淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2308201214120400
中文論文名稱 無線多媒體感測網路中資料傳輸架構之探討
英文論文名稱 Research on Data Transmission Schemes for Wireless Multimedia Sensor Networks
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 李柏逸
研究生英文姓名 Bo-Yi Li
電子信箱 894350064@s94.tku.edu.tw
學號 894350064
學位類別 博士
語文別 中文
口試日期 2012-06-11
論文頁數 80頁
口試委員 指導教授-莊博任
委員-陳省隆
委員-李維聰
委員-許獻聰
委員-吳庭育
委員-莊博任
中文關鍵字 無線感測網路  多路徑傳輸  負載平衡  貪婪演算法 
英文關鍵字 Wireless sensor networks  multipath routing  load balancing  greedy routing 
學科別分類
中文摘要 近年來,由於無線多媒體感測網路中多種應用的興起,使得其成了熱烈討論的議題,而如何在充滿限制的環境下,提升其效能與生命週期已成了重要的焦點。
相較於單一最佳化路徑,多重路徑更適合用在無線多媒體傳輸環境下,因為它可以增加頻道使用率、降低傳輸延遲、還可以平均能源的負擔,讓無線多媒體傳輸能更有效率。但是在建立多重路徑時,我們必須同時將無線網路的環境和感測節點的特性列入考量,否則將無法建立出合乎效益的多重路徑。
在本論文中,我們會先解釋無線多媒體感測網路中,資料傳輸架構之特性,以及使用多重路徑的利與弊,尤其是多重路徑時,路徑間干擾的問題。接著探討之前文獻中所提出的路徑演算法們的優缺點,和目前所遭遇到之問題,然後統合以上幾點,提出一針對拓樸快速變動、且能源有限之無線多媒體感測網路下的不干擾多重路徑演算法。
在我們提出之不干擾多重路徑演算法中,只需要將整個網路分成數個區域。並在同時間內使用不同的區域傳送資料,就可以輕易達成不干擾之多重路徑傳輸。
每次傳送資料時時,封包中也會附帶轉傳節點的能源資訊及傳輸時的邊界資訊。讓目的端節點將這些資訊回報給來源節點,使來源點可以根據各個區域的能源狀況及節點密度,調整各區域的範圍及使用率,藉此讓我們的多重路徑、能因應感測網路中節點的能源狀況和拓樸變動等調整其傳輸路徑,使得我們的機制能在嚴苛的感測網路環境中,有效率地傳輸多媒體資料。
實驗證明,我們的機制所建立出來的多重路徑,能夠比其他機制適合傳輸即時多媒體。且能平均的將傳輸資料的重擔分散至整個網路,延長電力有限的無線感測網路之生命期。
英文摘要 Wireless multimedia sensor networks have been widely discussed in recent years because there are many potential applications, and how to increase the throughput in constrained environments has become the main challenge.
Multipath routing is a promising solution because it can improve the channel utilization rate, reduce transmission delay, and balance the transmission load, but the efficiency will be limited if we construct the paths without taking the characteristics of wireless environments and sensor networks into consideration.
In this thesis, we first explain the characteristics of data transmission schemes in wireless multimedia sensor networks, and then analyze the pros and cons of multipath routing, especially the problem of inter-path interference.
After discussing the related works about routing schemes, we propose a Geographic Energy-Aware non-interfering Multipath (GEAM) routing scheme which can keep high performance through harsh sensor network environment.
The proposed scheme divides the whole network topology into many districts, and in the same time forwards data through districts that won’t interfere with others, to achieve interference-free transmissions. We also adjust the load and boundary of each district according to the energy and location information of nodes in that district.
Our scheme does not construct fixed paths in advance and can keep high performance even though the network topology changes rapidly. In the simulation we show that proposed scheme achieves high performance for real-time transmission and can evenly distribute the transmission loads to most of nodes in the network.
論文目次 目錄
中文摘要 I
英文摘要 III
目錄 VI
圖目錄 IX
表目錄 XI
第一章 序言 1
1.1何謂無線感測網路 1
1.2無線多媒體感測網路 3
1.3本論文之目的 5
第二章 相關研究 6
2.1無線多媒體感測網路中資料傳輸之要點 6
2.2多重路徑與路徑間之干擾 7
2.3路徑內干擾與路徑間干擾 10
2.4 On-demand和local routing 14
2.5感測器之規格 16
2.6相關文獻 17
2.6.1 GPSR 17
2.6.2 TPGF 20
2.6.3劃分區域與2-hop neighbor 22
2.6.4 RDM 24
2.6.5 NI 26
2.6.6 NIMGR 27
2.6.7其他相關文獻 29
第三章 本論文提出之機制 30
3.1本機制之目標 30
3.2機制流程及劃分拓撲 32
3.3傳輸資料時所使用之標頭 36
3.4機制之第一回合 37
3.5第二回合之後之狀況 39
3.6範例 43
3.7區域調整與hole出現時之修正方式 45
3.8多src/sink時之處理方式 48
第四章 模擬 50
4.1模擬環境與參數 50
4.2路徑數與效能之關係 52
4.3各機制的平均逐跳數 55
4.4各機制的平均延遲 56
4.5各機制的有效傳輸量 58
4.6傳輸資料的能源消耗 60
4.7各機制的能源剩餘情況 62
4.8出現hole時的逐跳數變化 68
4.9多src/sink時的延遲和傳輸量比較 70
第五章 結論 73
參考文獻 74
Publication List 79
A. Journal Papers: 79
B. Conference Papers: 80

圖目錄
圖1.1無線感測網路與基地台範例 1
圖1.2分散式影像編碼之流程 4
圖2.1多重路徑範例 7
圖2.2路徑內干擾與路徑間干擾 10
圖2.3 GPSR概念 17
圖2.4 GPSR中void之範例 18
圖2.5 TPGF 範例 20
圖2.6 [22]中每個節點的鄰居表 22
圖2.7 [22]中建立路徑的方法 22
圖2.8多重路徑遇到hole時產生之問題 24
圖2.9對繞過同一個hole的路徑發送停止令命 25
圖2.10 NI之範例 26
圖2.11 NIMGR之說明 28
圖3.1分區域傳輸之概念 30
圖3.2新機制概念 32
圖3.3 Virtual Coordination 範例 33
圖3.4 Virtual Coordination中每個節點的新的座標 34
圖3.5本機制之流程圖 35
圖3.6傳輸資料時所使用之標頭 36
圖3.7分配工作量的範例 40
圖3.8有共用節點時,工作量分配範例 40
圖3.9本機制的演算法 42
圖3.10出現hole時的處理方式 45
圖3.11多src/sink之處理情形 48
圖3.12隨著src/sink加入,區域的劃分情況 49
圖4.1連線數與封包延遲之關係 52
圖4.2連線數與有效傳輸量 54
圖4.3各機制之逐跳數比較 55
圖4.4各機制的平均延遲 56
圖4.5各機制之有效傳輸量 58
圖4.6各機制傳送1kb資料所需之能源 60
圖4.7各機制的能源消耗情況 62
圖4.8 GPSR的能源分布狀況 63
圖4.9 TPGF的的能源分布狀況 64
圖4.10 NI的能源分布狀況 65
圖4.11 GEAM的能源分布 66
圖4.12出現hole時,路徑逐跳數變化 68
圖4.13各機制逐跳數之增加比率 68
圖4.14兩組src/sink時的拓樸 70
圖4.15兩組src/sink時,延遲之變化 71
圖4.16兩組src/sink時,有效傳輸量之變化 72

表目錄
表4.1模擬參數 50
參考文獻 [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE J. Communications Magazine, Vol. 40, no. 8, pp. 102-114, Aug. 2002.
[2] C.-Y. Chong and S. Kumar, "Sensor networks: Evolution, opportunities, and challenges," Proc. IEEE, Vol. 91, No. 8, pp.1247-1256, 2003
[3] I.F. Akyildiz, T. Melodia, and K.R. Chowdhury, “A Survey on Wireless Multimedia Sensor Networks,” J. Computer Networks, vol. 51, no. 4, pp. 921-960, Mar. 2007.
[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard," IEEE Trans. Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003,
[5] R. Puri, A. Majumdar, P. Ishwar, and K. Ramchandran, “Distributed Video Coding in Wireless Sensor Networks” IEEE J. Signal Processing Magazine, vol. 23, no. 4, pp. 94-106, July 2006.
[6] N. Imran, B.-C. Seet, and A.C.M. Fong, “Performance Analysis of Video Encoders for Wireless Video Sensor Networks”, IEEE Pacific Rim Conf. Communications, Computers and Signal Processing, pp. 561-566, Aug. 2011.
[7] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret, “The DISCOVER Codec: Architecture, Techniques and Evaluation,” Coding of Audio-Visual Objects, Part 10: Advanced Video Coding, 1st Edition, 2007.
[8] L. Golubchik, J. Lui, T. Tung, A. Chow, and W. Lee, “Multi-Path Continuous Media Streaming: What Are the benefits?,” ACM J. Performance Evaluation, vol. 49, no. 1-4, pp. 429-449, Sep. 2002.
[9] T.S. Rappaport, Wireless communications, principles and practice, Prentice Hall, 1996.
[10] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi, “An experimental study on the capture effect in 802.11a networks," Proc. ACM WiNTECH, pp. 19-26, 2007.
[11] P.C. Ng and S.C. Liew, “Throughput Analysis of IEEE 802.11 Multi-hop Ad-Hoc Networks,” IEEE/ACM Trans. Networking, vol. 15, no. 2, pp. 309-322, June 2007.
[12] M.R. Pearlman, Z.J. Haas, , P. Sholander , and, S.S. Tabrizi “On The Impact of Alternate Path Routing for Load Balancing in Mobile Ad Hoc Networks, ” Proc. ACM int’l symp. Mobile Ad Hoc Networking and Computing. pp. 3-10, 2000.
[13] I.Demirkol, C. Ersoy, and F. Alagoz, “MAC Protocols for Wireless Sensor Networks: A Survey,” IEEE J. Communications Magazine, vol. 44, no. 4, pp. 115-121. Apr. 2006,
[14] H. Balakrishnan, C.L. Barrett, V.S.A. Kumar, M.V. Marathe, S. Thite, “The distance-2 matching problem and its relationship to the mac-layer capacity of ad hoc wireless networks”, IEEE J. Selected Areas in Communication, vol. 22, no. 6, pp1069-1079, 2004.
[15] J. Albowicz, A. Chen, and L. Zhang, “Recursive Position Estimation in Sensor Networks,” Proc. IEEE Int’l Conf. Network Protocols, pp. 35-41, Nov. 2001.
[16] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-Less Low Cost Outdoor Localization for Very Small Devices,” IEEE J. Personal Communications, vol. 7, no. 5, pp. 28-34, Oct. 2000.
[17] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” Proc. ACM Mobile Computing and Networking, pp. 243-254, Aug. 2000.
[18] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” Proc. 11th Canadian Conf. Computational Geometry, Aug. 1999.
[19] P. R. Morin, “Online Routing in Geometric Graphs,” Ph.D. Thesis, School of Computer Science, Carleton University, 2001.
[20] W.-J. Liu and K.-T. Feng, “Greedy Routing with Anti-Void Traversal for Wireless Sensor Networks,” IEEE Trans. Mobile Computing, vol. 8, no. 7, pp. 910-922, 2008.
[21] L. Shu, Y. Zhang, L.T. Yang, Y. Wang, and M. Hauswirth, “Geographic Routing in Wireless Multimedia Sensor Networks,” 2008 Second Int’l Conf. Future Generation Communication and Networking, pp.68-73, Dec. 2008.
[22] Y. Ge, G. Wang, W. Jia, and Y. Xie, “Node-Disjoint Multipath Routing with Zoning Method in MANETs,” IEEE Int’ l Conf. High Performance Computing and Communications, pp. 452-460, Sep. 2008.
[23] S.H. Kim, S.M. Oh, H.S. Park, J.C. Lee, S.H. Kim, “Disjoint Multipath Scheme with Hole Detouring Strategy in Wireless Sensor Networks,” IEEE Conf. Vehicular Technology Conference, pp. 1-5, Sep. 2011.
[24] T. Voigt, A. Dunkels, and T. Braun, “On-Demand Construction of Non-interfering Multiple Paths in Wireless Sensor Networks,” Proc. 2nd Workshop Sensor Networks Informatik, pp. 277-285, 2005.
[25] B. Fu, R. Li, X. Xiao, C. Liu, and Q. Yang, “Non-Interfering Multipath Geographic Routing for Wireless Multimedia Sensor Networks,” Proc. IEEE Int’l Conf. Multimedia Information Networking and Security, pp. 254-258. Nov. 2009.
[26] M. Chen, X. Wang, V. Leung, and Y. Yuan, “Virtual Coordinates-based Routing in Wireless Sensor Networks,” Sensor Letters, vol. 4, no. 3, pp. 325-330, Sep. 2006.
[27] S. Medjiah, T. Ahmed, F. Krief, “AGEM: Adaptive Greedy-Compass Energy-Aware Multipath Routing Protocol for WMSNs, ” IEEE conf. on 7th Consumer Communications and Networking, pp. 1-6, Jan. 2010.
[28] M.K. Marina and S.R. Das, “Ad Hoc On-Demand Multipath Distance Vector Routing,” J. Wireless Communications and Mobile Computing, vol. 6, no. 7, pp. 969-988, Nov. 2006.
[29] D. Nandiraju, L. Santhanam, N. Nandiraju, and D.P. Agrawal, “Achieving Load Balancing in Wireless Mesh Networks Through Multiple Gate-ways,” IEEE Int’l Conf. Mobile Adhoc and Sensor Systems, pp. 807-812, Oct. 2006.
[30] G. Wang, Y. Lin and M. Guo, “A Scalable and Reliable Multiple Home Regions Based Location Service in Mobile Ad Hoc Networks,” Proc. IFIP Int’l Conf. Embedded and Ubiquitous Computing, 2005, pp. 550-559.
[31] Network Simulator version 2, http://www.isi.edu/nsnam/ns/tutorial/.
[32] ZigBee Alliance, http://www.zigbee.org/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信