., Ayranci, E., &Al-Maznai, H. (2001). Use of quasi-3-dimensional porous electrodes for adsorption and electrocatalytic removal of impurities from waste-waters. Electrochimica Acta, 47(5), 705–718.
Drees, K. P., Abbaszadegan, M., &Maier, R. M. (2003). Comparative electrochemical inactivation of bacteria and bacteriophage. Water Research, 37(10), 2291–2300.
Ertl, G., G., Knözinger, H., &Weitkamp. (1997). Handbook of Heterogeneous Catalysis.
Farmer, J. C., Fix, D.V., Mack, G.V., Pekala, R. W., &Poco, J. F. (1996). Capacitive Deionization of NaCI and NaNO3 Solutions with Carbon Aerogel Electrodes. J. Electrochem. Soc. V. Gutmann and E. Vychera, Inorg. Nuci. Chem. Lett. J. Electroanal. Chem, 143(1), 159–169.
Feng, Y. Y., Ong, S. L., Hu, J. Y., Tan, X. L., &Ng, W. J. (2003). Effects of pH and temperature on the survival of coliphages MS2 and Qβ. Journal of Industrial Microbiology and Biotechnology, 30(9), 549–552.
Golmohammadi, R. (1993). Golmohammad - 1993 - The Refined Structure of Bacteriophage MS2 at 2.8A Resolution.pdf.
Hanlon, G. W. (2007). Bacteriophages: an appraisal of their role in the treatment of bacterial infections. International Journal of Antimicrobial Agents, 30(2), 118–128.
Hirsch, A. (2002). Functionalization of Single-Walled Carbon Nanotubes - Hirsch - 2002 - Angewandte Chemie International Edition - Wiley Online Library. Angewandte Chemie International Edition, (Cvd), 1853–1859.
Hou, C. H., Huang, J. F., Lin, H. R., &Wang, B. Y. (2012). Preparation of activated carbon sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 473–479.
Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., …Fan, C. (2010). Graphene-based antibacterial paper. ACS Nano, 4(7), 4317–4323.
Kinoshita, K. I. M. (1988). Reviews Physicochemical Carbon-Electrochemical and Properties Kinetics Metal.
Kłak, M., Międzybrodzki, R., Bubak, B., Jończyk, E., Weber-Dąbrowska, B., &A, G. (2010). Studies on the gastrointestinal transit and blood penetration of a therapeutic staphylococcal bacteriophage.
Laxman, K., Myint, M. T. Z., AlAbri, M., Sathe, P., Dobretsov, S., &Dutta, J. (2015). Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes. Desalination, 362, 126–132.
Lee, J. H., Bae, W. S., &Choi, J. H. (2010). Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258(1–3), 159–163.
Leibo, S. P., &Mazur, P. (1966). Effect of Osmotic Shock and Low Salt Concentration on Survival and Density of Bacteriophages T4B and T4Bo1. Biophysical Journal, 6(6), 747–772.
Leiman, P. G., Kanamaru, S., Mesyanzhinov, V.V., Arisaka, F., &Rossmann, M. G. (2003). Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences, 60(11), 2356–2370.
Li, H., Lu, T., Pan, L., Zhang, Y., &Sun, Z. (2009). Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry, 19(37), 6773–6779.
Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., &Sun, Z. (2011). A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry, 653(1–2), 40–44.
Li, H., Zou, L., Pan, L., &Sun, Z. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental Science and Technology, 44(22), 8692–8697.
Li, N., An, J., Wang, X., Wang, H., Lu, L., &Ren, Z. J. (2017). Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination, 419(June), 20–28.
Michen, B., &Graule, T. (2010). Isoelectric points of viruses. Journal of Applied Microbiology, 109(2), 388–397.
Mylon, S. E., Rinciog, C. I., Schmidt, N., Gutierrez, L., Wong, G. C. L., &Nguyen, T. H. (2010). Influence of salts and natural organic matter on the stability of bacteriophage MS2. Langmuir, 26(2), 1035–1042.
Oh, H. J., Lee, J. H., Ahn, H. J., Jeong, Y., Kim, Y. J., &Chi, C. S. (2006). Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 515(1), 220–225.
Olson, M. R., Axler, R. P., &Hicks, R. E. (2004). Effects of freezing and storage temperature on MS2 viability. Journal of Virological Methods, 122(2), 147–152.
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review). Desalination, 228(1–3), 10–29.
Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., &Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. 39, 507–514.
Ryoo, M. W., &Seo, G. (2003). Improvement in capacitive deionization function of activated carbon cloth by titania modification. Water Research, 37(7), 1527–1534.
Sakthivel, T., Gunasekaran, V., &Kim, S. J. (2014). Effect of oxygenated functional groups on the photoluminescence properties of graphene-oxide nanosheets. Materials Science in Semiconductor Processing, 19(1), 174–178.
Sekar, M., Sakthi, V., &Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 279(2), 307–313.
Sharp, D. G., Hook, A. E., Taylor, A. R., &Beard, J. W. (1946). D. g. sharp, a. e. hook, a. r. taylor,. (5).
Storage, D. (1969). Survival of T3 Coliphage in Varied Extracellular. Microbiology, 17(2), 256–261.
Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Menéndez, R., &Santamaría, R. (2010). Capacitive deionization of NaCl solutions with modified activated carbon electrodes. Energy and Fuels, 24(6), 3329–3333.
Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., &Qiu, J. (2013). Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology, 103, 216–221.
Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2), 127–181.
Welgemoed, T. J., &Schutte, C. F. (2005). Capacitive Deionization TechnologyTM: An alternative desalination solution. Desalination, 183(1–3), 327–340.
Wimalasiri, Y., &Zou, L. (2013). Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon, 59, 464–471.
Wommack, K. E., R, R., &Colwell. (1986). Un Cuestionario De Autocontrol Para Ni�Os Y Adolescentes: Primeros Resultados. An�lisis y Modificaci�n de Conducta, 12(31–32), 41–79.
Xu, P., Drewes, J. E., Heil, D., &Wang, G. (2008). Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Research, 42(10–11), 2605–2617.
Yao, Z., Dekker, C., Postma, H. W. C., &Balents, L. (1999). Carbon nanotube intramolecular junctions. Nature, 402(6759), 273–276.
Yeh, C. L., Hsi, H. C., Li, K. C., &Hou, C. H. (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60–68.
Yu, J., Jo, K., Kim, T., Lee, J., &Yoon, J. (2018). Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination, 439(March), 188–195.
Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., &Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696–14704.
劉瑀萱. (2016). 國立臺灣大學工學院環境工程學研究所 碩士論文 Master Thesis 電容去離子技術之研究 Development of Manganese Dioxide / Activated Carbon Composite Electrodes for Enhancing Capacitive Deionization Performance 劉瑀萱 Yu-Hsuan Liu 指導教授 : 李公哲 博士 ; 侯嘉洪 博士 Advisor : Kung-Che Li , P . h . D .; Chia-Hu. (July). https://doi.org/10.6342/NTU201602806
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信