淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2308201114322200
中文論文名稱 加強三點近似法及光學檢測結構最佳化設計
英文論文名稱 Enhanced Three Point Approximation Technique and Optical Inspection Structural Optimization
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 鍾金曄
研究生英文姓名 Chin-Yeh Chung
學號 698371282
學位類別 碩士
語文別 中文
口試日期 2011-07-08
論文頁數 105頁
口試委員 指導教授-史建中
委員-鍾添東
委員-史建中
委員-劉承揚
中文關鍵字 局部近似法  最佳化  奇異點光學檢測機構 
英文關鍵字 local approximation  optimization  singularity  Optical Inspection Structural 
學科別分類 學科別應用科學機械工程
中文摘要 本研究以進階新型三點近似法為基礎,改善最佳化過程中可能會遇到的奇異點,引入移位技術作為中介變數,發展加強進階新型三點近似法數學模型,並可滿足目前參考點及另兩參考點的函數值與靈敏度值,提升最佳化求解的準確性及穩健性。針對加強進階新型三點近似函數進行數值測試,並與進階新型三點近似法做比較,討論其誤差性及準確性。研擬定序列近似最佳化策略,其中包括參
考點的選取及收斂策略,以及探討求解的合理性與有效性。
接著應用在工程設計例題,以加強進階新型三點近似法求解,證明加強三點近似法的求解過程,能有效避免在最佳化過程中可能發生的奇異點,得到較準確的最佳化結果。本研究應用有限元素分析軟體ANSYS及最佳化數值工具Visual Doc結合,並用來求解光學檢測結構最佳化,並與參考文獻做比較。本文提出的近似方法及求解策略,能以較少的數值迭代次數得到最佳化收斂結果,驗證近似法於最佳化設計的有效性與實用性。同時進一步對體積及位移雙目標最佳化設計,得到距離理想點最靠近的平衡解,以達到光學檢測機構的設計需求。
英文摘要 On the basis of the advanced new three-point approximation method, this thesis presents a shifting level technique combined the advanced new three-point approximation applying on structural optimization problems. Numerical examples show that the singularity can be effectively avoided by shifting level technique during optimization process. From the examination, it is verified that fewer iterations is required than other approximation optimization. The numerical error and the numbers of convergence can be reduced as well. The completed optimization process including moving region are re-examined and proposed in the thesis.
A large-scale optical inspection structure for modern wafer manufacture is presented in the thesis. To promote the precision of quality measurement and inspection, it is necessary to increase the structural stiffness and to optimize the structural behavior control. In the beginning, the finite element analysis must be successfully applied to the correct model, and then an appropriate optimization model must can be proposed. Thus, to minimize the structural weight and minimize critical deflection are two design objectives are assigned in the numerical optimization process. Consequently, the proposed enhanced three-point approximation optimization is applied to the solution process. A satisfactory result can be obtained in proposed approximated design optimization process.
論文目次 目錄
致謝 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VII
表目錄 IX
符號說明 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究背景 3
1.3 本文架構 7
第二章 加強進階新型三點近似法原理及模型 9
2.1處理奇異點的方法 9
2.1.1修正倒數近似法 9
2.1.2兩點修正倒數近似法 10
2.1.3加強兩點近似法 11
2.2三點近似法簡介 15
2.3加強進階新型三點近似法(EAnTPA) 17
第三章 加強進階新型三點近似法數值分析 25
3.1 EAnTPA的性能分析 25
3.2應用EAnTPA的最佳化流程 29
3.4結合ANSYS與Visual Doc 35
第四章 加強進階新型三點近似法最佳化 37
4.1應用EAnTPA於彈簧最佳化設計 37
4.2檢驗EAnTPA於焊接結構最佳化設計 54
第五章 光學檢測結構最佳化設計 66
5.1光學檢測結構有限元分析 67
5.2應用EAnTPA於光學檢測結構最佳化 73
5.3應用EAnTPA於光學檢測結構雙目標最佳化 88
5.4雙目標最佳化結果驗證 95
第六章 結論 97
6.1綜和討論與結論 97
6.2未來展望 99
參考文獻 100



圖目錄
圖3-1 例題1 AnTPA及EAnTPA相對誤差曲線圖 27
圖3-2 例題2 AnTPA及EAnTPA相對誤差曲線圖 28
圖3-3 三點近似法最佳化流程 29
圖3-4 加強進階新型三點近似法最佳化流程 34
圖3-5 ANSYS與Visual DOC流程圖 36
圖4-1 線圈彈簧 37
圖4-2 彈簧重量最小化結果 50
圖4-3 限制條件 的相對誤差曲線圖 53
圖4-4為懸臂焊接樑結構 54
圖4-5 焊接樑成本最小化目標函數迭代情形 64
圖5-1光學檢測儀結構 70
圖5-2 X-樑最佳化設計的負載及邊界條件示意圖 70
圖5-3 光學量測儀有限元分析結果 71
圖5-4 SOLID95元素 71
圖5-5 X-樑的設計變數 74
圖5-6 X-樑體積最小化結果 79
圖5-7檢測單元位移最小化結果 84
圖5-8文獻[32]X-樑體積最小化結果 87
圖5-9文獻[32] 檢測單元位移最小化之結果 87
圖5-10統一目標函數迭代過程 93
圖5-11 X-樑體積迭代過程 94
圖5-12檢測單元位移量迭代過程 94

表目錄
表3-1 本文近似法最佳化初始策略 32
表4-1 進階新型三點近似法彈簧重量最小化結果 50
表4-2 加強進階新型三點近似彈簧重量最小化結果 51
表4-3彈簧最小化結果比較 51
表4-4 EAnTPA 焊接樑成本最小化結果 64
表4-5焊接樑成本最小化結果比較 65
表5-1 AOI各部零件材料性質[33] 72
表5-2 X-樑體積最小化結果 79
表5-3檢測組位移最小化結果 84
表5-4 X-樑體積最小化結果比較 86
表5-5檢測單元位移最小化結果比較 86
表5-6 雙目標最佳化結果 93






參考文獻 [1] Kreyszig,E.,1991”Advanced Engineering Mathematics.”pp. 664-677
[2] Haftka , R.T.and Shore, C.P. , 1979,"Approximation Method for
Combined Thermal Structural Design," Structural and Multidisciplinary Optimization ,Vol. 5, No. 3,pp. 129-144
[3] Haftka ,R.T., Nachlas,J.A. ,Waston,L.T. , Rizzo ,T. and Desai,R.
1987,"Two-point Constraint Approximation in Structural Optimization," Computer Methods in Applied Mechanics and Engineering, Vol. 191,pp. 289-301,
[4] Fadel, G. M.,Riley, M. F.,Barthelemy, J. M.,1990, “Two-point Exponential Approximation Method for Structural Optimization,” Structural Optimization, Vol. 2, pp. 117-124.
[5] Wang, L. P., and Grandhi, R.V.,1994, “Efficient Safety Index Calculation for Structural Reliability Analysis,” Computer and Structues, Vol. 52, No. 1, pp. 103-111.
[6] Wang, L. P., and Grandhi, R.V.,1995, “Improved Two-point Function Approximations for Design Optimization,” Aerospace Sciences Meeting Journal, Vol. 33, No. 9,pp. 1720-1727
[7] Xu, G.,Yamazaki, K.,and Cheng, G. D.,2000,“A New Two-point Approximation Approach for Structural Optimization,” Struct Multidisc Optim, Vol. 20, pp. 22-28.
[8] Xu, S., and Grandhi, R. V.,1998, “Effective Two Point Function Approximation for Design Optimization,” Aerospace Sciences Meeting Journal, Vol. 36,No. 12,pp. 2269-2275.
[9] Kim,M.S.,Kim,J.R.and Jeon,J.Y.,2001,” Efficient Mechanical System Optimization Using Two-Point Diagonal Quadratic Approximation in the Nonlinear Intervening Variable Space”, Journal of Mechanical Science and Technology ,Vol. 15 No.9, pp. 1257-1267
[10] Kim,J.R.and Choi,D.H., 2008,” Enhanced Two-point Diagonal Quadratic Approximation Methods for Design Optimization.” Computer Methods in Applied Mechanics and Engineering,Vol. 197 ,pp. 846–856
[11] Salajegheh, E.,1997,“Optimum Design of Plate Structures Using Three-point Approximation,” Structural Optimization, Vol. 13, pp. 143-147.
[12] Guo, X.,Yamazaki, K., and Cheng, G. D.,2001, “A New Three-point Approximation Approach for Design Optimization Problems,”
International Journal for Numerical Methods in Engineering, Vol. 50, pp. 869-884.
[13] 詹景隆,2009,進階新型三點近似法最佳化設計,碩士論文,淡江大學機械與機電工程學研究所。
[14] 郭于鴻,2010,兩點及三點保守近似法設計最佳化,碩士論文,淡江大學機械與機電工程學研究所。
[15] Prasad, B. , 1984,"Novel Concepts for Constraint Treatments and
Approximation in Efficient Structural Synthesis," Aerospace Sciences Meeting Journal, Vol. 22,No.7, pp. 957-966
[16] Vanderplaats ,G.N. and Salajegheh,E. , 1989,"New Approximation
Method for Stress Constraints in Structural Synthesis," Aerospace Sciences Meeting Journal, Vol. 27,No. 3, pp. 352-358.
[17] Svanberg,K. , 1992,"A New Approximation of The Constraints in Truss Sizing Problems: An Explicit Second Order Approximation Which is Exact for Statically Determinate Truss Structures," Structural Optimization,Vol. 4, pp. 165-171
[18] Kirsch,U., 1995,"Improved Stiffness-based First-order approximation for Structural Optimization," Aerospace Sciences Meeting Journal, Vol. 33,No.1,pp. 143-150.
[19] Chickermane ,H. and Gea,H.C., 1996,"Structural Optimization Using a New Local Approximation Method," International Journal for Numerical Methods in Engineering, Vol. 39, pp. 829-846.
[20] Naqib,R.A. , Zureick ,A. and Will,K.M. ,1994,"New Approximate -iterative Technique in Shape Optimization of Continuum Structures," Computers and Structures, Vol. 51,No. 6,pp. 737-748.
[21] Bennett ,J.A. and Botkin,M.E. , 1985,"Structural Shape Optimization with Geometric Description and Adaptive Mesh Refinement," Aerospace Sciences Meeting Journal, Vol. 23,No. 3, pp. 458-464.
[22] Fleury ,C. and Braibant,V. , 1986,"Structural Optimization: A New Dual Method Using Variables," International Journal for Numerical Methods in Engineering, Vol. 23,pp. 409-428.
[23] Jehle ,U. and Mlejnek,H.P. , 1990 ,"Application and implementation of Approximate Explicit Models in Optimum Structural Design," Computer Methods in Applied Mechanics and Engineering,Vol. 83, pp. 33-59.
[24] Liefooghe ,D. and Fleury,C. , 1989 ,"An Interactive Capability for
Shape Optimal Design", Finite Element in Analysis and Design, Vol. 5, pp. 39-55.
[25] Hsu,Y.L., Sheppard ,S.D. and Wilde,D.J. , 1995, "The Curvature
Function Method for Two-dimensional Shape Optimization Under Stress Constraints," Computers and Structures, Vol. 55,No. 4,pp. 647-657.
[26] Chen ,J.L. and Tsai,W.C. , 1993 ,"Shape Optimization by Using
Simulated Biological Growth Approaches," Aerospace Sciences Meeting Journal, Vol. 31,No. 11,pp. 2143-2147.
[27] Kirsch,U. , 1991"Reduced Basis Approximations of Structural
Displacements for Optimal Design", Aerospace Sciences Meeting Journal,Vol. 10,pp. 1751-1758.
[28] Hansen ,S.R. and Vanderplaats,G.N. , 1990, "Approximation Method
for Configuration Optimization of Truss", Aerospace Sciences Meeting Journal,Vol. 28,pp. 161-168.
[29] Kirsch,U. ,1993,"Efficient Reanalysis for Topological Optimization," Structural Optimization, Vol. 6, pp. 143-150.
[30] Tenek ,L.H. and Ichiro,H. , 1993,"Static and Vibrational Shape and Topology Optimization Using Homogenization and Mathematical Programming," Computer Methods in Applied Mechanics and Engineering,Vol. 109, pp.143-154.
[31] 邱求惠,2000,結構最佳設計保守近似法之改良,博士論文,台灣大學機械工程學研究所。
[32] 馬嘉宏,2010,AOI機台之結構最佳化與熱補償設計,碩士論文,國立臺灣大學工學院機械工程學研究所。
[33] Chung,T.T., Huang,Y.C. and Ma,C.H., 2010,” Optimum Design of A High Precision AOI Machine Structure,” International Conference on Mechanical and Electronics Engineering
[34] 劉惟信,1996,機械最佳化設計,全華科技圖書股份有限公司。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-08-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信