§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2308201410593100
DOI 10.6846/TKU.2014.00934
論文名稱(中文) 極性角度間的電荷分佈對兩親性抗菌胜肽活性的影響
論文名稱(英文) Effects of charge distribution among the polar angle on the activity of an amphiphilic antimicrobial peptides
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 劉伊婷
研究生(英文) Yi-Ting Liu
學號 601180150
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-22
論文頁數 139頁
口試委員 指導教授 - 李長欣(cshlee@mail.tku.edu.tw)
委員 - 陳佩燁(pyc@gate.sinica.edu.tw)
委員 - 陳銘凱(mkchern@mail.tku.edu.tw)
關鍵字(中) 極性角度
兩親性抗菌胜肽
關鍵字(英) Polar angle
Amphiphilic antimicrobial peptides.
第三語言關鍵字
學科別分類
中文摘要
關於抗菌胜肽結構與活性之間的關係已經被研究,有許多的結構參數表 明它們與活性之間具有關聯性。例如:極性角度與電荷對於胜肽的抗菌作用已 被證明是重要的。   
    MP-B 是本研究的模型胜肽,用來探討結構參數中包括:極性角度、電荷、 螺旋含量和疏水性與胜肽分子內的相互作用,我們提出新的結構參數為電荷密 度,討論陽離子氨基酸殘基的分佈對抗菌活性影響的效果,我們利用高解析的 二維核磁共振光譜觀察 MP-B 的構象變化與抗菌活性之間的關聯性,同時整理 先前的研究,並且分析胜肽結構參數對抗菌活性的影響。  
      胜肽的電荷集中 在 C 端時,電荷密度顯示出有一個較大的值,可能形成 較小的寡聚行為以及降低抗菌活性。同時我們在 RP-HPLC 滯留時間顯示,當 胜肽具有較小的極性角度時,疏水性與 RP-HPLC 的靜相相互作用力較強。而 另一方面,當胜肽具有較大的極性角度範圍時,若範圍內有更多電荷殘基與芳 香族殘基則顯示出與螺旋含量有著正相關。胜肽的屬性不是由特定的某個結構 參數所決定。這些胜肽的活性被認為是透過綜觀的結構參數所決定,並非是特 定的某個氨基酸殘基。
英文摘要
Relationship between structure and activity of the antimicrobial peptide has been reported in previous studies. Many structure parameters have been suggest to correlate with their activity. For example role of polar angle and charge for antibacterial have been demonstrated to be importance.    
    MP-B, as a model peptide in this study, is used to explore the correlation of the structural parameters, including polar angle, charge, helix content and hydrophobicity with their intramolecular and antimicrobial activity by using high-resolution two-dimensional NMR spectroscopy, we investigate to the conformational change of MP-B and an analog and analysis the impact of these parameters on the antimicrobial activity. We investigate in detail the influence of the angle subtended by the positively charged amino acids on amphipathic helical peptides.    
    The concentrated charge at C terminal, shows a larger value of the generalized order parameters relative to MP-B, and might form smaller oligomers and reduced antimicrobial activity. The reversed phase HPLC retention times showed that peptides with smaller polar angle have stronger interaction with the hydrophobic stationary phase. On the other hand, peptides with more charged residues and aromatic residues within a larger polar angle show a positive correlation with the content of helix content (%). Peptide property does not dominated by a specific structure parameter. The activity of these peptides is thought to be determined by global structural parameters rather than by a specific amino acid residue.
第三語言摘要
論文目次
目錄……………………………………………………………………Ⅰ 
表目錄…………………………………………………………………Ⅲ 
圖目錄…………………………………………………………………Ⅴ 
縮寫表…………………………………………………………………XI 
第一章 緒論 ................................................................... 1 
1.1 胜肽結構參數(Peptides structural parameters) ............................................... 3 
1.1.1 極性角度(Polar angle) .......................................................................... 3 
1.1.2 疏水力矩(Hydrophobic moment) ......................................................... 5 1.1.3 疏水性(Hydrophobic) ........................................................................... 7 
1.1.4 電荷(Charge) ........................................................................................ 9 
1.1.5 螺旋(Helicity) ..................................................................................... 10 
1.2 模型胜肽 Mastoparans B 介紹 .................................................................... 11 
1.3 研究動機........................................................................................................ 13 
1.4 研究目的........................................................................................................ 13 
第二章 實驗方法 ........................................................ 15 
2.1 固相胜肽合成(Solid-Phase Peptide Synthesis, SPPS) ................................. 15 
2.1.1 固相胜肽合成方法............................................................................. 17 
2.1.2 胜肽純化............................................................................................ 20 
2.2 圓二色光譜儀(Circular Dichroism Spectrometer) .................................. 22 
2.2.1 圓二色光譜實驗方法......................................................................... 25 
2.3 核磁共振光譜簡介(Nuclear Magnetic Resonance Spectrum ) .................... 27 
2.4 化學位移(Chemical Shift) ............................................................................. 30 
2.5 化學位移指數(Chemical Shift Index) ........................................................... 31 
2.6 DOSY 光譜(Diffusion Ordered Spectroscopy) ............................................. 33 
2.7 黏度實驗........................................................................................................ 34 
2.8 NMR 光譜實驗方法 ..................................................................................... 35 
2.9 結構計算........................................................................................................ 40 
2.10 無模型法則 (Model-free approach) ........................................................... 42 
2.10.1 函數模型選擇 (Model selection) .................................................... 45 
2.10.2 無模型法則計算............................................................................... 47 
2.11 抗菌實驗 ...................................................................................................... 48 
2.11.1 細菌的培養 ....................................................................................... 48 
2.11.2 養菌 ................................................................................................... 49 
2.11.3 抗菌觀測 ........................................................................................... 50 
2.11.4 抑菌生長曲線 ................................................................................... 50 
2.11.5 劑量反應曲線(dose–response curves) ............................................. 50 
2.11.6 抗菌實驗步驟 ................................................................................... 53 
第三章 實驗結果 ........................................................ 55 
3-1 胜肽結構參數與抗大腸桿菌活性關係 ....................................................... 55 3-2 電荷密度對抗大腸桿菌活性關係 ............................................................... 62 
3-3 極性角度內的電荷分佈對抗大腸桿菌活性關係 ...................................... 65 
3-4 實驗胜肽實驗結果 ....................................................................................... 68 
3.5 胜肽純化與鑑定............................................................................................ 69 
3.6 胜肽二級結構分析圓二色光譜實驗............................................................ 71 
3.7NMR 光譜訊號辨認 ...................................................................................... 74 
3.8 二次化學位移................................................................................................ 87 
3.9 HSQC 實驗結果 ............................................................................................ 96 
3.10 DOSY 實驗結果 ........................................................................................ 101 
3.11 胜肽結構參數 ............................................................................................ 105 
3.12 抗菌活性實驗........................................................................................... 107 
第四章 實驗討論與結論 ...........................................112 
4.1 改變 MP-B 電荷位置對結構的影響 .......................................................... 112 
4.1.1 CD 光譜的觀察 ................................................................................ 112 
4.1.2 NMR 光譜的觀察 ............................................................................ 113 
4.2 胜肽結構參數統計...................................................................................... 116 
4.2.1Mastoparan B 及其衍生物的胜肽結構參數對抗大腸桿菌活性關係 .................................................................................................................... 119 
4.2.2 文獻中的胜肽與實驗胜肽的電荷密度對抗大腸桿菌活性之影響 .................................................................................................................... 121 
4.2.3 文獻中的胜肽與實驗胜肽的電荷分佈對抗大腸桿菌活性之影響 .................................................................................................................... 123 
4.2.4 文獻中的胜肽與實驗胜肽的疏水性對抗大腸桿菌活性之影響... 125 
4.3 胜肽結構參數的討論.................................................................................. 129 
第五章 結論 .............................................................. 130 
第六章 參考文獻 ...................................................... 132 

表目錄 
表 1.1 胺基酸側鏈的疏水值 ..................................................................... 8 
表 2.1 固相胜肽合成實驗藥品 .............................................................. 19 
表 2.2 固相胜肽合成實驗藥品 .............................................................. 20 
表 2.3 RP-HPLC 純化胜肽藥品 .............................................................. 21 
表 2.4 RP-HPLC 冲堤梯度 ...................................................................... 21 
表 2.5 圓二色光譜實驗藥品 ................................................................... 26 
表 2.6 常規核磁共振的原子核 .............................................................. 27 
表 2.7 無序殘繞 αH 及 NH 化學位移.................................................. 32 
表 2.8 核磁共振實驗藥品 ...................................................................... 35 
表 2.9 TOSCY 實驗參數 ......................................................................... 36 
表 2.10 NOESY 實驗參數 ....................................................................... 37 
表 2.11 DOSY 實驗參數 .......................................................................... 37 
表 2.12 HSQC-T1實驗參數 ..................................................................... 38 
表 2.13 HSQC-T2實驗參數 ..................................................................... 38 
表 2.14 HSQC-NOE 實驗參數 ................................................................ 39 
表 2.15 HSQC-T1與 HSQC-T2延遲時間 ............................................... 39 
表 2.16 Model-Free 函數模型 ................................................................. 45 
表 2.17 抗菌實驗藥品 ............................................................................ 54 
表 3.1 胜肽序列 ...................................................................................... 68 
表 3.2 MP-B 與 MP-BV11K13在變溫 CD 實驗所計算之螺旋含量 ........ 72 
表 3.3 MP-B 的 1H 化學位移表 .............................................................. 88 
表 3.4 MP-BV11K13的 1H 化學位移表 ....................................................... 89 
表 3.5 MP-B NOE 連線情形 .................................................................... 90 
表 3.6 MP-BV11K13 NOE 連線情形 ........................................................... 91 
表 3.7 MP-B 與 MP-BV11K13的 RMSD 值 ............................................... 95 
表 3.8 MP-B 在 310 K 的弛緩參數統計 ................................................ 99 
表 3.9 MP-BV11K13在 310 K 的弛緩參數統計 ..................................... 100 
表 3.10 MP-B 的 DOSY 實驗結果 ........................................................ 103 
表 3.11 MP-BV11K13的 DOSY 實驗結果 ............................................... 104 
表 3.12 胜肽結構參數 .......................................................................... 106 
表 3.13 胜肽抗菌活性半抑制濃度統計 ............................................... 109 
表 4.1 MP-B 衍生物序列 ....................................................................... 116 
表 4.2 MP-B 衍生物胜肽結構參數統計 .............................................. 117 
表 4.3 MP-B 衍生物胜肽結構參數統計 ............................................. 118     

圖目錄 
圖 1.1 A 類胜肽與 L 類胜肽微胞脂質雙層膜系統中,模擬胜肽在微胞
膜上的情形 ................................................................................................ 4 
圖 2.1(a) Fmoc 保護基去保護反應機制;(b) BOC 保護基去保護反應機
制 ............................................................................................................... 15 
圖 2.2 Ninhydrin Test ............................................................................... 16 
圖 2.3 CD 光譜所呈現的胜肽二級結構吸收訊號位置......................... 23 
圖 2.4 光通過樣品槽之前與之後的強度差異 ....................................... 24 
圖 2.5 氫原子在靜磁場中所產生的能階分裂示意 .............................. 28 
圖 2.6 原子核磁矩從 Z 軸偏移至 XY 軸產生進動 ............................... 29 
圖 2.7 不同時間尺度蛋白質動態運動 .................................................. 42 
圖 2.8 劑量反應曲線 .............................................................................. 51 
圖 3.1 疏水性對抗大腸桿菌情形 ........................................................... 55 
圖 3.2 疏水力矩對抗大腸桿菌情形 ....................................................... 55 
圖 3.3 極性角度對抗大腸桿菌情形 ....................................................... 56 
圖 3.4 電荷數對抗大腸桿菌情形 ........................................................... 56 
圖 3.5 螺旋含量對抗大腸桿菌情形 ....................................................... 56 
圖 3.6 極性角度為 80°疏水性與抗菌活性之間的關係 ...................... 57 
圖 3.7 極性角度為 100°疏水性與抗菌活性之間的關係 .................... 57 
圖 3.8 極性角度為 120°疏水性與抗菌活性之間的關係 .................... 58 
圖 3.9 極性角度為 140°疏水性與抗菌活性之間的關係 .................... 58 
圖 3.10 極性角度為 160°疏水性與抗菌活性之間的關係 .................. 59 
圖 3.11 極性角度為 180°疏水性與抗菌活性之間的關係 .................. 59 
圖 3.12 極性角度為 80°疏水力矩與抗菌活性之間的關係 ................ 60 
圖 3.13 極性角度為 100°疏水力矩與抗菌活性之間的關係 .............. 60 
圖 3.14 極性角度為 120°疏水力矩與抗菌活性之間的關係 .............. 60 
圖 3.15 極性角度為 140°疏水力矩與抗菌活性之間的關係 .............. 61 
圖 3.16 極性角度為 160°疏水力矩與抗菌活性之間的關係 .............. 61 
圖 3.17 極性角度為 180°疏水力矩與抗菌活性之間的關係 .............. 61 
圖 3.18 極性角度 80°胜肽的電荷密度與抗大腸桿菌情形 ................ 62 
圖 3.19 極性角度 100°胜肽的電荷密度與抗大腸桿菌情形 .............. 63 
圖 3.20 極性角度 120°胜肽的電荷密度與抗大腸桿菌情形 .............. 63 
圖 3.21 極性角度 140°胜肽的電荷密度與抗大腸桿菌情形 .............. 63 
圖 3.22 極性角度 160°胜肽的電荷密度與抗大腸桿菌情形 .............. 64 
圖 3.23 極性角度 180°胜肽的電荷密度與抗大腸桿菌情形 .............. 64 
圖 3.24 極性角度 80°胜肽的電荷分佈與抗大腸桿菌情形 ................ 65 
圖 3.25 極性角度 100°胜肽的電荷分佈與抗大腸桿菌情形 .............. 66 
圖 3.26 極性角度 120°胜肽的電荷分佈與抗大腸桿菌情形 .............. 66 
圖 3.27 極性角度 140°胜肽的電荷分佈與抗大腸桿菌情形 .............. 66 
圖 3.28 極性角度 160°胜肽的電荷分佈與抗大腸桿菌情形 .............. 67 
圖 3.29 極性角度 180°胜肽的電荷分佈與抗大腸桿菌情形 .............. 67 
圖 3.30 MP-BV11K13胜肽純化後的 RP-HPLC 圖譜 ............................... 69 
圖 3.31 MP-BV11K13胜肽純化後的 MALDI-TOF-MS 圖譜 ................... 70 
圖 3.32 MP-B 的 CD 光譜在不同溫度訊號吸收情形 ........................... 71 
圖 3.33 MP-BV11K13的 CD 光譜在不同溫度訊號吸收情形 .................. 72 
圖 3.34 MP-B TOCSY 光譜 ..................................................................... 74 
圖 3.35 MP-BV11K13 TOCSY 光譜 ............................................................ 75 
圖 3.36 MP-B 在 αH-NH 區的 NOE 連結 ........................................... 76 
圖 3.37 MP-BV11K13 在 αN 區訊號的 NOE 連結 ................................... 77 
圖 3.38 MP-B 在 βH-NH 區訊號的 NOE 連結 ...................................... 78 
圖 3.39 MP-BV11K13在 βH-NH 區的訊號 NOE 連結 .............................. 79 
圖 3.40 MP-B 在 NH-NH 區的訊號 NOE 連結 ..................................... 80 
圖 3.41 MP-BV11K13在 NH-NH 區訊號的 NOE 連結 ............................. 81 
圖 3.42 MP-B 在 αH-βH 區的訊號 NOE 連結 ................................... 82 
圖 3.43 MP-BV11K13在 αH-βH 區訊號的 NOE 連結 ........................... 83 
圖3.44 MP-B顯示Tyr 9芳香環側鏈及C端末端修飾的-NH2與其它殘
基間的 NOE ............................................................................................. 84 
圖3.45 MP-BV11K13顯示Tyr 9芳香環側鏈及C端末端修飾的-NH2與其
它殘基間的 NOE ..................................................................................... 85 
圖 3.46 MP-B 與 MP-BV11K13 的 αH 區域二次化學位移差值 .......... 92 
圖 3.47 MP-B 與 MP-BV11K13 的 NH 區域二次化學位移差值 ......... 93 
圖 3.48 MP-B 與 MP-BV11K13螺旋範圍分佈情形 .................................. 94 
圖 3.49 MP-B(●)與 MP-BV11K13 (○)T1弛緩速率 ................................. 96 
圖 3.50 MP-B(●)與 MP-BV11K13 (○)T2弛緩速率 ................................. 97 
圖 3.51 MP-B(●)與 MP-BV11K13 (○)NOE ............................................. 97 
圖 3.52 MP-B(●)與 MP-BV11K13 (○)S2值 .............................................. 98 
圖 3.53 NOE 數目統計 MP-B(■)與 MP-BV11K13(■)及 S2值統計
MP-B(▲)與 MP-BV11K13(▲) .................................................................... 98 
圖 3.54 MP-B(藍色)與 MP-BV11K13(紅色)在 310 K 的 DOSY 光譜疊圖 
................................................................................................................. 101 圖 3.55 MP-B(●)與 MP-BV11K13(△)在 30 % TFE-d3 / 70 % H2O,不同
溫度的擴散係數(D) ............................................................................... 102 
圖 3.56 MP-B(●)與 MP-BV11K13(▲)在 30 % TFE-d3 / 70 % H2O,不同
溫度的自結合狀態 ................................................................................ 102 
圖 3.57 實驗胜肽極性角度螺旋投影圖 ............................................... 105 
圖 3.58 MP-B 在 37 ℃下抗菌情形 .................................................. 107 
圖 3.59 MP-BV11K13在 37 ℃下抗菌情形 ........................................... 108  
圖 3.60 MP-B-COO-在 37 ℃下抗菌情形 ......................................... 108 
圖 3.61 MP-B(●)與 MP-BV11K13(▼)及 MP-B-COO-(○),溫度 310 K 的
CD 光譜 .................................................................................................. 110 
圖 3.62 MP-B(綠色)與 MP-BV11K13(紅色)及 MP-B-COO-(藍色)在
RP-HPLC 滯留情形 ............................................................................... 111 
圖 4.1 Mastoparan B 及其衍生物胜肽的電荷密度與抗大腸桿菌情形 
................................................................................................................. 119 圖 4.2 Mastoparan B 及其衍生物胜肽的電荷分佈與抗大腸桿菌情形 
................................................................................................................. 119 圖 4.3 Mastoparan B 及其衍生物胜肽疏水性與抗大腸桿菌情形 ..... 120 
圖 4.4 Mastoparan B 及其衍生物胜肽疏水力矩與抗大腸桿菌情形 . 120 
圖 4.5 極性角度 80°胜肽的電荷密度與抗大腸桿菌情形 ................ 121 
圖 4.6 極性角 100°胜肽的電荷密度與抗大腸桿菌情形 .................. 121 
圖 4.7 極性角 120°胜肽的電荷密度與抗大腸桿菌情形 .................. 122 
圖 4.8 極性角 160°胜肽的電荷密度與抗大腸桿菌情形 .................. 122 
圖 4.9 極性角度 80°胜肽的電荷密度與抗大腸桿菌情形 ................ 123 
圖 4.10 極性角度 100°胜肽的電荷密度與抗大腸桿菌情形 ............ 123 
圖 4.11 極性角度 120°胜肽的電荷密度與抗大腸桿菌情形 ............ 124 
圖 4.12 極性角度 160°胜肽的電荷密度與抗大腸桿菌情形 ............ 124 
圖 4.13 極性角度 80°胜肽的疏水性與抗大腸桿菌情形 .................. 125 
圖 4.14 極性角度 80°胜肽的疏水力矩與抗大腸桿菌情形 .............. 126 
圖 4.15 極性角度 100°胜肽的疏水性與抗大腸桿菌情形 ................ 126 
圖 4.16 極性角度 100°胜肽的疏水力矩與抗大腸桿菌情形 ............ 126 
圖 4.17 極性角度 120°胜肽的疏水性與抗大腸桿菌情形 ................ 127 
圖 4.18 極性角度 120°胜肽的疏水力矩與抗大腸桿菌情形 ............ 127 
圖 4.19 極性角度 160°胜肽的疏水性與抗大腸桿菌情形 ................ 127 
圖 4.20 極性角度 160°胜肽的疏水力矩與抗大腸桿菌情形 ............ 128
參考文獻
(1) Choua, H. T., Kuo, T. Y., Chiang, J. C. (2008). Design and synthesis of cationic  antimicrobial peptides with improved activity and selectivity against Vibrio spp. J. Antimicrob. Agents 32(2): 130-138.  
(2) Torsten, W., Margitta, D., Richard, M. E. (1997). Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic antibacterial peptides. Biochemistry 36 (42): 12869-12880.  
(3) Anna, G., Luca, S., Alessandro, T. (2001). A systematic study of the effects of structural and physical properties on biological activity. J. FEBS 268(21): 5589-5600.  
(4)  Giangaspero, A., Sandri, L., Tossi, A. (2001). Amphipathic alpha helical antimicrobial peptides. Eur. J. Biochem. 268: 5589-5600.  
(5)  Pacor, S., Giangaspero, A., Bacac, M., (2002). Analysis of the cytotoxicity of synthetic antimicrobial peptides on mouse leucocytes: implications for systemic use. J. Antimicrob. Chemother 50: 339-348.  
(6) Zelezetsky, I., Pacor, S., Pag, U. (2005). Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Eur. J. Biochem. 390: 177-188.  
(7) Torsten, W., Margitta, D., Eberhard, K. (1997). Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett. 3(1): 135-140.  
(8) Margitta, D., Torsten, W. (1999). Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462(1): 71-87.  
(9) Dathe, M., Wieprecht, T. (1997). Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 403: 208-212.   
(10) Matsuzaki, K., Murase, O., Tokuda, H. (1994). Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33(11): 3342-3349.  
(11) Yeaman, M. R., Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 55: 27-55.  
(12) Kiyota, T., Lee, S., Sugihara, G. (1996). Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes. Biochemistry 35(40): 13196-13204.  
(13) Blondelle, S. E., Houghten, R. A. (1992). Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31: 12688-12694.  
(14) Souza, B. M., Mendes, M. A., Santos, L. D. (2005). Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp polybia paulista. Peptides 26: 2157-2164.  
(15) Brasseur, R. (1991). Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J. Biol. Chem. 266: 16120-16127.  
(16) Gazit, E., Miller, I. R., Biggin, P. C., Sansom, M. S., Shai, Y. (1996). Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol. 258(5): 860-870.   
(17) Brasseur, R., Pillot, T., Lins, L., Vandekerckhove, J., Rosseneu, M. (1997). Peptides in membranes: tipping the balance of membrane stability. Trends Biochem Sci. 22(5): 167-171.  
(18) Uematsu, N., Matsuzaki, K. (2000). Polar angle as a determinant of amphipathic α-helix-Lipid Interactions: A model peptide study. J. Biophysical 79(4): 2075-2083.  
(19) Segrest, J. P., Tytler, E. M., Epand, R. M. (1993). Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem. 268(29): 22112-22118. 
(20) Eisenberg, D., Weiss, R. M., Terwilliger, T. C. (1984). The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. 81(1): 140-144.  
(21) Eisenberg, D., Weiss, R. M., Terwilliger, T. C. (1982). The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299(5881): 371-374.  
(22) Subbalakshmi, C., Nagaraj, R., Sitaram, N. (1999). Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS Lett. 448(1): 62-66.  
(23) Janin, J. (1979). Surfface and inside volumes in globular protein. Nature 277(5696): 491-492.  
(24) Fauchere, J., Pliska, V. (1983). Hydrophobic parameters of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem. 8: 369-375.  
(25) Hancock, R. E., Lehrer, R. (1998). Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2): 82-88.  
(26) Houghten, R. A., DeGraw, S. T. (1987). Effect of positional environmental domains on the variation of high-performance liquid chromatographic peptide retention coefficients. J. Chromatogr 386: 223-228.  
(27) Leite, N. B., Costa, L. C., Santos, A. D. (2011). The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40(1): 91-100.  
(28) Torsten, W., Margitta, D., Richard, M., Epand, M. (1997). Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry 36(42): 12869-12880.  
(29) Bechinger, B., Zasloff, M., Opella, S. J. (1993). Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci. 2(12): 2077-2084.  
(30) Ho, C. L., Hwang, L. L. (1991). Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis. J. Biochem. 274: 453-456.  
(31) Ho, C. L., Lin, Y. L., Chen, W. C. (1996). Structural requirements for the edema-inducing and hemolytic activities of mastoparan B isolated from the hornet (Vespa basalis) venom. Toxicon 34(9): 1027-1035.  
(32) Ho, C. L., Lin, Y. L., Chen, W. C. (1995). Immunogenicity of mastoparan B, a cationic tetradecapeptide isolated from the hornet (Vespa basalis) venom, and its structural requirements. Toxicon 33(11): 1443-1451.  
(33) Mendes, M. A., Souza, B. M., Palma, M. S. (2005). Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon 45(1): 101-106.  
(34) Leite, N. B., Costa, L. C., Santos, A. D. (2011). The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40(1): 91-100.  
(35) Nakajima, T. (1986). Pharmacological biochemistry of Veside venom. In: piek T(ed) venom of the hymenoptera-biochemical, pharmacological and behavioral aspects. Academic Press, London 309-327.  
(36) Higashijima, T., Burnier, J., Ross, E. M. (1990). Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J. Biol Chem. 265(24): 14176-14186.  
(37) Hsiao, Y. M., Chuang, C. C., Chuang, L. C. (1996). Protein engineering of venom toxins by synthetic approach and NMR dynamic simulation: status of basic amino acid residues in waglerin I. Biochem. Biophys. 227(1): 59-63.  
(38) Chuang, C. C., Huang, W. C., Yu, H. M. (1996). Conformation of Vespa basalis mastoparan-B in trifluoroethanol-containing aqueous solution. Biochim Biophys Acta 1292(1): 1-8.    
(39) Almeida, P. F., Pokorny, A. (2009). Mechanism of antimicrobial, cytolytic and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48: 8083-8093.  
(40) Yandek, L. E., Pokorny, A., Almeida, P. F. (2009). Wasp mastoparan follow the same mechanism as the cell-penetrating peptide transportan. Biochemistry 48(10): 7342-7351.  
(41) King, T. P., Kochoumian, L., Joslyn, A. (1984). Melittin-specific monoclonal and polyclonal IgE and IgG1 antibodies from mice. J. Immun. 133: 2668-2673.  
(42) Talbot, J. C., Dufourcq, J., DeBony, J., Faucon, J. F. (1979). Conformational change and self association of monomeric melittin. FEBS Lett. 102: 191-193.  
(43) Fehlner, P. F., Kochoumian, L. T., King, P. (1991). Murine IgE and IgG responses to melittin and its analogs. J. Immun. 146: 2664-2670.  
(44) Ho, C. L., Shih, Y. P., Wang, K. T. (2001). Enhancing the hypotensive effect and diminishing the cytolytic activity of hornet mastoparan B by D-amino acid substitution. Toxicon 39(10): 1561-1566.  
(45) Irani, A. A., Schechter, N. M., Craig, S. S. (1986). Two types of human mast cells that have distinct neutral protease compositions. Proc. Natl. Acad. Sci. 83: 4464-4468.  
(46) Thomas, V. A., Wheeless, C. J., Stack, M. S. (1998). Human mast cell tryptase fibrinogenolysis: kinetics, anticoagu lation mechanism, and cell adhesion disruption. Biochemistry 37: 2291-2298.  
(47) Dathe, M., Wieprecht, T. (1999). Structural features of helical antimicrobial peptides: their potencial to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462: 71-87.  
(48) Armstrong, M. J., Carey, M. C. (1982). The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J. Lipid Res. 23: 70-80.   
(49) Gautier, R., Douguet, D., Antonny, B., Drin, G. (2008). HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18): 2101-2102.  
(50) Merrifield, R. B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85: 2149-2154.  
(51) Koslowski, A., Sreerama, N., Woody, R. W. (2000). Theoretical approach to electronic optical activity. John Wiley & Sons, Inc. Publishers, New York, 55-96.  
(52) Daniel, H. A., Ramos, H. I. (2009). The use of circular dichroism spectroscopy to study protein folding, form and function. J. Biochem. 3(5): 164-173.  
(53) Marqusee, S., Baldwin, R. L. (1987). Helix stabilization by Glu-Lys+ saltbridges in short peptides of de novo design. Proc. Natl. Acad. Sci. 84: 8898-8902.  
(54) Morrow, J. A., Segall, S., Weisgraber, K. H. (2000). Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39: 11657-11666.  
(55) Forood, B., Feliciano, E. J., Nambiar, K. P. (1993). Stabilization of α-helix structures in short peptides via end capping. Proc. Natl. Acad. Sci. 90: 838-842.  
(56) Bloch, F., Hansen, W. W., Packard, M. (1946). The nuclear induction experiment. Phys. Rev. 70: 474-485.  
(57) Bloch, F. (1946). Nuclear induction. Phys. Rev. 70: 460-473.  
(58) Purcell, E., Torrey, H., Pound, R. (1946). Resonance absorption by nuclear magnetic moments in a solid. Physical Review. 69: 37.  
(59) Wishart, D. S., Sykes, B. D., Richards, F. M. (1992). The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31 (6): 1647-1651.  
(60) Wishart, D. S., Sykes, Brian, D. (1994). The 13C chemical-shift index: A simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR. 4 (2): 171-180.   
(61) Wishart, D. S., Bigam, C. G., Holm, A. (1995). 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR. 5: 67-81.  
(62) Yao, S., Howlett, G. J., Norton, R. S. (2000). Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements. J. Biomol. NMR. 16 (2): 109-119.  
(63) http://www.thermexcel.com/english/tables/eau_atm.htm  
(64) Brunger, A. T. (1992). X-PLOR: version 3.1 : a system for X-ray crystallography and NMR. Yale University Press. USA.  
(65) Lipari, G., Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules.1.Theory and range of validity. J. Am. Chem. Soc. 104: 4546-4559.  
(66) Lipari, G., Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules.2. analysis of experimental results. J. Am. Chem. Soc. 104: 4559-4570.  
(67) Freeman, R. (1988). A handbook of nuclear magnetic resonance. John Wiley & Sons, Inc., New York.  
(68) Sezonov, G., Petit, D. J. (2007). Escherichia coli physiology in Luria-Bertani broth. J. Bacteriology. 189(23): 8746-8749.  
(69) Rautenbach, M., Gerstner, G. D., Vlok, N. M. (2006). Analyses of dose-response curves to compare the antimicrobial activity of model cationic α-helical peptides highlights the necessity for a minimum of two activity parameters. Anal. Biochem. 350(1): 81-90.  
(70) Koradi, R., Billeter, M., Wuthrich, K. (1996). MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics. 14(1): 51-55.  
(71) 黃詩娟 (2011)。利用 CD 與 NMR 研究 Mastoparan B 在 TFE 與 SDS 溶液中 的結構與動力學行為。碩士論文,淡江大學,新北市。 
(72) 彭安邦 (2013)。C 端胺化與未胺化修飾的 Mastoparan-B 衍生物的結構、動 力學與活性的關係。碩士論文,淡江大學,新北市。   
(73) 童偉誠 (2012)。利用 CD 與 NMR 研究 Mastoparan-B 衍生物的結構、活性與 動力學行為。碩士論文,淡江大學,新北市。  
(74) 林夆羲 (2012)。芳香環對抗菌胜肽 Mastoparan-B 及其衍生物的結構與活性 的影響:NMR 及 CD 的研究。碩士論文,淡江大學,新北市。  
(75) 曾雅琳 (2014)。C 末端殘基如何改變兩親性螺旋摺疊:CD 和 NMR 的研究。 碩士論文,淡江大學,新北市。  
(76) 朱學桂 (2014) 。抗菌胜肽 Mastoparan-B 9 號位置殘基色胺酸對結構、動力 學和活性的影響。碩士論文,淡江大學,新北市。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信