§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2308201214120400
DOI 10.6846/TKU.2012.00990
論文名稱(中文) 無線多媒體感測網路中資料傳輸架構之探討
論文名稱(英文) Research on Data Transmission Schemes for Wireless Multimedia Sensor Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 李柏逸
研究生(英文) Bo-Yi Li
學號 894350064
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2012-06-11
論文頁數 80頁
口試委員 指導教授 - 莊博任(pjchuang@ee.tku.edu.tw)
委員 - 陳省隆(hlchen@mail.ntust.edu.tw)
委員 - 李維聰(wtlee@mail.tku.edu.tw)
委員 - 許獻聰(stsheu@ce.ncu.edu.tw)
委員 - 吳庭育(tyw@mail.tku.edu.tw)
委員 - 莊博任(pjchuang@ee.tku.edu.tw)
關鍵字(中) 無線感測網路
多路徑傳輸
負載平衡
貪婪演算法
關鍵字(英) Wireless sensor networks
multipath routing
load balancing
greedy routing
第三語言關鍵字
學科別分類
中文摘要
近年來,由於無線多媒體感測網路中多種應用的興起,使得其成了熱烈討論的議題,而如何在充滿限制的環境下,提升其效能與生命週期已成了重要的焦點。
   相較於單一最佳化路徑,多重路徑更適合用在無線多媒體傳輸環境下,因為它可以增加頻道使用率、降低傳輸延遲、還可以平均能源的負擔,讓無線多媒體傳輸能更有效率。但是在建立多重路徑時,我們必須同時將無線網路的環境和感測節點的特性列入考量,否則將無法建立出合乎效益的多重路徑。
   在本論文中,我們會先解釋無線多媒體感測網路中,資料傳輸架構之特性,以及使用多重路徑的利與弊,尤其是多重路徑時,路徑間干擾的問題。接著探討之前文獻中所提出的路徑演算法們的優缺點,和目前所遭遇到之問題,然後統合以上幾點,提出一針對拓樸快速變動、且能源有限之無線多媒體感測網路下的不干擾多重路徑演算法。
   在我們提出之不干擾多重路徑演算法中,只需要將整個網路分成數個區域。並在同時間內使用不同的區域傳送資料,就可以輕易達成不干擾之多重路徑傳輸。
   每次傳送資料時時,封包中也會附帶轉傳節點的能源資訊及傳輸時的邊界資訊。讓目的端節點將這些資訊回報給來源節點,使來源點可以根據各個區域的能源狀況及節點密度,調整各區域的範圍及使用率,藉此讓我們的多重路徑、能因應感測網路中節點的能源狀況和拓樸變動等調整其傳輸路徑,使得我們的機制能在嚴苛的感測網路環境中,有效率地傳輸多媒體資料。
   實驗證明,我們的機制所建立出來的多重路徑,能夠比其他機制適合傳輸即時多媒體。且能平均的將傳輸資料的重擔分散至整個網路,延長電力有限的無線感測網路之生命期。
英文摘要
Wireless multimedia sensor networks have been widely discussed in recent years because there are many potential applications, and how to increase the throughput in constrained environments has become the main challenge.
  Multipath routing is a promising solution because it can improve the channel utilization rate, reduce transmission delay, and balance the transmission load, but the efficiency will be limited if we construct the paths without taking the characteristics of wireless environments and sensor networks into consideration.
  In this thesis, we first explain the characteristics of data transmission schemes in wireless multimedia sensor networks, and then analyze the pros and cons of multipath routing, especially the problem of inter-path interference.      
  After discussing the related works about routing schemes, we propose a Geographic Energy-Aware non-interfering Multipath (GEAM) routing scheme which can keep high performance through harsh sensor network environment.
  The proposed scheme divides the whole network topology into many districts, and in the same time forwards data through districts that won’t interfere with others, to achieve interference-free transmissions. We also adjust the load and boundary of each district according to the energy and location information of nodes in that district.
  Our scheme does not construct fixed paths in advance and can keep high performance even though the network topology changes rapidly. In the simulation we show that proposed scheme achieves high performance for real-time transmission and can evenly distribute the transmission loads to most of nodes in the network.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	III
目錄	VI
圖目錄	IX
表目錄	XI
第一章 序言	1
1.1何謂無線感測網路	1
1.2無線多媒體感測網路	3
1.3本論文之目的	5
第二章 相關研究	6
2.1無線多媒體感測網路中資料傳輸之要點	6
2.2多重路徑與路徑間之干擾	7
2.3路徑內干擾與路徑間干擾	10
2.4 On-demand和local routing	14
2.5感測器之規格	16
2.6相關文獻	17
2.6.1 GPSR	17
2.6.2 TPGF	20
2.6.3劃分區域與2-hop neighbor	22
2.6.4 RDM	24
2.6.5 NI	26
2.6.6 NIMGR	27
2.6.7其他相關文獻	29
第三章 本論文提出之機制	30
3.1本機制之目標	30
3.2機制流程及劃分拓撲	32
3.3傳輸資料時所使用之標頭	36
3.4機制之第一回合	37
3.5第二回合之後之狀況	39
3.6範例	43
3.7區域調整與hole出現時之修正方式	45
3.8多src/sink時之處理方式	48
第四章 模擬	50
4.1模擬環境與參數	50
4.2路徑數與效能之關係	52
4.3各機制的平均逐跳數	55
4.4各機制的平均延遲	56
4.5各機制的有效傳輸量	58
4.6傳輸資料的能源消耗	60
4.7各機制的能源剩餘情況	62
4.8出現hole時的逐跳數變化	68
4.9多src/sink時的延遲和傳輸量比較	70
第五章 結論	73
參考文獻	74
Publication List	79
A. Journal Papers:	79
B. Conference Papers:	80

圖目錄
圖1.1無線感測網路與基地台範例	1
圖1.2分散式影像編碼之流程	4
圖2.1多重路徑範例	7
圖2.2路徑內干擾與路徑間干擾	10
圖2.3 GPSR概念	17
圖2.4 GPSR中void之範例	18
圖2.5 TPGF 範例	20
圖2.6 [22]中每個節點的鄰居表	22
圖2.7 [22]中建立路徑的方法	22
圖2.8多重路徑遇到hole時產生之問題	24
圖2.9對繞過同一個hole的路徑發送停止令命	25
圖2.10 NI之範例	26
圖2.11 NIMGR之說明	28
圖3.1分區域傳輸之概念	30
圖3.2新機制概念	32
圖3.3 Virtual Coordination 範例	33
圖3.4 Virtual Coordination中每個節點的新的座標	34
圖3.5本機制之流程圖	35
圖3.6傳輸資料時所使用之標頭	36
圖3.7分配工作量的範例	40
圖3.8有共用節點時,工作量分配範例	40
圖3.9本機制的演算法	42
圖3.10出現hole時的處理方式	45
圖3.11多src/sink之處理情形	48
圖3.12隨著src/sink加入,區域的劃分情況	49
圖4.1連線數與封包延遲之關係	52
圖4.2連線數與有效傳輸量	54
圖4.3各機制之逐跳數比較	55
圖4.4各機制的平均延遲	56
圖4.5各機制之有效傳輸量	58
圖4.6各機制傳送1kb資料所需之能源	60
圖4.7各機制的能源消耗情況	62
圖4.8 GPSR的能源分布狀況	63
圖4.9 TPGF的的能源分布狀況	64
圖4.10 NI的能源分布狀況	65
圖4.11 GEAM的能源分布	66
圖4.12出現hole時,路徑逐跳數變化	68
圖4.13各機制逐跳數之增加比率	68
圖4.14兩組src/sink時的拓樸	70
圖4.15兩組src/sink時,延遲之變化	71
圖4.16兩組src/sink時,有效傳輸量之變化	72
 
表目錄
表4.1模擬參數	50
參考文獻
[1]	I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE J. Communications Magazine, Vol. 40, no. 8, pp. 102-114, Aug. 2002.
[2]	C.-Y. Chong and S. Kumar, "Sensor networks: Evolution, opportunities, and challenges," Proc. IEEE, Vol. 91, No. 8, pp.1247-1256, 2003
[3]	I.F. Akyildiz, T. Melodia, and K.R. Chowdhury, “A Survey on Wireless Multimedia Sensor Networks,” J. Computer Networks, vol. 51, no. 4, pp. 921-960, Mar. 2007.
[4]	T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard," IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003, 
[5]	R. Puri, A. Majumdar, P. Ishwar, and K. Ramchandran, “Distributed Video Coding in Wireless Sensor Networks” IEEE J. Signal Processing Magazine, vol. 23, no. 4, pp. 94-106, July 2006.
[6]	N. Imran, B.-C. Seet, and A.C.M. Fong, “Performance Analysis of Video Encoders for Wireless Video Sensor Networks”, IEEE Pacific Rim Conf. Communications, Computers and Signal Processing, pp. 561-566, Aug. 2011.
[7]	X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret, “The DISCOVER Codec: Architecture, Techniques and Evaluation,” Coding of Audio-Visual Objects, Part 10: Advanced Video Coding, 1st Edition, 2007.
[8]	L. Golubchik, J. Lui, T. Tung, A. Chow, and W. Lee, “Multi-Path Continuous Media Streaming: What Are the benefits?,” ACM J. Performance Evaluation, vol. 49, no. 1-4, pp. 429-449, Sep. 2002.
[9]	T.S. Rappaport, Wireless communications, principles and practice, Prentice Hall, 1996.
[10]	J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi, “An experimental study on the capture effect in 802.11a networks," Proc. ACM WiNTECH, pp. 19-26, 2007.
[11]	P.C. Ng and S.C. Liew, “Throughput Analysis of IEEE 802.11 Multi-hop Ad-Hoc Networks,” IEEE/ACM Trans. Networking, vol. 15, no. 2, pp. 309-322, June 2007.
[12]	M.R. Pearlman, Z.J. Haas, , P. Sholander , and, S.S. Tabrizi “On The Impact of Alternate Path Routing for Load Balancing in Mobile Ad Hoc Networks, ” Proc. ACM int’l symp. Mobile Ad Hoc Networking and Computing. pp. 3-10, 2000.
[13]	I.Demirkol, C. Ersoy, and F. Alagoz, “MAC Protocols for Wireless Sensor Networks: A Survey,” IEEE J. Communications Magazine, vol. 44, no. 4, pp. 115-121. Apr. 2006, 
[14]	H. Balakrishnan, C.L. Barrett, V.S.A. Kumar, M.V. Marathe, S. Thite, “The distance-2 matching problem and its relationship to the mac-layer capacity of ad hoc wireless networks”, IEEE J. Selected Areas in Communication, vol. 22, no. 6, pp1069-1079, 2004.
[15]	J. Albowicz, A. Chen, and L. Zhang, “Recursive Position Estimation in Sensor Networks,” Proc. IEEE Int’l Conf. Network Protocols, pp. 35-41, Nov. 2001.
[16]	N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low Cost Outdoor Localization for Very Small Devices,” IEEE J. Personal Communications, vol. 7, no. 5, pp. 28-34, Oct. 2000.
[17]	B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” Proc. ACM Mobile Computing and Networking, pp. 243-254, Aug. 2000.
[18]	E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” Proc. 11th Canadian Conf. Computational Geometry, Aug. 1999.
[19]	P. R. Morin, “Online Routing in Geometric Graphs,” Ph.D. Thesis, School of Computer Science, Carleton University, 2001.
[20]	W.-J. Liu and K.-T. Feng, “Greedy Routing with Anti-Void Traversal for Wireless Sensor Networks,” IEEE Trans. Mobile Computing, vol. 8, no. 7, pp. 910-922, 2008.
[21]	L. Shu, Y. Zhang, L.T. Yang, Y. Wang, and M. Hauswirth, “Geographic Routing in Wireless Multimedia Sensor Networks,” 2008 Second Int’l Conf. Future Generation Communication and Networking, pp.68-73, Dec. 2008.
[22]	Y. Ge, G. Wang, W. Jia, and Y. Xie, “Node-Disjoint Multipath Routing with Zoning Method in MANETs,” IEEE Int’ l Conf. High Performance Computing and Communications, pp. 452-460, Sep. 2008.
[23]	S.H. Kim, S.M. Oh, H.S. Park, J.C. Lee, S.H. Kim, “Disjoint Multipath Scheme with Hole Detouring Strategy in Wireless Sensor Networks,” IEEE Conf. Vehicular Technology Conference, pp. 1-5, Sep. 2011.
[24]	T. Voigt, A. Dunkels, and T. Braun, “On-Demand Construction of Non-interfering Multiple Paths in Wireless Sensor Networks,” Proc. 2nd Workshop Sensor Networks Informatik, pp. 277-285, 2005.
[25]	B. Fu, R. Li, X. Xiao, C. Liu, and Q. Yang, “Non-Interfering Multipath Geographic Routing for Wireless Multimedia Sensor Networks,” Proc. IEEE Int’l Conf. Multimedia Information Networking and Security, pp. 254-258. Nov. 2009.
[26]	M. Chen, X. Wang, V. Leung, and Y. Yuan, “Virtual Coordinates-based Routing in Wireless Sensor Networks,” Sensor Letters, vol. 4, no. 3, pp. 325-330, Sep. 2006.
[27]	S. Medjiah, T. Ahmed, F. Krief, “AGEM: Adaptive Greedy-Compass Energy-Aware Multipath Routing Protocol for WMSNs, ” IEEE conf. on 7th Consumer Communications and Networking, pp. 1-6, Jan. 2010.
[28]	M.K. Marina and S.R. Das, “Ad Hoc On-Demand Multipath Distance Vector Routing,” J. Wireless Communications and Mobile Computing, vol. 6, no. 7, pp. 969-988, Nov. 2006.
[29]	D. Nandiraju, L. Santhanam, N. Nandiraju, and D.P. Agrawal, “Achieving Load Balancing in Wireless Mesh Networks Through Multiple Gate-ways,” IEEE Int’l Conf. Mobile Adhoc and Sensor Systems, pp. 807-812, Oct. 2006.
[30]	 G. Wang, Y. Lin and M. Guo, “A Scalable and Reliable Multiple Home Regions Based Location Service in Mobile Ad Hoc Networks,” Proc. IFIP Int’l Conf. Embedded and Ubiquitous Computing, 2005, pp. 550-559.
[31]	Network Simulator version 2, http://www.isi.edu/nsnam/ns/tutorial/.
[32]	ZigBee Alliance, http://www.zigbee.org/
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信