§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2308201609333400
DOI 10.6846/TKU.2016.00759
論文名稱(中文) 超濾膜在高黏度溶液中微粒分離可行性研究
論文名稱(英文) The Feasibility Study of Particle Separation from the High Viscosity Solution by Ultrafiltration Membrane System
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系博士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 史濟元
研究生(英文) Chi-Yuan Shih
學號 801480038
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2016-06-02
論文頁數 79頁
口試委員 指導教授 - 高思懷(shgau@mail.tku.edu.tw)
委員 - 高思懷(shgau@mail.tku.edu.tw)
委員 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 游勝傑(siyou@cycn.edu.tw)
關鍵字(中) 超濾膜
晶片切削液
果糖
奈米顆粒
刮除設施
清潔生產
關鍵字(英) Ultrafiltration membrane
solar cell cutting oil
fructose
nano-particle
scraping device
clean production
第三語言關鍵字
學科別分類
中文摘要
污染防治之首要觀念在於污染減量,除可降低汙染處理的負荷及成本支出外,亦可符合清潔生產的目的。就傳統懸浮微粒處理過程而言,在製程上為避免額外添加物質影響產品品質,均以過濾或沉澱方式來處理,但對於黏度高且流動性差之奈米級顆粒則效果不佳。近年來薄膜技術有長足進步,且市場價格大幅下降,但因薄膜阻塞及膜面清理的問題不易克服,致使薄膜系統仍未能普遍運用於製程減廢領域中。
本研究使用國產的超濾薄膜結合物理性薄膜清理技術,將2種高黏度溶液中之微細顆粒予以去除,同時保持一定之過濾流量,回收或製造符合規格之產品。其一為太陽能晶片切削液的回收,將晶片切削廢液中之SiC、Si及Fe與切削液分離,回收切削液與切削原液在物理及化學性質上相差不大,且回收切削液可以50%以上摻配率再回到製程中使用,過濾後最終殘渣則可再利用於其他產業;另一為果糖發酵液之製程簡化,以超濾薄膜系統替代Oliver矽藻土過濾及板框式壓濾機,不但可減少廢棄物量,亦可增加果糖產量,果糖品質符合產品之品質需求,至於過濾後殘渣仍能作為其他產品之添加料。以上2種實驗印證超濾膜系統在高黏度溶液中去除奈米級顆粒之技術性與財務性均屬可行,可降低生產成本及減少廢棄物產生,達到減廢及清潔生產的目標。
英文摘要
The primary concept of pollution control was waste reduction which could reduce the loading and save the cost of waste treatment. In addition, waste reduction can meet the purpose of clean production. Sedimentation and filtration are the traditional methods for removing suspended solids, retaining product quality without adding additional materials. However, those methods are not suitable for nano-particle separation from high viscosity solution. Recently, the development of  membrane filtration technologies is very rapid and the capital cost of membrane process is reduced significantly, however, application of membrane filtration technologies in the waste reduction field is still not very popular because of the difficulties of fouling remove.
A ultrafiltration membrane system produced domestically with physical fouling clean device integrated was used to remove nano-particles from two different solutions with high viscosity in this study. The membrane system could maintain stable filtration rate and obtain products with good quality. The first application was to remove the SiC, Si and Fe particles from the waste slurry in order to obtain recycle cutting oil with quality matching that of the new oil and to be reused in the original ingot cutting process over reused ratio of 50%. Also, the final residue could be reuse in steel manufacturing process. The second application was to replace the original Oliver filtration and filter press and simplify the fluctose manufacturing process. The test result indicated that the membrane process could reduce the final waste which can be reused as fertilizer and increase the product yield with produce quality matching the quality requirement for fluctose. These studies proved the technical and financial feasibilities of using ultrafiltration membrane process to remove nano-particle from high viscosity solution. The membrane process could bring down manufacturing cost and at the same time reduce waste production, achieving waste minimization and clean production purpose.
第三語言摘要
論文目次
目錄
摘要
圖目錄…………………………………………………………………………..Ⅲ
表目錄…………………………………………………………………………..V
第一章 前言 .......................................................................................................1
1.1 研究緣起.......................................................................................................1
1.2 研究內容.......................................................................................................3
第二章 文獻回顧 ...............................................................................................4
2.1 超濾膜過濾理論...........................................................................................4
2.1.1 薄膜技術發展概況 ...........................................................................4
2.1.2 超濾膜種類 .......................................................................................4
2.1.3 超濾薄膜阻塞 ...................................................................................9
2.1.4 超濾膜理論 .....................................................................................15
2.2 圓形平板膜技術.........................................................................................15
2.3 清潔生產技術.............................................................................................18
2.4 太陽能產業發展趨勢.................................................................................20
2.5 太陽能晶片切割廢液回收技術.................................................................22
2.6 果糖發酵液分離技術.................................................................................27
第三章 研究方法 .............................................................................................30
3.1 研究架構.....................................................................................................30
3.2 實驗內容與步驟.........................................................................................31
3.2.1 薄膜系統適用性分析 .....................................................................31
3.2.2 薄膜刮除系統材質適用性選擇 .....................................................31
3.2.3 太陽能晶片切削油回收實驗規劃 .................................................32
3.2.4 果糖發酵液過濾製程實驗規劃 .....................................................34
3.3 分析方法與檢測項目.................................................................................35
3.3.1 太陽能晶片切削油回收分析方法與檢測項目 .............................35
3.3.2 果糖發酵液過濾製程分析方法與檢測項目 .................................39
第四章 結果與討論 .........................................................................................41
4.1 太陽能晶片切割廢液回收..........................................................................41
 4.1.1 薄膜適用性…….................................................................................41
 4.1.2 刮除系統材質選擇…………………………………………..……...45
II
 4.1.3 切削液回收前後顆粒粒徑分析………………………………...…..47
 4.1.4 整體回收系統質量分析………………………………………...…..49
 4.1.5 薄膜過濾表面顆粒累積分析…………………………………...…..50
 4.1.6 回收切削油特性分析…………………………………………..…..50
 4.1.7 回收切削油摻配測試特性分析………………………………..…..53
 4.1.8 薄膜過濾晶粒之再利用規劃…………………………………..…..54
 4.1.9 回收切削油經濟可行性評估…………………………………..…..55
 4.1.10 切削油回收後殘渣處理技術評估…………………………..……56
 4.1.11 過濾回收與蒸餾回收之比較………………………………..……56
4.2 果糖發酵液分離技術.................................................................................58
 4.2.1 粒徑分析…………………………………………………………….58
 4.2.2 操作溫度、壓力與薄膜通量分析………………………………….61
 4.2.3 曝氣通量分析……………………………………………………….64
 4.2.4 果糖色度與濁度與分析…………………………………………….67
 4.2.5 果糖清潔生產製程與經濟比較分析……………………………….68
4.3 綜合討論.....................................................................................................70
 4.3.1 薄膜通量與黏度變化的關係……………………………………….70
 4.3.2 研究對象選擇之考量…………………...……………………..……71
 4.3.3 刮除設施選擇之考量……………………………………………….71
 4.3.4 分析項目之選擇…………………………………………………….72
 4.3.5 與節能減碳的關係………………………………………………….72
 4.3.6 與清潔生產的關係………………………………………………….72
 4.3.7 薄膜阻力係數分析………………………………………………….73
第五章 結論與建議 .........................................................................................74
5.1 結論.............................................................................................................74
5.2 建議.............................................................................................................75
參考文獻 .............................................................................................................77

圖目錄
圖 2.1-1 平板式薄膜模組.............................................................................................5
圖 2.1-2 螺旋式薄膜模組.............................................................................................5
圖 2.1-3 管狀式薄膜模組.............................................................................................6
圖 2.1-4 中空纖維薄膜模組.........................................................................................6
圖 2.1-5 薄膜孔徑對不同物質之分離範圍.................................................................7
圖 2.1-6 引起薄膜阻塞之物質...................................................................................10
圖 2.2-1 台灣民間公司創新的圓形平板式超濾膜...................................................16
圖 2.2-2 污染物膜面流動分析圖...............................................................................16
圖 2.2-3 薄膜材質延伸情形分析...............................................................................17
圖 2.4-1 矽晶圓切片加工製程...................................................................................22
圖 2.4-2 太陽能晶片切割液內物質含量質量平衡圖...............................................25
圖 2.5-1 利用微生物酵素由葡萄糖造製異構化果糖的生產流程圖.......................28
圖 3.1-1 本研究架構流程圖.......................................................................................30
圖 3.2-1 太陽能晶片切割用油 DEG 回收初濾與精濾處理流程圖 ........................33
圖 3.2-2 精濾模組之薄膜表面刮除設施內部結構...................................................33
圖 3.2-3 果糖發酵液薄膜過濾處流程圖...................................................................35
圖 3.3-1 剪應力與張應力關係圖……………………………………………………37
圖 4.1-1 初濾前之切削廢液(3 批)內含顆粒粒徑分析.............................................47
圖 4.1-2 廢棄切削油及回收切削油照片比較...........................................................48
圖 4.1-3 精濾前切削油內含顆粒之粒徑分析圖.......................................................48
圖 4.1-4 精濾後回收切削油內含顆粒之粒徑分析圖...............................................48
圖 4.1-5 切削廢泥回收切削油過程之質量分析表...................................................49
圖 4.1-6 過濾薄膜未過濾前之 SEM 解析圖(1,000 倍)............................................51
圖 4.1-7 過濾薄膜未過濾前之表面 SEM 解析圖(10,000 倍)..................................51
圖 4.1-8 過濾薄膜已經過濾後之 SEM 解析圖(500 倍)...........................................52
圖 4.1-9 過濾後薄膜表面晶粒 SEM 解析圖(500 倍)...............................................52
圖 4.1-10 切割回收液(上)/新油 GC-MASS 成份分析對照圖.................................53
V
圖 4.2-1 果糖發酵液過濾前顆粒分布分析圖...........................................................59
圖 4.2-2 果糖發酵液過濾後顆粒分布分析圖...........................................................59
圖 4.2-3 果糖發酵液加入活性碳且過濾前之 SEM 圖(Bar=50 µm) .......................60
圖 4.2-4 果糖發酵液加入活性碳且過濾後之 SEM 圖(Bar=10 µm) .......................60
圖 4.2-5 操作溫度對應黏度測試之斜率圖(50℃)....................................................61
圖 4.2-6 操作溫度對應黏度測試之斜率圖(60℃)....................................................62
圖 4.2-7 薄膜過濾系統操作溫度與通量關係圖.......................................................62
圖 4.2-8 薄膜通量與時間關係變動圖.......................................................................67
圖 4.3-1 黏度與薄膜通量之關係圖...........................................................................71
表目錄
表 2.1-1 不同種類的超濾薄膜之優缺點比較.............................................................8
表 2.1-2 阻塞物對薄膜之影響及對策....................................................................... 11
表 2.4-1 2015 上半年全球前 5 大太陽能安裝國籍安裝量 ......................................21
表 2.4-2 切削油 MSDS 化學特性.............................................................................24
表 2.5-1 食品工業分類...............................................................................................27
表 4.1-1 過濾薄膜膜組適用性評估(以切削油回收為例) .......................................45
表 4.1-2 過濾薄膜膜組刮除系統測試適用性評估...................................................46
表 4.1-3 ICP-AES 重金屬分析回收液中之干擾因子...............................................53
表 4.1-4 各種不同摻配比回收切割油之特性分析...................................................54
表 4.1-5 過濾殘渣 ICP-MS 成分分析.......................................................................55
表 4.1-6 回收切削油不同摻配比時每年降低成本效益...........................................55
表 4.1-7 薄膜過濾法與蒸餾法回收切削油差異性分析...........................................58
表 4.2-1 薄膜通量與曝氣量比較表(50℃,曝氣量 1m
3
/min).................................66
表 4.2-2 三種曝氣量與薄膜通量比較表...................................................................66
表 4.2-3 三種曝氣量下之色度與濁度比較表...........................................................68
表 4.2-4 三種曝氣量下之糖度變化比較表...............................................................68
參考文獻
Association, Refiners, 2010, Telling the Positive Story of Corn, Annual Report.
Association, American Medical, 2009, The Health Effects of High Fructose Syrup, Report 3 of the Council on Science and Public Health (A-08).
Davis, M. L., 2011,Water and Wastewater Engineering Design Principles and Practice, McGraw Hill International edition.
Gaudet, G., S. Grumbine, N. Naguib and F. Batllo, 2009, Wire saw slurry recycling process, US 2009/0293369 A1.
Grabbe, A. and T. M. Ragan, 2010, Methods to recover and purify silicon particles from saw kerf, US2010/0163462 A1.
Heldman, D. R. and R. W. Hartel, 1997, Principles of food processing, Springer Science & Business Media.
Ino, Y. and H. Hirano, 2011, Mass spectrometric characterization of proteins transferred from polyacrylamide gels to membrane filters, FEBS Journal 278(20), 3807-3814.
Lee, S. J. and J. K. Rose, 2012, A yeast secretion trap assay for identification of secreted proteins from eukaryotic phytopathogens and their plant hosts, Plant Fungal Pathogens, Springer, 519-530.
Lewandowicz, G., W. Białas, B. Marczewski and D. Szymanowsk , 2011, Application of membrane distillation for ethanol recovery during fuel ethanol production, Journal of Membrane Science 375(1), 212-219.
Lin, Y. C., T. Y. Wang, C. W. Lan and C. Y. Tai, 2010, Recovery of silicon powder from kerf loss slurry by centrifugation, Powder Technology 200, 216-223.
Liu, X. D., 2009, The study for recovery spent cutting oil by membrane, Dalian Institute of Technology.
S. Luenser-Brewer’s Digest, 1987, Applications of Microbial Enzymes to Produce High Fructose Corn Syrup and Other Corn Sweeteners.
Scott, K., 1995, Handbook of industrial membranes, Elsevier.
Su, Y. C., 2013, Filter & Filter material, Journal of Pulp and Paper Science 17(2), 43-48.
Sung, I. K., N. S. Han and B. S. Kim, 2012, Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum, Bioprocess and biosystems engineering 35(5), 715-720.
Tsai, T. H., 2011, Silicon sawing waste treatment by electrophoresis and gravitational settling, Journal of hazardous materials 189, 526-530.
Tang, W. J., 2009, The study for recovery SiC and Si from spent cutting oil by the electrical field, Tamkang University.
Wang, H. Y., Y. Tan, J. Y. Li, Y. Q. Li and W. Dong, 2012, Removal of silicon carbide from kerf loss slurry by Al–Si alloying process, Separation and Purification Technology 89, 91-93.
Wilkes, J.O., Fluid mechanics for chemical engineers, Prentice Hall, 2nd edition.
Youn, K. S., J. H. Hong, D. H. Bae, S. J. Kim and S. D. Kim, 2004, Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment, Journal of Membrane Science 228(2), 179-186.
Zavattari, C. and G. Fragiacomo, 2001, Method for the separation, regeneration and reuse of an exhausted glycol-based slurry, US6231628 B1.
史濟元、郭其昌、黃健民、許淑娟,「軟性電路板廢水回收探討」,工業污染防治,第114期,2011。
行政院主計總處,「中華民國行業標準分類(第10次修訂)」,2016。
吳紫賓,¬「UASB厭氧法串聯活性污泥處理太陽能晶圓廢水之研究」,碩士論文,國立中央大學環境工程研究所,2013。
施郁霈,「自矽泥廢料中回收切割液之研究」, 碩士論文, 國立臺北科技大學資源工程研究所,2011。
許偉哲,「石英磚研磨污泥回用與太陽能晶圓切削廢油分離之研究」,碩士論文, 國立聯合大學環境與安全衛生工程學系,2010。
陳玠源,「結合Fenton氧化及生物反應槽處理含聚乙二醇之研磨廢水」,碩士論文, 淡江大學水資源及環境工程學系,2009。
陳鳴吉、麥朝創、李坤穎、顏炳華、游博雄,「太陽能矽晶圓放電切割加工研究」,機械工業雜誌,第337期,2011。
經濟部工業局,「工業廢水逆滲透處理」,工業污染防治技術手冊,1993。
綠能趨勢網,http;//www.energytrend.com.tw,「全球前5大太陽能安裝國籍安裝量」,2015。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信