§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2308201715011300
DOI 10.6846/TKU.2017.00824
論文名稱(中文) 以聚羥甲基3,4-二氧乙基噻吩摻混碳黑複合薄膜組裝固態光電致色變元件及其特性分析
論文名稱(英文) Fabrication and Characterization of Solid-state Photoelectrochromic Device Based on Poly(hydroxymethyl 3,4- ethylenedioxythiophene)/Carbon Black Composite Thin Films
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 陳至穎
研究生(英文) Chih-Ying Chen
學號 604400498
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-07-06
論文頁數 101頁
口試委員 指導教授 - 林正嵐(cllintw@gmail.com)
委員 - 余宣賦(hfyu@mail.tku.edu.tw)
委員 - 陳志賢(chschen@fcu.edu.tw)
關鍵字(中) 光電致色變元件
聚羥甲基3,4-二氧乙基噻吩
複合薄膜
固態
關鍵字(英) Photoelectrochromic
Poly(hydroxymethyl 3,4-ethylenedioxythiophene)
Solid
carbon black
composite thin films
第三語言關鍵字
學科別分類
中文摘要
本研究可分為三部分,第一部分是在聚3,4-二氧乙基噻吩與聚羥甲基3,4-二氧乙基噻吩鍍液中摻混鹼修飾之碳黑進行定電位析鍍製備其複合薄膜,根據電化學阻抗圖譜與循環伏安結果得知碳黑的摻混提升薄膜導電度,且在摻混比例為1 wt%時有最佳之電致色變性質表現。另一方面,不論碳黑摻混與否,聚羥甲基3,4-二氧乙基噻吩都比聚3,4-二氧乙基噻吩有更傑出的電致色變性質表現,根據掃描式電子顯微鏡影像可推斷聚羥甲基3,4-二氧乙基噻吩之多孔性結構使其離子在薄膜中更容易移動而導致此結果。
第二部分為光電致色變元件效能最佳化,將製備之複合薄膜作為電致色變層、塗佈1-4層染敏二氧化鈦作為光陽極搭配液態電解質組裝光電致色變元件。聚羥甲基3,4-二氧乙基噻吩/碳黑之複合薄膜組裝之元件效能均優於聚3,4-二氧乙基噻吩組裝之元件,其中以塗佈3層染敏二氧化鈦光陽極之效能為最佳。
第三部分使用前面所得之最佳化元件,以1,3:2,4-二苯亞甲基山梨醇膠態電解質取代液態電解質組裝固態光電致色變元件,其電化學操作下之性能幾乎接近液態電解質之效果,但光照操作下,因其內部阻力大且去色為擴散控制,因此去色需約10分鐘且無法達到完全去色。雖然仍有不足的地方,此固態光電致色變仍較具有應用價值,其內部阻力是最需要克服的地方。
英文摘要
This study can be divided into three parts, and the first part is to introduce sodium hydroxide-modified carbon black to the solution of electrodeposition of poly(3,4-ethylenedioxythiophene) or poly(hydroxymethyl 3,4-ethylenedioxythiophene) to prepare the composite thin films. According to the electrochemical impedance spectroscopy and cyclic voltammetry results, introducing carbon black would enhance the conductivity of thin films. Moreover, the thin films possess the best electrochromic properties when introduce 1 wt% carbon black. On the other hand, whatever carbon black is introduced or not, poly(hydroxymethyl 3,4- ethylenedioxythiophene)’s electrochromic properties all are better than poly(3,4- ethylenedioxythiophene)’s due to its porous microstructure.
The second part is to optimize of photoelectrochromic device. We employ the composite thin films as electrochromic layer, one to four layer of dye-sensitized TiO2¬ as photoanode, and liquid electrolyte to assemble photoelectrochromic device. The device of poly(hydroxymethyl 3,4- ethylenedioxythiophene) is better than that of poly(3,4- ethylenedioxythiophene) at all aspects. Among these, that the optimized device is constituted of poly(hydroxymethyl3,4- ethylenedioxythiophene) with three layers of dye-sensitized TiO2.
In the third part, we utilize the optimized photoelectrochromic device that was found out, and employ 1,3:2,4-Dibenzylidene sorbitol as solid electrolyte to replace the liquid one. Under electrochemical operation, it performs almost as same as the liquid one did. But under illuminated operation, it requires ten minutes to bleach and can’t reach completely bleached, due to higher internal resistance and diffusion control of bleaching. Although the improvement of this solid photoelectrochromic device is still necessary, is possesses high potential for future applications.
第三語言摘要
論文目次
主目錄
主目錄	IV
圖目錄	VI
表目錄	XI
第一章、緒論	1
1-1、前言	1
1-2、電致色變元件 (Electrochromic device, ECD)	1
1-3、染敏太陽能電池 (Dye-Sensitized Solar Cells, DSSCs)	3
1-4、研究動機	5
第二章、文獻回顧	7
第三章、實驗設備與方法	13
3-1、儀器設備	13
3-2、實驗藥品	14
3-3、實驗方法	15
3-3-1、研究架構	15
3-3-2、導電基材前處理	16
3-3-3、製備PEDOT-Cs與PhmEDOT-Cs複合薄膜	17
3-3-4、染敏TiO2電極之製備	18
3-3-5、電解質之製備	19
3-3-6、組裝PECD	20
3-3-7、特性分析	21
第四章、結果與討論	26
4-1、電致色變薄膜之性質探討	26
4-1-1、鍍液摻混Cs之分散性測試	26
4-1-2、薄膜電鍍行為之比較	27
4-1-3、PEDOT-Cs與PhmEDOT-Cs複合薄膜之表面性質分析	29
4-1-4、PEDOT-Cs與PhmEDOT-Cs複合薄膜之電化學與電致色變性質分析	34
4-2、液態電解質PECD(l-PECD)效能最佳化	45
4-2-1、TiO2薄膜表面性質分析	46
4-2-2、l-PECD之特性分析	50
4-2-3、效能最佳化l-PECD之特性分析	61
4-3、使用PhmEDOT-Cs組裝固態電解質PECD(s-PECD)之特性分析	71
4-3-1、電化學與電致色變性質分析	71
4-3-2、電化學與光電致色變性質分析	74
4-3-3、s-PECD與l-PECD之性質比較	85
第五章、結論	87
附錄A	89
附錄B	94
參考文獻	96
 
圖目錄
圖1-1、PECD電子迴路圖	3
圖1-2、左為EDOT單體結構,右為hmEDOT單體結構	5
圖1-3、左為PEDOT分子結構式,右為PhmEDOT分子結構式	6
圖1-4、DBS結構式	6
圖2-1、分離式光電致色變元件示意圖	10
圖2-2、合併式光電致色變元件示意圖	10
圖2-3、多功能光電致色變元件示意圖	11
圖3-1、控制ITO工作面積示意圖	16
圖3-2、控制FTO工作面積示意圖	17
圖3-3、三電極系統示意圖	18
圖3-4、三明治結構元件示意圖	20
圖3-5、左為PECD俯視圖,右為PECD側視圖	20
圖3-6、著去色應答之計算	22
圖3-7、光照測試實驗裝置	23
圖3-8、光伏性質之i-V曲線	24
圖4-1、EDOT鍍液中摻混2.5 wt%之Cs分散性測試 (a) 攪拌5分鐘後        (b) 攪拌30分鐘後 (c) 攪拌3小時後 (d) 攪拌三小時並靜置30分鐘	27
圖4-2、PEDOT-Cs電聚合之i-t圖譜	28
圖4-3、PhmEDOT-Cs電聚合之i-t圖譜	28
圖4-4、PEDOT薄膜SEM影像 (a) 5k (b) 20k (c) 50k (d) 100	30
圖4-5、1wt% PEDOT-Cs薄膜SEM影像 (a) 5k (b) 20k (c) 50k (d) 100k	30
圖4-6、PhmEDOT薄膜SEM影像 (a) 5k (b) 20k (c) 50k (d) 100k	31
圖4-7、1.0 wt% PhmEDOT-Cs薄膜SEM影像 (a) 5k (b) 20k (c) 50k (d) 100k	31
圖4-8、PEDOT-Cs表面輪廓分析	32
圖4-9、PhmEDOT-Cs表面輪廓分析	33
圖4-10、PEDOT-Cs之CV測試	36
圖4-11、PhmEDOT-Cs之CV測試	36
圖4-12、PEDOT與PhmEDOT之CV比較	37
圖4-13、1.0 wt% PEDOT-Cs與PhmEDOT-Cs之CV比較	37
圖4-14、實驗模擬之等效電路圖	37
圖4-15、PEDOT-Cs之EIS測試	38
圖4-16、PhmEDOT-Cs之EIS測試	38
圖4-17、各濃度PEDOT-Cs與PhmEDOT-Cs之Rct分析	39
圖4-18、1.0 wt% PEDOT-Cs在不同電位下之吸收度圖譜	41
圖4-19、1.0 wt% PhmEDOT-Cs在不同電位下之吸收度圖譜	42
圖4-20、1.0 wt% PEDOT-Cs與PhmEDOT-Cs之著去色吸收度圖譜	42
圖4-21、PEDOT-Cs之階梯電位應答測試	43
圖4-22、PhmEDOT-Cs之階梯電位應答測試	43
圖4-23、1.0 wt% PEDOT-Cs薄膜之
參考文獻
. 龔宇睿、呂奇明,電致色變材料發展趨勢。工業材料,2014。
 . “Application issues for large-area electrochromic windows in commercial buildings”, E. S. Lee, D. L. DiBartolomeo, Solar Energy Materials & Solar Cells 71 (2002) 465-491.
 . “Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows”, A. Anders, J. L. Slack, Y. J. Richardson, Thin Solid Films 517 (2008) 1021-1026.
 . “Opportunities and challenges in science and technology of WO3 for electrochromic and related applications”, S. K. Deb, Solar Energy Materials & Solar Cells 92 (2008) 245-258.
 . “Recent developments in solid-state dye-sensitized solar cells”, J.-H. Yum, P. Chen, M. Grätzel, M. K. Nazeeruddin, ChemSusChem 1 (2008) 699-707.
 . “Photoelectrochemical cells”, M. Grätzel, Nature 414 (2001) 338-344.
 . “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, M. Grätzel, J. Photochem. Photobiol. A: Chem. 164 (2004) 3-14.
 . “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, B. O’Regan, M. Grätzel, Nature 353 (1991) 737-740.
 . “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-Based solar cells”, M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L.Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 123 (2001) 1613-1624.
 . “Dye-sensitized solar cells”, M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev. 4 (2003) 145-153.
 . “Mesoporous oxide junctions and nanostructured solar cells”, M. Grätzel, Current Opinion in Colloid & Interface Science 4 (1999) 314-312.
 . “Structural engineering of poly-(methacrylate) bearing push-pull type pendants oxindole-phenothiazine with tetrazole anchoring acceptor for efficient organic photovoltaic cells”, S. Ramasamy, M. Boopathy, S. Johnsanthoshkumar, K. Subramanian, Polymer 115 (2017) 128-136.


 . “Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review”, M. S. Ahmad, A. K. Pandey, N. A. Rahim, Renewable and Sustainable Energy Reviews 77 (2017) 89-108.
 . 朱俊銘,P25衍生光陽極組裝染敏太陽能電池之研究:I. 以PEG/P25漿料製備二氧化鈦光陽極與其最佳化II. 烷氧基矽烷共吸附劑對光電轉換效率之影響(碩士論文)。淡江大學,2013。
 . “A new electrochromic material from an indole derivative and its application in high-quality electrochromic devices”, G. Nie, L. Zhou, Q. Guo, S. Zhang, Electrochemistry Communications 12 (2010) 160-163.
 . “Electrosyntheses, characterizations and electrochromic properties of a copolymer based on 4,4’-di(N-carbazoyl)biphenyl and 2,2’-bithiophene”, B. Wang, J. Zhao, R. Liu, J. Liu, Q. He, Solar Energy Materials & Solar Cells 95 (2011) 1867-1874.
 . “Synthesis and electrochromic properties of 3,5-diphenyl-2,6-dithiophene-2-yldithieno[3,2-b;2’,3’-d]thiophene”, P. Dundar, I. Osken, O. Sahin, T. Ozturk, Synthetic Metals 162 (2012) 1010-1015.
 . “Electrochromic properties of 3-arylthieno[3,2-b]thiophenes”, A. Capan, T. Ozturk, Synthetic Metals 188 (2014) 100-103.
 . “A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene)”, T.-H. Lin, K.-C. Ho, Solar Energy Materials & Solar Cells 90 (2006) 506-520.
 . “Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4-ethylenedioxythiophene) and prussian blue”, T.-S. Tung, K.-C. Ho, Solar Energy Materials & Solar Cells 90 (2006) 521-537.
 . “Electrochromic device of PEDOT-PANI hybrid system for fast response and high optical contrast”, J.-H. Kang, Y.-J. Oh, S.-M. Paek, S.-J. Hwang, J.-H. Choy, Solar Energy Materials & Solar Cells 93 (2009) 2040-2044.
 . “Major effect of electropolymerization solvent on morpholohy and electrochromic properties of PEDOT films”, E. Poverenov, M. Li, A. Bitler, M Bendikov, Chem. Mater. 22 (2010) 4019-4025.


 . “Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene”, B. Wang, J. Zhao, C. Cui, R. Liu, J. Liu, H. Wang, H. Liu, Electrochimica Acta, 56 (2011) 4819-4827.
 . “The reversibility of ionic transport in PEDOT with application to a complementary electrochromic device”, T.-Y. Chiang, M.-C. Huang, C.-H. Tsai, Applied Surface Science 308 (2014) 293-300.
 . 陳恩,電聚合法製備碳黑/聚苯胺複合薄膜及其電致色變性質之研究(專題論文)。淡江大學,2011。
 . “A complementary electrochromic device based on carbon nanotubes/conducting polymers”, K.-Y. Shen, C.-W. Hu, L.-C. Chang, K.-C. Ho, Solar Energy Materials & Solar Cells 98 (2012) 294-299.
 . 葉如玉,鉑/二氧化矽-碳黑甲醇氧化電催化劑之製備與性質分析(碩士論文)。淡江大學,2014。
 . 陳恩,以聚苯胺及三氧化鎢薄膜搭配丁二腈/聚乙二醇固態電解質組裝可撓式互補型電致色變元件及其性質研究與效能最佳化(碩士論文)。淡江大學,2014。
 . “Solid polymer electrolytes based on coupling of polyetheramine and organosilane for applications in electrochromic devices”, H.-M. Liu, D. Saikia, C.-G. Wu, J. Fang, H.-M. Kao, Solid State Ionics 303 (2017) 144-153.
 . 李易晉,二苯亞甲基山梨醇與醇系統有機膠之結構與性質研究(碩士論文)。淡江大學,2013。
 . 黃柏勛,混摻二氧化矽和二苯亞甲基山梨醇/聚乙二醇有機膠複合材料的結構與性質研究(碩士論文)。淡江大學,2015。
 . “Electrochromism, a possible change of color producibale in dyes by an electric field”, J. R. Platt, J. Chem. Phys. 34 (1961) 862-863.
 . “Photoelectrochromic windows and displays”, C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Nature, 383 (1996) 608-610.
 . “Photoelectrochromic cells and their applications”, B.A. Gregg, Endeavour, 21 (1997) 52-55.

 . “Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO2 photovoltaic cell”, Y. Li, J. Hagen, D. Haarer, Synthetic Metals, 94 (1998) 273-277.
 . “New photoelectrochromic device”, A. Hauch, A. Georg, S. Baumgartner, U. O. Krasovec, B. Orel, Electrochimica Acta, 46 (2001) 2131-2136.
 . “Comparison of photoelectrochromic devices with different layer configurations”, A. Hauch, A. Georg, U. O. Krasovec, B. Orel, J. Electrochem. Soc., 149 (2002) H159-H163.
 . “Performance of a solid-state photoelectrochromic device”, U. O. Krasovec, A. Georg, A. Georg, V. Wittwer, J. Luther, M. Topic, Solar Energy Materials & Solar Cells, 84 (2004) 369-380.
 . “A photoelectrochromic device using a PEDOT thin films”, J.-Y. Liao, K.-C. Ho, J. New Mater. Electrochem. Syst., 8 (2005) 37-47.
 . “Photoelectrochromic window with Pt catalyst”, A. Georg, A. Georg, U. O. Krasovec, Thin Solid Films 502 (2006) 246-251.
 . “A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film with an organic dye”, C.-Y. Hsu, K.-M. Lee, J.-H. Huang, K.R. Justin Thomas, J. T. Lin, K.-C. Ho, J. Power Sources 185 (2008) 1505-1508.
 . “Fast-switching photovoltachromic cells with tunable transmittance”, J.-J. Wu, M.-D. Hsieh, W.-P. Liao, W.-T. Wu, J.-S. Chen, ACS Nano, 3 (2009) 2297-2303.
 . “Highly efficient smart photovoltachromic devices with tailored electrolyte composition”, A.Cannavale, M. Manca, M. Malara, L. D. Marco, R. Cingolani, G. Gigli, Energy Environ. Sci., 4 (2011) 2567-2574.
 . “A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell”, S. Yang, J. Zheng, M. Li, C. Xu, Solar Energy Materials & Solar Cells, 97 (2012) 186-190.
 . “Photovoltachromic device with a micropatterned bifunctional counter electrode”, A.Cannavale, M. Manca, L. D. Marco, R. Grisorio, S. Carallo, G.P. Suranna, G. Gigli, ACS Appl. Matter. Interfaces, 6 (2014) 2415-2422.


 . “Perovskite photovoltachromic cells for building integration”, A.Cannavale, G. Eperon, P. Cosarri, A. Abate, H. J. Snaith, G. Gigli, Energy Environ. Sci., 8 (2015) 1578-1584.
 . “Highly optical performance photoelectrochromic device based on Br-/Br3- electrolyte”, X. Wu, J. Zheng, C. Xu, Electrochimica Acta, 191 (2016) 902-907.
 . “Forthcoming perspectives of photoelectrochromic device: a critical review”, A.Cannavale, P. Cosarri, G. E. Eperon, S. Colella, F. Fiorito, G. Gigli, H. J. Snaith, A. Listorti, Energy Environ. Sci., 9 (2016) 2682-2719.
 . “Electrochromic enhancement of poly(3,4-ethylenedioxythiophene) films functionalized with hydroxymethyl and ethylene oxide”, S. Zhang, J. Xu, B. Lu. L. Qin, L. Zhang, S. Zhen, D. Mo, J. Polym. Sci., Part A: Polym. Chem., 52 (2014) 1989-1999.
 . “Preparation and characterization of micropatterned prussian blue thin films with enhanced electrochromic properties”, C.-L. Lin, L.-C. Liao, Surface & Coatings Technology, 259 (2014) 330-334.
 . “Preparation of micropatterned polyaniline thin films with enhanced electrochromic properties by electrostatic field-assisted potentiostatic deposition”, C.-L. Lin, L.-C. Liao, Solar Energy Materials & Solar Cells, 145 (2016) 54-60.
 . 鄭宗麟,使用以靜電力場輔助電鍍法製備具微米構形聚二氧乙基噻吩-鉑複合薄膜光電致色變元件之製作與性質分析(碩士論文)。淡江大學,2017。
 . “Fast, self-supplied, all-solid photoelectrochromic film”, G. De Filpo, S. Mormile, F. P. Nicoletta, G. Chidichimo, J. Power Sources, 195 (2010) 4365-4369.
 . “A new design paradigm for smart window: photocurable polymers for quasi-solid photoelectrochromic devices with excellent long-term stability under real outdoor operating conditions”, F. Bella, G. Leftheriotis, G. Griffini, G. Syrrokostas, S. Turri, M. Grätzel, C. Gerbaldi, Adv. Funct. Mater., 26 (2016) 1127-1137.
 . “Photoelectrochromic devices: influence of device architecture and electrolyte composition”, C. Costa, I. Mesquita, L. Andrade, A. Mendes, Electrochimica Acta, 219 (2016) 99-106.
 . “FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells”, T.Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, N. Tanabe, J. Photochem. Photobiol., A: Chem., 164 (2004) 199-202.
 . 廖禮君,以靜電力場輔助電鍍法製備具微米構形電致色變薄膜及其性質之研究(碩士論文)。淡江大學,2014。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信