§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2308201515140100
DOI 10.6846/TKU.2015.00744
論文名稱(中文) 螺旋通道型直接接觸式薄膜蒸餾系統之海水淡化提升
論文名稱(英文) Performance improvement of the concentric circular direct contact membrane distillation module with spiral wire channel
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 蔡豐吉
研究生(英文) Feng-Chi Tsai
學號 602400466
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-20
論文頁數 131頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 張煖(nhchang@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
關鍵字(中) 薄膜蒸餾
透膜通量
螺旋型通道
螺旋因子
關鍵字(英) membrane distillation
trans-membrane flux increment
spiral wire channel
第三語言關鍵字
學科別分類
中文摘要
薄膜蒸餾海水淡化用來製造純水提供民生及工業使用,因其優點特色為具有裝置簡潔、低成本、可模組化、高介面面積等,為近來廣受重視的一種技術。然而,薄膜蒸餾因模組通道限制,對於系統產能有相當顯著的影響,此現象越明顯則產能相對低落。
    本研究針對薄膜蒸餾之主要設備進行效率改善的研究,目的為:(1)於模組之進料側增加螺旋型檔板之設計來增加流速以及總通道長度,以求有效改善系統進料側離開系統後之殘於能量,並歸納出一經驗公式,描述此型式的螺旋因子對於通道內部熱對流效應的影響;(2)藉由一維數學模型針對薄膜蒸餾設備的熱量與質量傳送機制進行研究,配合實驗分析以驗證經驗公式與數學模型的正確性,並探討設計參數及操作條件對於薄膜蒸餾系統之流體溫度分佈、溫度極化現象、純水透膜通量增加百分率與水力損耗提升百分率的影響。
    研究結果顯示,套管型與螺旋通道型直接接觸式薄膜蒸餾系統之理論值與實驗值的相對誤差總平均為7.61 %,而本研究設定螺旋因子能夠有效的提升系統透膜通量,最高可達到單位面積的39.5%的增益。本研究以操作在低體積流率之設備為主,除了有效利用通道內熱側流體以降低操作成本外,經由改善後的設計可提升設備效能並得到增加透膜通量總產量的效果。
英文摘要
A new design of the DCMD module winding a spiral wire within the annulus of the concentric circular tube was investigated theoretically and experimentally in aiming to increase the pure water productivity in saline water desalination.  The hot sea water stream flowing through the annulus of a concentric circular tube, which a tight fitting spiral wire in a small annular spacing is inserted, could enhance the improvement of device performance.  The purposes of this study are (1) to develop the heat-transfer coefficient correlation for the spiral wire channel; (2) to develop a one-dimensional mathematical model and propose a general numerical method for predicting pure water productivity of DCMD systems; (3) to study the effects of various operation parameters including the inlet fluid temperatures, volumetric flow rate spiral wire pitch on the pure water productivity improvement.  The correlated equation of estimating heat-transfer coefficient for the wire helix by using spiral flow channel was obtained, and the results show that the agreement between the experimental results and the theoretical predictions are fairly good. The new design of DCMD module winding a spiral wire within the annulus of the concentric circular tube can effectively enhance the mass flux, among the operating conditions set in this study, up to 39.5% of the gain.
第三語言摘要
論文目次
中文摘要________________________I 
英文摘要________________________II 
目錄__________________________III 
圖目錄_________________________VI 
表目錄_________________________XI 
第一章 緒論______________________1 
1-1引言________________________1 
1-2薄膜蒸餾系統簡介__________________4 
1-3研究動機與方向___________________8 
第二章 文獻回顧____________________10 
2-1直接接觸式薄膜蒸餾_________________10 
2-2螺旋通道行系統設計_________________15 
第三章 理論分析____________________16 
3-1直接接觸式薄膜蒸餾之熱量、質量傳送機制分析_____16 
3-1-1 直接接觸式薄膜蒸餾質傳機制之理論分析_______18 
3-1-2 直接接觸式薄膜蒸餾熱傳機制之理論分析_______23 
3-1-3 溫度極化現象與溫度極化係數____________26 
3-2螺旋通道型系統之螺旋因子納賽數經驗公式建立與模型__28 
3-3螺旋通道型直接接觸式薄膜蒸餾系統一維理論模型之建立_31 
3-3-1 套管熊與螺旋通道型薄膜蒸餾系統一維理論模型____32 
3-3-2 理論數據取得與計算分析流程-朗吉庫塔數值解析方法與 
高斯正交轉換______________________36 
3-3-3 實驗數據之取得與分析計算流程___________43 
3-4系統水力損耗____________________52 
3-5數學模擬參數之設定_________________54 
第四章 實驗分析____________________57 
4-1螺旋通道型直接接觸式薄膜蒸餾系統__________57
4-2直接接觸式薄膜蒸餾模組_______________62
4-3實驗步驟______________________66
第五章 結果與討論___________________67
5-1螺旋通道型直接接觸式薄膜蒸餾系統之納賽數經驗公式迴歸
分析__________________________67
5-2套管型直接接觸式薄膜蒸餾系統____________72
5-2-1 系統操作變因對於透膜通量之影響__________72
5-2-2 溫度分佈與溫度極化現象______________	72
5-3螺旋通道型直接接觸式薄膜蒸餾系統__________86
5-3-1 螺旋因子對於透膜通量之影響____________86
5-3-2 溫度分佈與溫度極化現象	______________87
5-4模組設計參數於透膜通量與水力損耗之影響_______107
5-4-1 透膜通量增益程度與水力損耗提升程度________107
5-4-2 透膜通量與水力損耗提升程度之比較_________108
第六章 結論與未來展望_________________116
6-1新型擾流增益因子之納賽數經驗公式__________116
6-2套管型直接接觸式薄膜蒸餾系統____________117
6-3添加螺旋因子之螺旋通道型直接接觸式薄膜蒸餾系統___117
6-4模組設計參數於透膜通量與水力損耗之影響_______118
6-5未來展望______________________118
符號說明________________________119
參考文獻________________________124

圖目錄
圖1-1-1	海水淡化成本_________________4
圖1-2-1	薄膜蒸餾之操作型態______________6
圖1-2-2	薄膜蒸餾之模組型式______________7
圖1-3-1	研究架構圖__________________9
圖3-1-1	薄膜蒸餾系統熱量及質量傳送機制示意圖_____17
圖3-1-2	薄膜蒸餾於薄膜內之質量傳送阻力模式______20
圖3-1-3	薄膜蒸餾之質量傳送阻力示意圖	_________22
圖3-1-4	熱量傳送之阻力串聯模式____________23
圖3-1-5	溫度極化示意圖________________26
圖3-3-1	質接接觸式模組示意圖_____________32
圖3-3-2	順流操作直接接觸式薄膜蒸餾系統示意圖_____33
圖3-3-3	逆流操作質接接觸式薄膜蒸餾系統示意圖_____35
圖3-3-4	朗吉庫塔法求解聯立方程組之計算示意圖_____39
圖3-3-5	郎吉庫塔之布幅於實際螺旋通道型模組之示意圖__39
圖3-3-6	朗吉庫塔法求解聯立方程組之計算示意圖_____40
圖3-3-7	修正後朗吉庫塔法求解聯立方程組之計算示意圖__41
圖3-3-8	螺旋通道型系統之計算簡單示意圖________42
圖3-3-9	螺旋通道型系統計算方式(1)___________42
圖3-3-10	螺旋通道型系統計算方式(2)___________43
圖3-3-11	螺旋通道型系統計算方式(3)___________43
圖3-3-12	不同操作流態之溫度分布示意圖	_________44
圖3-3-13	熱對流係數運算流程圖_____________47
圖3-3-14	順流套管型薄膜蒸餾系統運算流程圖_______48
圖3-3-15	逆流套管型薄膜蒸餾系統運算流程圖_______49
圖3-3-16	順流螺旋通道型薄膜蒸餾系統運算流程圖_____50
圖3-3-17	逆流螺旋通道型薄膜蒸餾系統運算流程圖_____51
圖4-1-1	順流螺旋通道型直接接觸式薄膜蒸餾系統簡圖___58
圖4-1-2	逆流螺旋通道型直接接觸式薄膜蒸餾系統簡圖___58
圖4-1-3	直接接觸式薄膜蒸餾實驗設備圖	_________59
圖4-1-4	溢流桶實際圖_________________61
圖4-2-1	直接接觸式薄膜蒸餾模組示意圖	_________62
圖4-2-2	內側壓克力管實際圖______________62
圖4-2-3	中央之壓克力管實際圖_____________63
圖4-2-4	螺旋型檔板實際圖_______________64
圖4-2-5	固定螺旋檔板後之薄膜管____________65
圖4-2-6	直接接觸式模組實際圖_____________65
圖5-1-1	通道流體速度與通道截面積關係圖________70
圖5-1-2	納賽數理論值與實驗值比較圖__________71
圖5-2-1	順流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響_______________________75
圖5-2-2	順流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響_______________________76
圖5-2-3	逆流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響_______________________77
圖5-2-4	逆流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響_______________________78
圖5-2-5	順流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響_______________81
圖5-2-6	逆流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響_______________82
圖5-2-7	順流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響______________________83
圖5-2-8	逆流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響______________________84
圖5-3-1	順流操作下且熱側流體為純水時,裝載寬度2cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________88
圖5-3-2	順流操作下且熱側流體為鹽水時,裝載寬度2cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________89
圖5-3-3	逆流操作下且熱側流體為純水時,裝載寬度2cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________90
圖5-3-4	逆流操作下且熱側流體為鹽水時,裝載寬度2cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________91
圖5-3-5	順流操作下且熱側流體為純水時,裝載寬度3cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________92
圖5-3-6	順流操作下且熱側流體為鹽水時,裝載寬度3cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________93
圖5-3-7	逆流操作下且熱側流體為純水時,裝載寬度3cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________94
圖5-3-8	逆流操作下且熱側流體為鹽水時,裝載寬度3cm之螺旋型檔板,不同操作參數對於透膜通量之關係圖_________95
圖5-3-9	順流操作下且熱側流體為鹽水時,不同螺旋型檔板之寬度與操作參數對於透膜通量之關係圖_____________96
圖5-3-10	逆流操作下且熱側流體為鹽水時,不同螺旋型檔板之寬度與操作參數對於透膜通量之關係圖_____________97
圖5-3-11	順流狀態下且熱側流體為鹽水時,套管型系統與螺旋通道型系統於主流區域與薄膜表面溫度分佈之影響________102
圖5-3-12	逆流狀態下且熱側流體為鹽水時,套管型系統與螺旋通道型系統於主流區域與薄膜表面溫度分佈之影響________103
圖5-3-13	順流狀態下且熱側流體為鹽水時,不同螺旋型檔板之寬度與操作參數於溫度極化係數之影響_____________104
圖5-3-14	逆流狀態下且熱側流體為鹽水時,不同螺旋型檔板之寬度與操作參數於溫度極化係數之影響_____________105
圖5-4-1	順流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比較圖	______________113
圖5-4-2	逆流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比較圖	______________114
		
表目錄
表1-1-1	全球水資源的蘊含量與分布情形_________2
表1-2-1	不同操作型態之薄膜蒸餾應用領域________7
表3-2-1	經驗式參數表_________________28
表3-5-1	模組相關參數_________________54
表3-5-2	疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數__54
表3-5-3	流體相關參數_________________55
表3-5-4	流體相關參數式________________56
表4-2-1	PTFE/PP複合膜之薄膜性質____________64
表5-1-1	納賽數經驗公式所需實驗數據之操作變因表____67
表5-2-1	順流操作下套管型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差比較表___________________79
表5-2-2	順流操作下套管型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差比較表___________________80
表5-2-3	不同操作流向於平均溫度極化係數之影響比較表__85
表5-3-1	順流純水操作下螺旋通道型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	______________98
表5-3-2	順流鹽水操作下螺旋通道型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表______________99
表5-3-3	逆流純水操作下螺旋通道型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	______________100
表5-3-4	逆流鹽水操作下螺旋通道型直接接觸式薄膜蒸餾系統,實驗值與理論值相對誤差比較表_______________101
表5-3-5	不同操作流向與模組於平均溫度極化係數之影響比較表_____________________________106
表5-4-1	順流純水操作下套管型與螺旋通道型直接接觸式薄膜蒸餾模組系統同螺旋檔板寬度之理論透膜通量增益比例表_____110
表5-4-2	逆流純水操作下套管型與螺旋通道型直接接觸式薄膜蒸餾模組,不同螺旋檔板寬度之理論透膜通量增益比例表_____110
表5-4-3	順流鹽水操作下套管型與螺旋通道型直接接觸式薄膜蒸餾模組,不同螺旋檔板寬度之理論透膜通量增益比例表_____111
表5-4-4	逆流鹽水操作下套管型與螺旋通道型直接接觸式薄膜蒸餾模組,不同螺旋檔板寬度之理論透膜通量增益比例表_____111
表5-4-5	不同螺旋檔板寬度之水力損耗提升程度比較表___112
表5-4-6	順流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表	______________115
表5-4-7	逆流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表	______________115
參考文獻
參考文獻
1.	Pidwireny M., “Fundanmentals of Physical Geography.” The Hydrologic Cycle, 2nd Edition (2006).
2.	樓基中編著,水資源與環境保育SOS環保救地球,台北市,五南圖書出版股份有限公司,初版,2010。
3.	Kalogirou SA., “Seawater desalination using renewable energy sources,” Prog. Energy Combust. Sci., 31, 242-281 (2005).
4.	Thomson M., Miranda M.S., and Infield D., “A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range,” Desalination, 153, 229–236 (2002).
5.	Cath T.Y., Adams V.D. and Childress E., “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement,” J. Membr. Sci., 228, 5–16 (2004).
6.	Meindersma G.W., Guijt C.M. and de Haan A.B., “Desalination and water recycling by air gap membrane distillation,” Desalination, 187, 291–301 (2006).
7.	El-Bourawi M.S., Ding Z., Ma R. and Khayet M.A., “A framework for better understanding membrane distillation separation process,” J. Membr. Sci., 285, 4–29 (2006).
8.	Ho-Ming Yeh, “The improvement in separation of concentric tube thermal diffusion columns,” Geogia Institute of Technology, (1969).
9.	Banat F., Jwaied N., Rommel M., Koschikowski J. and Wieghaus M., “Desalination by a "compact SMADES" autonomous solarpowered membrane distillation unit,” Desalination, 217, 29–37 (2007).

10.	Rommel M., Koschikowski J. and Wieghaus M., “Solar driven desalination systems based on membrane distillation,” NATO Security through Science Series C: Environmental Security, 247–257 (2007).
11.	Calabro V., Drioli E. and Matera F., “Membrane distillation in the textile wastewater treatment,” Desalination, 83, 209–224 (1991).
12.	Cartinella J.L., Cath T.Y., Flynn M.T., Miller G.C., Hunter K.W. and Childress A.E., “Removal of natural steroid hormones from wastewater using membrane contactor processes,” Environ. Sci. Technol., 40, 7381–7386 (2006).
13.	Calabro V., Jiao B.L. and Drioli E., “Theoretical and experimental study on membrane distillation in the concentration of orange juice,” Ind. Eng. Chem. Res., 33, 1803–1808 (1994).
14.	Onsekizoglu P., Bahceci K.S. and Acar J., “The use of factorial design for modeling membrane distillation,” J. Membr. Sci., 349, 225–230 (2010).
15.	Tomaszewska M., Gryta M. and Morawski A.W., “Study on the concentration of acids by membrane distillation,” J. Membr. Sci., 102, 113–122 (1995).
16.	Tomaszewska M., Gryta M., and Morawski A.W., “Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation,” J. Membr. Sci., 166, 149–157 (2000).
17.	Sakai K., Muroi T., Ozawa K., Takesawa S., Tamura M. and Nakane T., “Extraction of solute-free water from blood by membrane distillation,” Trans. Am. Soc. Artif. Intern. Organs , 32, 397-400 (1986).
18.	Lawson  K.W. and Lloyd D.R., “Membrane distillation.” J. Membr. Sci., 124, 1-25 (1997).
19.	Tomaszewska M., Gryta M., Morawski A.W. and Grzechulska J., “Membrane distillation of NaCl solution containing natural organic matter,” J. Membr. Sci., 181, 279–287 (2001)
20.	Khayet M., Mengual J.I., and Matsuura T., “Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation,” J. Membr. Sci., 252, 101–113 (2005).
21.	Banat F.A., Abu Al-Rub F.A., Jumah R. and Al-Shannag M., “Modeling of desalination using tubular direct contact membrane distillation modules,” Sep. sci. technol., 34, 2191-2206 (1999).
22.	Bodell B.R., “Silicone rubber vapor diffusion in saline water distillation,” United States Patent Application Serial No. 285,32 (1963).
23.	Weyl P.K. Recovery of demineralized water form saline waters, United States Patent 3,340,186 (1967).
24.	Findley M.E., “Vaporization through porous membranes,” Ind. Eng. Chem. Process Des. Dev., 6, 226-230 (1967).
25.	Drioli E. and Wu Y., “Membrane distillation : An experimental study,” Desalination, 53, 339-346 (1985).
26.	Schofield R.W., Fane A.G. and Fell C.J.D.. “Heat and mass transfer in membrane distillation,” J. Membr. Sci., 33, 299–313 (1987).
27.	Schofield R.W., Fane A.G., Fell C.J., and Macoun R., “Factors affecting flux in membrane distillation,” Desalination, 77, 279–294 (1990).
28.	Phattaranawik J. and Jiraratananon R., “Direct contact membrane distillation:effect of mass transfer on heat transfer,” J. Membr. Sci., 188, 137-143 (2001).
29.	Phattaranawik J., Jiraratananon R., Fane A.G. and Halim C., ”Mass flux enhancement using spacer filled channels in direct contact membrane distillation,” J. Membr. Sci., 187, 193-201 (2001).
30.	Phattaranawik J., Jiraratananon R. and Fane A.G., “Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies,” J. Membr. Sci., 217, 193-206 (2003).
31.	Kakac S., Shah R.K. and Bergles A.E.,“Low Reynolds Number Flow Heat Exchangers,” Hemisphere, Washington, DC, 1983.
32.	Gryta M, Tomaszewska M, Morawski AW. “Membrane distillation with laminar flow,” Sep. Purif. Technol., 11, 93–101 (1997).
33.	Martínez-Díez L, Vázquez-González MI. “Effects of polarization on mass transport through hydrophobic porous membranes,” Ind. Eng. Chem. Res., 37, 4128-4135 (1998).
34.	Phattaranawik J, Jiraratananon R, Fane AG. “Heat transport and membrane distillation coefficients in direct contact membrane distillation,” J. Membr. Sci., 212, 177-193 (2003).
35.	Khayet M, Godino MP, Mengual JI. “Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method,” Desalination, 157, 297-305 (2003).
36.	Bui VA, Vu LTT, Nguyen MH. “Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules,” J. Membr. Sci., 353, 85-93 (2010).
37.	Lawson KW, Lloyd DR. “Membrane distillation. II. Direct contact MD,” J. Membr. Sci., 120, 123-133 (1996).
38.	Srisurichan S, Jiraratananon R, Fane AG. “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,” J. Membr. Sci., 277, 186-194 (2006).
39.	Gryta M, Tomaszewska M. “Heat transport in the membrane distillation process.,” J. Membr. Sci., 144, 211-222 (1998).
40.	Fernández-Pineda C, Izquierdo-Gil MA, García-Payo MC. “Gas permeation and direct contact membrane distillation experiments and their analysis using different models,” J. Membr. Sci., 198, 33-49 (2002).
41.	Zhongwei D, Liying L, Runyu M. “Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation,” J. Membr. Sci., 215, 11-23 (2003).
42.	Chen T.C., Ho C.D., Yeh H.M. “Theoretical modeling and experimental analysis of direct contact membrane distillation,” J. Mem. Sci., 330, 279-287 (2009).
43.	Schofield R.W., Fane A.G., Fell C.J.D. “Gas and vapour transport through microporous membranes. II. Membrane distillation,” J. Membr. Sci., 53, 173-185 (1990).
44.	Da Costa A.R., Fane A.G., Fell C.J.D, Franken A.C.M. “Optimal channel spacer design for ultrafiltration,” J. Membr. Sci., 62, 275-291 (1991).
45.	Da Costa A.R., Fane A.G., Wiley D.E. “Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration,” J. Membr. Sci., 87, 79-98 (1994).
46.	Washall T. A. and Mellpolder. “Improving the separation efficiency of liquid thermal diffusion columns,” Ind. Eng. Chem. Process Des., 1(1) 26-28 (1962).
47.	Howell J.A., Field R.W. and Wu D., “Yeast cell microfiltration: flux enhancement in baffled and pulsatill flow system,.” J. Membr. Sci., 80, 59-65, (1993). 
48.	Gupta B.B., Howell J.A., Wu D. and Field R.W., “A helical baffle for cross-flow microfiltration.” J. Membr. Sci., 99, 31-42 (1995).
49.	Yeh H. M., Dong J. F., Hsieh M. J. and Yang C. C., “Prediction of permeate flux for ultrafiltration in wire-rod tubular-membrane modules.” J. Membr. Sci., 209, 19-26 (2002).
50.	Poskas. P., Simonis. V. and Ragaisis. V., “Heat transfer in helical channals with two-side heating in gas flow.” International Journal of heat and mass transfer, 54, 847-853 (2011).
51.	 Garcı́a-Payoa M.C., Rivierb C.A., Marisonb I.W. and Stockar U. von. “Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions.” J. Membr. Sci., 198, 197-210 (2002).
52.	Lawson K.W., Lloyd D.R. “Membrane distillation,” J. Membr. Sci., 124, 1-25 (1997).
53.	Phattaranawik J, Jiraratananon R and Fane A.G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation,” J. Membr. Sci., 215, 75-85 (2003)
54.	.Ding Z.W., Ma R.Y. and Fane A.G., “A new model for mass transfer in direct contact membrane distillation. ” Desalination, 151, 217 (2003).
55.	Banat F.A. and Simandl J., “Desalination by membrane distillation : a parametric study.” Sci. Techol., 33, 201-226 (1998).
56.	Iversen S.B., Bhatia V.K., Dam-Jphasen K., Jonsson G. “Characterization of microporous membranes for use in membrane contactors.” J. Membr. Sci., 130, 205-217 (1997).
57.	Fuller E.N., Schettler P.D. and Giddings J.C., “New method for prediction of binary gas-phase diffusion coefficients.” Industrial and Engineering Chemistry, 58, 18-27 (1966).
58.	Sarti G.C., Gostoli C., Matulli S. “Low energy desalination processes using hydrophobic membranes,” Desalmation, 56, 277-286 (1985).
59.	Phattaranawik J, Jiraratananon R, Fane A.G., Halim C. “Mass flux enhancement using spacer filled channels in direct contact membrane distillation,” J. Membr. Sci., 187, 193-201 (2001).
60.	Phattaranawik J, Jiraratananon R, Fane A.G. “Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies,” J. Membr. Sci., 217, 193-206 (2003).
61.	Schwinge J., Wiley D.E., Fane A.G., Guenther R. “Characterization of a zigzag spacer for ultrafiltration,” J. Membr. Sci., 172, 19-31 (2000).
62.	Poskas P. and Vytautsa S., “ Heat transfer in initial part of thermal stabilization of helical channels in air flow,” Heat Transfer Resarch, 43(5), 443-460 (2012).
63.	Welty JR, Wick CE, Wilson RE. Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York, 1984.
64.	Satish G. Kandlikar, Derek Schmitt. “Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels,” PHYSICS OF FLUIDS, 17, 100606 (2005).
65.	Bird R.B., Stewart W.E., Lightfoot E.N. Transport Phenomena, second ed., John Wiley & Sons, New York, 2007.
66.	Ozbek H., Phillips S.L. “Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C,” J. Chem. Eng. Data, 25, 263-267 (1980).
67.	Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. fourth ed., New York: John Wiley & Sons Inc., 1996.
68.	Chenlo F., Moreira R., Pereira G., Ampudia A. “Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes,” J. Food Eng., 54, 347-352 (2002).
69.	Magalhães M.C.F., Königsberger E., May P.M., Hefter G. “Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C,” J. Chem. Eng. Data, 47, 590-598 (2002).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信