淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2308201011213300
中文論文名稱 以反應曲面法(RSM)探討新型吸附劑最佳之多反應值組合
英文論文名稱 Multi-response optimization of a new adsorbent using response surface methodology
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 楊昭瑜
研究生英文姓名 chao-yu Yang
學號 697480688
學位類別 碩士
語文別 中文
口試日期 2010-06-02
論文頁數 98頁
口試委員 指導教授-李奇旺
委員-陳孝行
委員-李柏青
中文關鍵字 反應曲面法  中心合成設計  實驗設計  氧化鐵  甲殼素  五價砷 
英文關鍵字 RSM  CCD  Design experiment  iron oxides  Chitosan  Arsenic 
學科別分類 學科別應用科學環境工程
中文摘要 大部分以氧化鐵製成之吸附劑,通常以細小粉末的形式存在或在實廠的應用上會於水溶液中產生膠凝狀或絮狀物,造成固液分離上之困難。近來,許多研究者多將氧化鐵負載於基質表面,以克服上述之問題。然而,基質上所負載之鐵含量非常少。本研究將甲殼素及氯化鐵混合並利用鹼性溶液製成富含鐵之Chitosan-Fe 複合物。
吸附劑之形狀、溶解度及chitosan、鐵含量之比例影響砷去除效率。根據文獻,Chitosan、Fe及NaOH濃度、針頭高度及交叉結合反應等五個因子可能會影響Chitosan-Fe複合物之形成及砷之去除效率,因此本研究將以部分因子試驗篩選重要因子。隨後利用中心組合設計法(CCD)及反應曲面法(RSM)將被篩選出之因子(chitosan及Fe濃度)對圓度(%)、鐵溶出率(%)及砷去除率(%)做迴歸模式。由於最適化牽涉到不同操作參數及效應(即圓度、鐵溶出率及砷去除率),而各效應的最適條件不盡相同,因此由三個指標 (圓度、鐵溶出率及砷去除率) 決定望想函數 (Derringer’s desirability function),來尋求最適的操作條件。
在pH 7下對最佳成分之吸附劑模擬等溫及動力吸附模式。而等溫吸附模式符合Langmuir等溫吸附模式並從中可得到單層吸附容積為11.7233 mg/g的砷吸附量並發現反應過程較緩慢,約5小時才達到平衡,故推斷汙染物砷及吸附劑表面間為特定吸附,與比表面積無關。SEM分析顯示吸附劑表面極為平滑,並由BET值中得知比表面積為0.099m2/g,由此可證吸附容積與單位表面積之官能基位址有關,與比表面積無關。
英文摘要 Most adsorbents based on iron oxides are available as fine powders or are generated in-situ in aqueous suspension as hydroxide floc or gel, making separation of these adsorbents from treated liquid very difficult. Recently, several researchers have developed techniques for coating iron oxide onto the surface of substrates to overcome the problem of solid-liquid separation. However, the iron content on the coated substrates is very low. Instead of using coating techniques, in this study iron-rich chitosan-iron oxide composites were formed by mixing chitosan and ferric chloride solution with alkaline solution.
The shape, solubility of adsorbent and ratio of chitosan and iron oxides affect Arsenic (As(V)) removal efficiency. According to literatures, five factors, namely concentration of chitosan, Fe, and NaOH, height of the needle head, and the cross-linking reaction, might affect the formation of chitosan-iron oxide composites and As(V) removal efficiency were tested, and their significance were screened experimentally according to fractional factorial design. Subsequently, the selected influential variables (Fe and chitosan concentrations) were included in the regression models of Aspect ratio (%), Solubility of Fe (%), and As removal efficiency (%) which were determined by CCD and RSM. The formula for making ‘the best’ adsorbent was determined based on Derringer’s desirability function including Aspect ratio, Solubility of Fe, and As Removal efficiency.
Adsorption of arsenic (V) by adsorbent produced using ‘the best’ formula was studied at pH 7.0 under equilibrium and dynamic conditions. The monolayer adsorption capacity obtained from fitting experimental data with Langmuir model was 11.72 mg/g, and the time to reach equilibrium is about 5 hours, indicating a specific adsorption occurring between the arsenic species and the surface of the adsorbent. SEM analysis reveals that the surface of adsorbent was smooth.
論文目次 目錄
目錄 I
圖目錄 IV
表目錄 VI
第一章 前言 1
1.1研究背景 1
1.2研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1砷 4
2.1.1 砷之來源及特性 4
2.1.2砷之測定方法 6
2.1.3 砷之去除 7
2.2氧化鐵 9
2.2.1氧化鐵之表面特性 11
2.3吸附原理 13
2.3.1吸附定義[35] 13
2.3.2物理吸附 14
2.3.3化學吸附 14
2.3.4特定吸附與非特定吸附 14
2.4吸附模式[37-38] 15
2.4.1 Langmuir Equation 15
2.4.2 Freundlich Equation 15
2.4.3吸附動力模式[38] 16
2.5甲殼素 17
2.5.1物理改質 18
2.5.2化學改質 19
2.6實驗設計 21
2.6.1二水準因子設計 21
2.6.2反應曲面法之介紹 24
2.6.3中心混成設計(Central Composite Design,CCD) 25
2.6.4多反應值 25
第三章 實驗方法與設備 27
3.1實驗方法 27
3.1.1 Fe-Chitosan之備置 29
3.1.2 圓度之分析 30
3.1.3鐵溶出率試驗 30
3.1.4 砷去除率之分析 31
3.1.5動力吸附實驗 31
3.1.6 等溫吸附實驗 31
3.2實驗分析 32
3.2.1砷含量分析 32
3.2.2總鐵分析 33
3.2.3 比表面積之分析 33
3.2.4掃描式電子顯微鏡(SEM)分析 34
3.2.5 X光繞射儀(XRD) 34
3.3實驗材料與設備 34
3.3.1含砷廢水 34
3.3.2實驗藥劑 35
3.3.3實驗設備 35
第四章 結果與討論 37
4.1因子範圍之選擇 37
4.1.1 Chitosan含量 37
4.1.2 Fe含量 38
4.1.3 NaOH濃度 38
4.2二水準部分因子實驗 39
4.2.1 實驗設計 39
4.2.2顆粒圓度分析 43
4.2.3溶出試驗 50
4.2.4吸附試驗 56
4.3反應曲面法(RSM) 62
4.3.1圓度 64
4.3.1溶出試驗 69
4.3.2吸附試驗 74
4.3.3聯立最佳化技術 80
4.4最佳解之分析 84
4.4.1 X光繞射分析[53] 84
4.4.2等溫吸附試驗 85
4.4.3動力吸附試驗 88
4.4.4 SEM 91
第五章 結論與建議 92
Reference 94

圖目錄
圖 1、(a)As(Ⅴ)及(b) As(Ⅲ)於不同pH值下之物種分布(輸入參數:As濃度=2.7╳10-5mol/L) 6
圖 2、氧化鐵各型態間之轉換途徑[29] 10
圖 3、Chitin及Chitosan之結構式 18
圖 4、經由戊二醛交叉結合後之Chitosan 20
圖 5、23設計的兩個1/2部分 23
圖 6、流程圖 28
圖 7、解剖顯微鏡下之顆粒圖 29
圖 8、顆粒製造模組 29
圖 9、不同砷濃度於400-1000nm下之scan圖 32
圖 10、破碎之吸附劑(3.5g Chitosan/100ml) 37
圖 11、23因子設計(定性因子B) 39
圖 12、2Ⅴ5-1設計 41
圖 13、圓度分析之殘差的常態機率圖。 46
圖 14、圓度分析之殘差對時間順序的圖 47
圖 15、圓度分析之主效應 48
圖 16、圓度分析之交互作用 49
圖 17、圓度分析之殘差的常態機率圖。 52
圖 18、鐵溶出率對時間順序之圖 53
圖 19、鐵溶出試驗之主效應 53
圖 20、鐵溶出試驗之交互效應 54
圖 21、Fe因子對鐵溶出試驗殘差之圖 55
圖 22、Cross-link因子對鐵溶出試驗殘差之圖 56
圖 23、吸附試驗之殘差圖 59
圖 24、砷去除率對時間順序之圖 60
圖 25、吸附試驗之主效應圖 61
圖 26、中央合成設計 64
圖 27、圓度分析(a)反應曲面圖及(b)等高線圖 68
圖 28、圓度分析配適線性迴歸模型之殘差圖 69
圖 29、溶出試驗配適二階迴歸模型之殘差圖 72
圖 30、鐵溶出試驗之(a)反應曲面圖及(b)等高線圖 73
圖 31、吸附試驗之(a)反應曲面圖及(b)等高線圖 77
圖 32、吸附試驗配適二階迴歸模型之殘差圖 78
圖 33、總願望函數D的反應曲面圖 83
圖 34、CLC-Fe的XRD圖譜 84
圖 35、(a)非結晶型XRD圖(b)結晶型XRD圖[54] 85
圖 36、CLC-Fe吸附理論(pH=7、反應時間24hrs、吸附劑量0.1g) 86
圖 37、Langmuir吸附理論 87
圖 38、Freunlich吸附理論 87
圖 39、反應時間對吸附量之圖 88
圖 40、擬一階動力吸附模式 89
圖 41、擬二階動力吸附模式 90
圖 42、(a)C-Fe及(b)CLC-Fe吸附劑 91



表目錄
表 1、砷酸與亞砷酸於水溶液中之解離常數 5
表 2、低濃度含砷廢水之去除技術優缺點比較 8
表 3、氧化鐵之PZC 11
表 4、氧化鐵覆載之文獻整理 13
表 5、23因子設計的正負號表 22
表 6、本研究所選之因子及其範圍 27
表 7、本研究使用之藥劑 35
表 8、關鍵參數之制訂 38
表 9、部分因子試驗之建構 40
表 10、25-1部分因子實驗因子之別名關係 42
表 11、圓度分析之試驗值 43
表 12、圓度分析之ANOVA 45
表 13、鐵溶出率之試驗值 50
表 14、鐵溶出試驗之ANOVA表 51
表 15、吸附試驗之試驗值 57
表 16、吸附試驗之ANOVA表 58
表 17、中央合成設計 63
表 18、圓度分析之配適摘要 65
表 19、圓度分析配適之ANOVA表 66
表 20、圓度分析之統計資料彙整 67
表 21、溶出試驗之配適摘要表 70
表 22、溶出試驗配適二階迴歸模型之ANOVA表 71
表 23、溶出試驗配適二階迴歸模型之統計資料彙整 72
表 24、吸附試驗之配適摘要表 75
表 25、吸附試驗配適二階迴歸模型之ANOVA表 76
表 26、吸附試驗配適二階迴歸模型之統計資料彙整 76
表 27、列出三反應值之配適模型及其他統計上的參數。 79
表 28、整理各反應值之目標值 80
表 29、聯立最佳化參數設定表 81
表 30、聯立最佳化最大之總願望函數 81
表 31、為求願望函數所需之資料 82
表 32、各反應值之願望函數 82
表 33、最佳吸附劑之估計值與實際值比較 84
表 34、吸附理論之參數值 88
表 35、擬二階動力模式之參數 90
參考文獻 1. Benjamin, M.M., Water Chemistry.
2. Cumbal, L. and A.K. Sengupta, Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: Role of Donnan membrane effect. Environmental Science and Technology, 2005. 39(17): p. 6508-6515.
3. Iesan, C.M., et al., Characterization of hybrid inorganic/organic polymer-type materials used for arsenic removal from drinking water. Reactive and Functional Polymers, 2008. 68(11): p. 1578-1586.
4. Min, J.H. and J.G. Hering, Arsenate sorption by Fe(III)-doped alginate gels. Water Research, 1998. 32(5): p. 1544-1552.
5. Fierro, V., et al., Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 2009. 168(1): p. 430-437.
6. Lo, S.L. and T.Y. Chen, Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water. Chemosphere, 1997. 35(5): p. 919-930.
7. Kalyani, S., A. Krishnaiah, and V.M. Boddu, Adsorption of divalent cobalt from aqueous solution onto chitosan-coated perlite beads as biosorbent. Separation Science and Technology, 2007. 42(12): p. 2767-2786.
8. Nieto, J.M., C. Peniche-Covas, and J. Del Bosque, Preparation and characterization of a chitosan-Fe(III) complex. Carbohydrate Polymers, 1992. 18(3): p. 221-224.
9. Chang, Y., C.W. Li, and M.M. Benjamin, Iron oxide-coated media for NOM sorption and particulate filtration. Journal / American Water Works Association, 1997. 89(5): p. 100-113.
10. Vieira, R.S. and M.M. Beppu, Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Research, 2006. 40(8): p. 1726-1734.
11. Rorrer, G.L., T.Y. Hsien, and J.D. Way, Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Industrial and Engineering Chemistry Research, 1993. 32(9): p. 2170-2178.
12. Wu, S.J., T.H. Liou, and F.L. Mi, Synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresource Technology, 2009. 100(19): p. 4348-4353.
13. Donia, A.M., A.A. Atia, and K.Z. Elwakeel, Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde. Journal of Hazardous Materials, 2008. 151(2-3): p. 372-379.
14. Wang, G., et al., Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Journal of Hazardous Materials, 2009. 168(2-3): p. 1053-1058.
15. Kanai, Y., T. Oshima, and Y. Baba, Synthesis of highly porous chitosan microspheres anchored with 1,2-ethylenedisulfide moiety for the recovery of precious metal ions. Industrial and Engineering Chemistry Research, 2008. 47(9): p. 3114-3120.
16. Vitali, L., et al., Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions. International Journal of Biological Macromolecules, 2008. 42(2): p. 152-157.
17. Hejazi, R. and M. Amiji, Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release, 2003. 89(2): p. 151-165.
18. Edwards, M., Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. Journal / American Water Works Association, 1994. 86(9): p. 64-78.
19. Dodbiba, G., et al., Removal of arsenic from wastewater using iron compound: Comparing two different types of adsorbents in the context of LCA. Resources, Conservation and Recycling, 2009. 53(12): p. 688-697.
20. Hao, J., M.J. Han, and X. Meng, Preparation and evaluation of thiol-functionalized activated alumina for arsenite removal from water. Journal of Hazardous Materials, 2009. 167(1-3): p. 1215-1221.
21. Schroder, J.L. and H. Zhang, Using the multimode sample introduction system (MSIS) for low level analysis of arsenic and selenium in water. Soil Science Society of America Journal, 2009. 73(6): p. 1804-1807.
22. Dhar, R.K., et al., A rapid colorimetric method for measuring arsenic concentrations in groundwater. Analytica Chimica Acta, 2004. 526(2): p. 203-209.
23. Lenoble, V., et al., Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 2003. 61(3): p. 267-276.
24. 葉宣顯、賴文亮, 水中砷混凝去除機構之初探. 中國環境工程學刊, 1991. 1(2): p. 65-71.
25. Schneiter, R.W. and E.J. Middlebrooks, Arsenic and fluoride removal from groundwater by reverse osmosis. Environment International, 1983. 9(4): p. 289-291.
26. Li, Y., et al., Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials.
27. Rozell, D., Modeling the removal of arsenic by iron oxide coated sand. Journal of Environmental Engineering. 136(2): p. 246-248.
28. Kundu, S. and A.K. Gupta, Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC). Journal of Hazardous Materials, 2007. 142(1-2): p. 97-104.
29. 賴進興, 氧化鐵覆膜濾砂吸附過濾水中銅離子之研究. 國立台灣大學環境工程學研究所博士論文. 1995.
30. Dixit, S. and J.G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 2003. 37(18): p. 4182-4189.
31. Yang, J.K., et al., Removal of Cu(II) by activated carbon impregnated with iron(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009. 337(1-3): p. 154-158.
32. Kitis, M., et al., Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere, 2007. 66(1): p. 130-138.
33. Zouboulis, A.I. and I.A. Katsoyiannis, Arsenic removal using iron oxide loaded alginate beads. Industrial and Engineering Chemistry Research, 2002. 41(24): p. 6149-6155.
34. Dong, L., et al., Iron coated pottery granules for arsenic removal from drinking water. Journal of Hazardous Materials, 2009. 168(2-3): p. 626-632.
35. 張貴錢, 利用奈米零價鐵粉處理受鉻汙染水體之研究. 元智大學 化學工程學系 碩士論文, 2003.
36. Zhang, G., et al., Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface. Journal of Hazardous Materials, 2009. 168(2-3): p. 820-825.
37. Biswas, K., K. Gupta, and U.C. Ghosh, Adsorption of fluoride by hydrous iron(III)-tin(IV) bimetal mixed oxide from the aqueous solutions. Chemical Engineering Journal, 2009. 149(1-3): p. 196-206.
38. Wu, Y., et al., Adsorption of Cr(VI) and As(III) on coaly activated carbon in single and binary systems. Desalination, 2009. 249(3): p. 1067-1073.
39. Wu, J., Z.G. Su, and G.H. Ma, A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. International Journal of Pharmaceutics, 2006. 315(1-2): p. 1-11.
40. Guibal, E., Interactions of metal ions with chitosan-based sorbents: A review. Separation and Purification Technology, 2004. 38(1): p. 43-74.
41. Krogars, K., et al., Extrusion-spheronization of pH-sensitive polymeric matrix pellets for possible colonic drug delivery. International Journal of Pharmaceutics, 2000. 199(2): p. 187-194.
42. El-Gibaly, I., A.M.A. Meki, and S.K. Abdel-Ghaffar, Novel B melatonin-loaded chitosan microcapsules: In vitro characterization and antiapoptosis efficacy for aflatoxin B1-induced apoptosis in rat liver. International Journal of Pharmaceutics, 2003. 260(1): p. 5-22.
43. Shwu, J.C., et al., Preparation and preliminary characterization of concentric multi-walled chitosan microspheres. Journal of Biomedical Materials Research - Part A, 2007. 81(3): p. 554-566.
44. Leonardi, D., M.C. Lamas, and A.C. Olivieri, Multiresponse optimization of the properties of albendazole-chitosan microparticles. Journal of Pharmaceutical and Biomedical Analysis, 2008. 48(3): p. 802-807.
45. Gong, X.C., et al., Separation of organic acids by newly developed polysulfone microcapsules containing triotylamine. Separation and Purification Technology, 2006. 48(3): p. 235-243.
46. Wan Ngah, W.S., C.S. Endud, and R. Mayanar, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 2002. 50(2): p. 181-190.
47. Monteiro, O.A.C. and C. Airoldi, Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 1999. 26(2-3): p. 119-128.
48. Ngah, W.S.W. and S. Fatinathan, Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 2008. 143(1-3): p. 62-72.
49. Ghafari, S., et al., Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 2009. 163(2-3): p. 650-656.
50. Azlan, K., W.N. Wan Saime, and L. Lai Ken, Chitosan and chemically modified chitosan beads for acid dyes sorption. Journal of Environmental Sciences, 2009. 21(3): p. 296-302.
51. Gupta, A., V.S. Chauhan, and N. Sankararamakrishnan, Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Research, 2009. 43(15): p. 3862-3870.
52. Chin, C.J.M., P.W. Chen, and L.J. Wang, Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere, 2006. 63(10): p. 1809-1813.
53. 鐘瑞嬰, 磷酸根及重金屬離子在針鐵礦上之吸附平衡. 2003.
54. Camponeschi, E., et al., Surfactant effects on the particle size of iron (III) oxides formed by sol-gel synthesis. Journal of Non-Crystalline Solids, 2008. 354(34): p. 4063-4069.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信