淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2308201011140700
中文論文名稱 張應變對土壤-地工不織布過濾行為之影響
英文論文名稱 The Influence of Tensile Strain on Filtration Behavior of Nonwoven Geotextile
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 侯政賢
研究生英文姓名 Jenq-Shian Hou
學號 696381028
學位類別 碩士
語文別 中文
口試日期 2010-06-24
論文頁數 159頁
口試委員 指導教授-洪勇善
委員-陳榮河
委員-吳朝賢
中文關鍵字 地工不織布  針軋  坡降比試驗  GR值  張應變  單向  雙向 
英文關鍵字 Non-woven geotextiles  Needle-punched  Gradient ratio test  GR value  Tensile strain  Uniaxial  Biaxial 
學科別分類 學科別應用科學土木工程及建築
中文摘要 本研究探討張應變對織物過濾特性之影響,將織物施以不同程度的單向或雙向拉伸後進行坡降比試驗,試驗結果分別以坡降比、土層滲透係數、系統滲流率及土壤流失量等進行分析與比較。本研究選用三種不同厚度(0.8 mm、1.3 mm、2.0 mm)之針軋不織布,以瞭解不同厚度的針軋不織布受影響的程度差異。坡降比試驗係藉由改良自ASTM D5001之坡降比透水儀,依續由小至大變換水力坡降(i = 1、5、10)進行土壤-拉伸之地工織物系統的滲流。同時也以變水頭與濕篩法試驗進行未伸張之不織布的透水速率與開孔徑分佈的量測。
未伸張織物透水速率與開孔徑分佈量測結果顯示,越厚的織物(2.0 mm)有效開孔徑與透水速率皆較小,越薄的織物開孔徑與透水速率皆較大;本研究中,厚度0.8 mm與1.3 mm織物的開孔徑分佈差異不大。
織物受單向張應變時,除張應變2%外,土壤-不織布系統的修正GR值隨張應變增大而有下降趨勢。於中高水力梯度時,修正後的GR值,在張應變7.5%的GR值稍微小於張應變10%的組合,愈薄的不織布則GR值較大。此外,織物與土壤複合層的滲透係數k12,於中高水力梯度時,滲透係數有隨單向張應變的增大而上升的趨勢。
織物承受雙向張應變時,土壤-不織布的修正GR值隨張應變的增大呈現下降的趨勢,系統滲流率也明顯增大。亦即,織物於未伸張時GR值最高,而張應變20%時GR值最低。各種張應變下,於中高水力梯度時,愈薄的不織布GR值較小,愈厚的不織布則GR值較大,此結果與單向張應變情況相反。而織物與土壤複合層的滲透係數k12,於中高水力梯度時,滲透係數有明顯隨張應變增大而上升的趨勢。
英文摘要 The influences of tensile stain on filtration characteristics of soil-geotextile combinations were investigated in this study. The geotextiles were stretched and secured to various strain levels, uni-directionally or bi-directionally, prior to installation in a modified GR test apparatus. Test results were expressed in GR values, hydraulic conductivity, and system seepage and soil particle loss. Three needle-punched non-woven geotextiles of different thicknesses (0.8 mm、1.3 mm、2.0 mm) were employed in this study. A falling head and wet sieving methods were carried out collaborated with the strained specimen to evaluate hydraulic conductivity and opening size distribution of the plain geotextiles.
The experimental results show: (1) Thicker geotextile produces smaller apparent opening size and slower flow velocity. (2) For specimens subjected to uniaxial strain, increase of the tensile strain reduces the gradient ratio; the GR values for the system collaborated with stretched geotextiles increase with the decrease of the thickness. (3) For specimens subjected to biaxial strain, increase of the tensile strain reduces the gradient ratio; the GR values for the system collaborated with stretched geotextiles increase with the increase of the thickness. (4) At i = 5 and 10, there is a growth in the hydraulic conductivity for the soil-geotextile layer as the uniaxial or biaxial strains increased.
論文目次 目 錄

中文摘要................................................. I
英文摘要................................................ II
目錄................................................... III
表目錄................................................. VII
圖目錄.................................................. IX
第一章 緒論.............................................. 1
1.1 研究動機與目的............................. 1
1.2 研究方法................................... 1
1.3 內容架構................................... 2
第二章 文獻回顧.......................................... 3
2.1 地工織物開孔徑分佈......................... 3
2.1.1 織物孔徑結構.................... 3
2.1.2 織物孔徑量測.................... 3
2.2 地工織物過濾排水理論....................... 4
2.2.1 過濾排水現象.................... 5
2.2.2 過濾排水機制.................... 6
2.3 地工織物過濾排水準則....................... 9
2.3.1 滲透性準則...................... 9
2.3.2 阻留準則........................ 9
2.3.3 抗阻塞準則..................... 10
2.4 地工織物過濾排水之相關研究................ 11
2.4.1 張應變影響土壤-
織物過濾行為之相關研究.......... 12
第三章 試驗設備與試驗方法............................... 33
3.1 研究計畫.................................. 33
3.1.1 試驗規劃....................... 33
3.1.2 試驗項目及流程................. 33
3.2 試驗材料之基本性質........................ 34
3.2.1 地工織物之基本性質............. 34
3.2.2 土壤材料之基本性質............. 34
3.2.3 選擇材料之依據............................ 34
3.3 試驗設備.................................. 35
3.3.1 地工織物單向伸張試驗........... 35
3.3.2 地工織物雙向伸張試驗........... 36
3.3.3 地工織物透水速率試驗........... 36
3.3.4 地工織物開孔徑分佈量測試驗..... 37
3.3.5 土壤-地工織物系統過濾試驗...... 37
3.4 試驗簡介與試驗步驟........................ 39
3.4.1 地工織物單向伸張試驗與取樣..... 39
3.4.2 地工織物雙向伸張試驗與取樣..... 40
3.4.3 地工織物未伸張透水試驗......... 41
3.4.4 地工織物未伸張
開孔徑分佈量測試驗.............. 41
3.4.5 土壤-地工織物系統過濾試驗步驟.. 42
3.5 試驗結果分析方法.......................... 46
3.5.1 水力坡降比之計算方法........... 46
3.5.2 滲透係數之定義................. 47
第四章 試驗結果分析與討論............................... 69
4.1 織物單向伸張試驗結果...................... 69
4.1.1 織物不同厚度之單向伸張試驗結果. 69
4.1.2 織物單向伸張試驗結果之綜合討論. 70
4.2 織物未伸張開孔徑量測試驗結果......... 70
4.3 織物未伸張透水速率試驗結果........... 71
4.4 土壤-地工織物過濾系統之試驗結果...... 71
4.4.1 單向張應變對土壤-織物厚度0.8 mm
過濾系統的影響....................... 72
4.4.2 單向張應變對土壤-織物厚度1.3 mm
過濾系統的影響....................... 76
4.4.3 單向張應變對土壤-織物厚度2.0 mm
過濾系統的影響....................... 80
4.4.4 雙向張應變對土壤-織物厚度0.8 mm
過濾系統的影響....................... 84
4.4.5 雙向張應變對土壤-織物厚度1.3 mm
過濾系統的影響....................... 87
4.4.6 雙向張應變對土壤-織物厚度2.0 mm
過濾系統的影響....................... 89
4.4.7 織物張應變對土壤顆粒流失之影響. 91
4.5 綜合討論.................................. 92
4.5.1 單向張應變對土壤-織物過濾系統.. 92
4.5.2 雙向張應變對土壤-織物過濾系統.. 93
4.5.3 單向張應變對土壤-織物過濾系統之
(k12、k23)滲透係數................... 94
4.5.4 雙向張應變對土壤-織物過濾系統之
(k12、k23)滲透係數................... 96
第五章 結論與建議...................................... 153
5.1 結論..................................... 153
5.2 建議..................................... 154
參考文獻............................................... 156



表 目 錄

表2.1 地工織物滲透準則 (Christopher and Fischer , 1992). 15
表2.2 無因次之水力傳導係數λp之整理表
(Williams and Luettich , 1990 )............... 15
表2.3 無因次之水力傳導係數λR之整理表
(Williams et al , 1990 )....................... 16
表2.4 FHWA之過濾排水、沖蝕控制之選材
(王瑞鴻 , 2006 )............................... 17
表3.1 織物基本性質...................................... 48
表3.2 試驗土壤基本性質.................................. 49
表3.3 分級玻璃珠粒徑一覽表.............................. 49
表4.1 織物單向伸張試驗之張力強度........................ 97
表4.2 織物未伸張之開孔徑量測試驗結果整理................ 98
表4.3 單向伸張應變織物厚度0.8 mm之GR試驗值.............. 99
表4.4 單向伸張應變織物厚度0.8 mm之滲透係數(k12、k23).... 99
表4.5 單向伸張應變織物厚度0.8 mm之系統滲流率........... 100
表4.6 單向伸張應變織物厚度1.3 mm之GR試驗值............. 101
表4.7 單向伸張應變織物厚度1.3 mm之滲透係數(k12、k23)... 101
表4.8 單向伸張應變織物厚度1.3 mm之系統滲流率........... 102
表4.9 單向伸張應變織物厚度2.0 mm之GR試驗值............. 103
表4.10 單向伸張應變織物厚度2.0 mm之滲透係數(k12、k23).. 103
表4.11 單向伸張應變織物厚度2.0 mm之系統滲流率.......... 104
表4.12 雙向伸張應變織物厚度0.8 mm之GR試驗值............ 105
表4.13 雙向伸張應變織物厚度0.8 mm之滲透係數(k12、k23).. 105
表4.14 雙向伸張應變織物厚度0.8 mm之系統滲流率.......... 106
表4.15 雙向伸張應變織物厚度1.3 mm之GR試驗值............ 107
表4.16 雙向伸張應變織物厚度1.3mm之滲透係數(k12、k23)... 107
表4.17 雙向伸張應變織物厚度1.3 mm之系統滲流率.......... 108
表4.18 雙向伸張應變織物厚度2.0 mm之GR試驗值............ 109
表4.19 雙向伸張應變織物厚度2.0 mm之滲透係數(k12、k23).. 109
表4.20 雙向伸張應變織物厚度2.0 mm之系統滲流率.......... 110
表4.21 單向張應變下土壤-織物過濾試驗顆粒流失狀況....... 111
表4.22 雙向張應變下土壤-織物過濾試驗顆粒流失狀況....... 111
表4.23 單向伸張應變織物厚度0.8 mm
坡降比試驗結果之GR修正值............ 112
表4.24 單向伸張應變織物厚度1.3 mm
坡降比試驗結果之GR修正值............ 112
表4.25 單向伸張應變織物厚度2.0 mm
坡降比試驗結果之GR修正值............ 113
表4.26 雙向伸張應變織物厚度0.8 mm
坡降比試驗結果之GR修正值............ 113
表4.27 雙向伸張應變織物厚度1.3 mm
坡降比試驗結果之GR修正值............ 114
表4.28 雙向伸張應變織物厚度2.0 mm
坡降比試驗結果之GR修正值............ 114


圖 目 錄

圖2.1 織物孔隙通道示意圖(Fischer,1994).................. 18
圖2.2 土壤顆粒與地工織物孔隙通道示意圖(王瑞鴻,2006)..... 18
圖2.3 水銀滲入法量測之織物開孔徑分佈
(Holtz and Luna,1989)............................. 19
圖2.4 不同水流狀況之地工織物護坡(Lawson,1993)........... 20
圖2.5 阻塞機制圖(Rollin et al.,1988).................... 21
圖2.6 堵塞機制圖(Rollin et al.,1988).................... 21
圖2.7 遮蔽機制圖(Rollin et al.,1988).................... 21
圖2.8 橋式架空結構(Bridge Network Formation)
(Mlynarek et al.,1991)............... 22
圖2.9 圓拱架空結構(Vault Network Formation)
(Mlynarek et al.,1991)............... 22
圖2.10 土壤與地工織物界面層之階段變化
(Mlynarek et al.,1991)............... 23
圖2.11 土壤與地工織物系統之長期滲透試驗行為
(Rollin et al.,1985)................. 24
圖2.12 典型土壤與地工織物系統之過濾行為(Lawson,1982).... 25

圖2.13 GR值與沉泥含量關係圖
(改繪Haliburton and Wood,1982)(王瑞鴻,2006)...... 25
圖2.14 黏土-織物系統阻留準則適用性探討試驗設置圖
( ,1993)......................................... 26
圖2.15 系統滲透係數與織物開孔徑關係圖
( ,1993)......................................... 26
圖2.16 隨時間變化之土壤水頭變化圖
(Fannin et al.,1996)............................. 27
圖2.17 阻留準則試驗之土壤顆粒通過織物之重量
(Fannin et al.,1996)............................. 27
圖2.18 織物伸張及未伸張之流率變化圖
(Fourie and Kuchena ,1995)....................... 28
圖2.18 織物伸張及未伸張之流率變化圖(續)
(Fourie and Kuchena ,1995)....................... 28
圖2.19 織物有效開孔徑與張應變關係圖(Wu et al., 2008).... 29
圖2.20 織布開孔徑變化曲線圖(Wu et al., 2008)............ 30
圖2.21 織布I、II透水速率與張應變關係圖(Wu et al., 2008). 31
圖2.22 不織布I、II透水速率與張應變關係(Wu et al., 2008). 31
圖2.23 不織布開孔徑變化曲線(Wu et al., 2008)............ 32

圖3.1 試驗項目.......................................... 50
圖3.2 研究試驗流程圖.................................... 51
圖3.3 試驗土壤之粒徑分佈曲線............................ 52
圖3.4 改繪自 ASTM D4595規範之地工織物
寬幅拉伸試驗示意圖................................ 52
圖3.5 織物單向伸張試驗機示意圖.......................... 53
圖3.6 織物單向伸張試驗機照片............................ 53
圖3.7 地工織物雙向伸張試驗示意圖........................ 54
圖3.8 織物雙向伸張試驗機示意圖.......................... 54
圖3.9 織物雙向伸張機與伺服主機照片...................... 55
圖3.10 地工織物透水速率試驗設備示意圖................... 56
圖3.11 地工織物透水速率試驗設備照片..................... 56
圖3.12 地工織物開孔徑分佈量測試驗設備示意圖............. 57
圖3.13 地工織物開孔徑分佈量測試驗設備照片............... 57
圖3.14 ASTM D5101型式坡降比試驗透水儀示意圖............ 58
圖3.15 改良之坡降比試驗整體示意圖....................... 59
圖3.16 改良之透水儀示意圖............................... 60
圖3.17 改良之透水儀配件照片............................. 61
圖3.18 織物單向伸張試驗與取樣流程圖..................... 62
圖3.19 地工織物單向伸張後試體取樣過程照片............... 63
圖3.20 織物雙向伸張試驗與取樣流程圖..................... 64
圖3.21 地工織物雙向伸張後試體取樣過程照片............... 65
圖3.22 地工織物未伸張透水速率試驗流程圖................. 66
圖3.23 地工織物未伸張開孔徑量測試驗流程圖............... 67
圖3.24 地工織物之坡降比試驗流程圖....................... 68
圖4.1 織物厚度0.8 mm之張力與應變關係................... 115
圖4.2 織物厚度1.3 mm之張力與應變關係................... 115
圖4.3 織物厚度2.0 mm之張力與應變關係................... 116
圖4.4 織物不同厚度之張力與應變關係..................... 116
圖4.5 織物厚度0.8 mm未伸張開孔徑分佈結果............... 117
圖4.6 織物厚度1.3 mm未伸張開孔徑分佈結果............... 117
圖4.7 織物厚度2.0 mm未伸張開孔徑分佈結果............... 118
圖4.8 未伸張織物有效開孔徑(O95)........................ 118
圖4.9 織物厚度0.8 mm
未伸張坡降比(GR)與滲流率(Q/t)之變化.............. 119
圖4.10 織物厚度0.8 mm
未伸張k12與k23滲透係數之變化..................... 119

圖4.11 織物厚度0.8 mm單向伸張應變2%
坡降比(GR)與滲流率(Q/t)之變化.................... 120
圖4.12 織物厚度0.8 mm單向伸張應變2%
k12與k23滲透係數之變化........................... 120
圖4.13 織物厚度0.8 mm單向伸張應變5%
坡降比(GR)與滲流率(Q/t)之變化.................... 121
圖4.14 織物厚度0.8mm單向伸張應變5%
k12與k23滲透係數之變化........................... 121
圖4.15 織物厚度0.8 mm單向伸張應變7.5%
坡降比(GR)與滲流率(Q/t)之變化.................... 122
圖4.16 織物厚度0.8mm單向伸張應變7.5%
k12與k23滲透係數之變化........................... 122
圖4.17 織物厚度0.8 mm單向伸張應變10%
坡降比(GR)與滲流率(Q/t)之變化.................... 123
圖4.18 織物厚度0.8 mm單向伸張應變10%
k12與k23滲透係數之變化........................... 123
圖4.19 織物厚度0.8 mm單向伸張應變20%
坡降比(GR)與滲流率(Q/t)之關係.................... 124

圖4.20 織物厚度0.8 mm單向伸張應變20%
k12與k23滲透係數之變化........................... 124
圖4.21 單向伸張應變織物厚度0.8 mm之GR值................ 125
圖4.22 織物厚度1.3 mm
未伸張坡降比(GR)與滲流率(Q/t)之變化.............. 125
圖4.23 織物厚度1.3 mm
未伸張k12與k23滲透係數之變化..................... 126
圖4.24 織物厚度1.3 mm單向伸張應變2%
坡降比(GR)與滲流率(Q/t)之變化.................... 126
圖4.25 織物厚度1.3 mm單向伸張應變2%
k12與k23滲透係數之變化........................... 127
圖4.26 織物厚度1.3 mm單向伸張應變5%
坡降比(GR)與滲流率(Q/t)之變化.................... 127
圖4.27 織物厚度1.3 mm單向伸張應變5%
k12與k23滲透係數之變化........................... 128
圖4.28 織物厚度1.3 mm單向伸張應變7.5%
坡降比(GR)與滲流率(Q/t)之變化.................... 128
圖4.29 織物厚度1.3 mm單向伸張應變7.5%
k12與k23滲透係數之變化........................... 129
圖4.30 織物厚度1.3 mm單向伸張應變10%
坡降比(GR)與滲流率(Q/t)之變化.................... 129
圖4.31 織物厚度1.3 mm單向伸張應變10%
k12與k23滲透係數之變化........................... 130
圖4.32 織物厚度1.3 mm單向伸張應變20%
坡降比(GR)與滲流率(Q/t)之變化.................... 130
圖4.33 織物厚度1.3 mm單向伸張應變20%
k12與k23滲透係數之變化........................... 131
圖4.34 單向伸張應變織物厚度1.3 mm之GR值................ 131
圖4.35 織物厚度2.0 mm
未伸張坡降比(GR)與滲流率(Q/t)之變化.............. 132
圖4.36 織物厚度2.0 mm
未伸張k12與k23滲透係數之變化...................... 132
圖4.37 織物厚度2.0 mm單向伸張應變2%
坡降比(GR)與滲流率(Q/t)之變化.................... 133
圖4.38 織物厚度2.0 mm單向伸張應變2%
k12與k23滲透係數之變化........................... 133
圖4.39 織物厚度2.0 mm單向伸張應變5%
坡降比(GR)與滲流率(Q/t)之變化.................... 134
圖4.40 織物厚度2.0 mm單向伸張應變5%
k12與k23滲透係數之變化........................... 134
圖4.41 織物厚度2.0 mm單向伸張應變7.5%
坡降比(GR)與滲流率(Q/t)之變化.................... 135
圖4.42 織物厚度2.0 mm單向伸張應變7.5%
k12與k23滲透係數之變化........................... 135
圖4.43 織物厚度2.0 mm單向伸張應變10%
坡降比(GR)與滲流率(Q/t)之變化.................... 136
圖4.44 織物厚度2.0 mm單向伸張應變10%
k12與k23滲透係數之變化........................... 136
圖4.45 織物厚度2.0 mm單向伸張應變20%
坡降比(GR)與滲流率(Q/t)之變化.................... 137
圖4.46 織物厚度2.0 mm單向伸張應變20%
k12與k23滲透係數之變化........................... 137
圖4.47 單向伸張應變織物厚度2.0 mm之GR值................ 138
圖4.48 織物厚度0.8 mm雙向伸張應變5%
坡降比(GR)與滲流率(Q/t)之變化.................... 138
圖4.49 織物厚度0.8 mm雙向伸張應變5%
k12與k23滲透係數之變化........................... 139
圖4.50 織物厚度0.8 mm雙向伸張應變10%
坡降比(GR)與滲流率(Q/t)之變化.................... 139
圖4.51 織物厚度0.8 mm雙向伸張應變10%
k12與k23滲透係數之變化........................... 140
圖4.52 織物厚度0.8 mm雙向伸張應變20%
坡降比(GR)與滲流率(Q/t)之變化.................... 140
圖4.53 織物厚度0.8 mm雙向伸張應變20%
k12與k23滲透係數之變化........................... 141
圖4.54 雙向伸張應變織物厚度0.8 mm之GR值................ 141
圖4.55 織物厚度1.3 mm雙向伸張應變5%
坡降比(GR)與滲流率(Q/t)之變化.................... 142
圖4.56 織物厚度1.3 mm雙向伸張應變5%
k12與k23滲透係數之變化........................... 142
圖4.57 織物厚度1.3 mm雙向伸張應變10%
坡降比(GR)與滲流率(Q/t)之變化.................... 143
圖4.58 織物厚度1.3 mm雙向伸張應變10%
k12與k23滲透係數之變化........................... 143
圖4.59 織物厚度1.3 mm雙向伸張應變20%
坡降比(GR)與滲流率(Q/t)之變化.................... 144
圖4.60 織物厚度1.3 mm雙向伸張應變20%
k12與k23滲透係數之變化........................... 144
圖4.61 雙向伸張應變織物厚度1.3 mm之GR值................ 145
圖4.62 織物厚度2.0 mm雙向伸張應變5%
坡降比(GR)與滲流率(Q/t)之變化.................... 145
圖4.63 織物厚度2.0 mm雙向伸張應變5%
k12與k23滲透係數之變化........................... 146
圖4.64 織物厚度2.0 mm雙向伸張應變10%
坡降比(GR)與滲流率(Q/t)之變化.................... 146
圖4.65 織物厚度2.0 mm雙向伸張應變10%
k12與k23滲透係數之變化........................... 147
圖4.66 織物厚度2.0 mm雙向伸張應變20%
坡降比(GR)與滲流率(Q/t)之變化.................... 147
圖4.67 織物厚度2.0 mm雙向伸張應變20%
k12與k23滲透係數之變化........................... 148
圖4.68 雙向伸張應變織物厚度2.0 mm之GR值................ 148
圖4.69 單向伸張應變織物厚度0.8 mm
坡降比試驗之(GR)修正值........................... 149

圖4.70 單向伸張應變織物厚度1.3 mm
坡降比試驗之(GR)修正值........................... 149
圖4.71 單向伸張應變織物厚度2.0 mm
坡降比試驗之(GR)試驗值........................... 150
圖4.72 雙向伸張應變織物厚度0.8 mm
坡降比試驗之(GR)修正值........................... 150
圖4.73 雙向伸張應變織物厚度1.3 mm
坡降比試驗之(GR)修正值........................... 151
圖4.74 雙向伸張應變織物厚度2.0 mm
坡降比試驗之(GR)修正值........................... 151
圖4.75 單向張應變與土壤-
織物複合層滲透係數(k12)之關係.................... 152
圖4.76 雙向張應變與土壤-
織物複合層滲透係數(k12)之關係.................... 152
參考文獻 1.王瑞鴻(2006),“張力作用對織物開孔徑之變化及其過濾特性之探討”,淡江大學土木工程研究所碩士論文,台北。
2.吳朝賢(1990),“地工織物過濾功能之應用考量”,地工技術雜誌,第32期,第41-55頁。
3.鄭淳軒(2010),“張應變對針軋不織布開孔徑及滲透速率影響之探討”,淡江大學土木工程研究所碩士論文,台北。
4.ASTM D5101, (1992), “Standard Test Method for Measuring the Soil-Geotextile System Clogging Potential by the Gradient Ratio”, Annual Book of ASTM Standard, Section 4,Vol. 04,08, America Society for Testing and Materials, Philadelphia, Pennsylvania, USA, pp. 1190-1196.
5.Calhoun, C. C., (1972), “Development of Design Criteria and Acceptance Specifications for Plastic Filter Cloths”, Technical Report No. S-72-7, Army Waterways Experiment Station, Vicksburg, MI, pp. 6-55.
6.Carroll, R. G., Jr., (1983), “Geotextile Filter Criterial”, TRR 916, Engineering Fabrics in Transportation Construction, Washington,D. C., pp. 46-53.
7.Carroll, R. G., Jr., (1987), “Hydraulic Properties of Geotextile”, Geotextile Testing and the Design Engineer, ASTM STP 952, J. E. Fluent, Ed., American Society for Testing Materials, Philadelphia, pp. 7-20.
8.Chang, D. T.-T., and Neih, Y.-C., (1996), “Significance of Gradient Ratio Test for Determining Clogging Potential of Geotextile”, Recent Developments in Geotextile Filters and Prefabricated., ASTM STP 1281, Shobha K. Bhatia and L. David Suits Eds., America Society for Testing and Materials, Philadelphia , PA,pp. 113-131.

9.Christopher, B. R., and Fischer, G. R., (1992), “Geotextile Filtration Principles, Practices and Problems”, Geotextiles and Geomembranes, Vol. 11, Nos. 4-6, pp. 337-353.
10.Fannin, R. J., Vaid, Y. P., and Shi, Y., (1996), “A Modified Gradient Ratio Test Device”, Recent Developments in Geotextile Filters and Prefabricated Drainage Geocomposites , ASTM STP 1281, Shobha K. Bhatia and L. David Suits Eds., America Society for Testing and Materials, philadephia, pp. 100-112.
11.Fischer G. R. ,(1994),“The Influence of Fabric Pore Structure on the Behavior of Geotextile Filter”, Ph. D. Thesis, University of Washington, 502 pages.
12.Fourie, A. B., and Kuchena, S. M., (1995), “The Influence of Tensile Stresses on The Filtration Characteristics of Geotextiles”, Geosynthetics International, Vol. 2, No. 2, pp. 455-471.
13.Fourie, A. B., and Addis, P. C., (1997), “The Effect of In-Plane Tensile Loads on the Retention Characteristics of Geotextiles”, Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 2, pp. 211-217.
14.Fourie, A. B., and Addis, P. C., (1999), “Changes In Filtration Opening Size of Woven Geotextiles Subjected to Tensile Loads”, Geotextiles and Geomembranes , Vol. 17, pp. 331-340.
15.Giroud, J. P., (1982), “Filter Criteria for Geotextile”, Proceedings of the 2nd International Conference on Geotextile, Las Vegas. Vol. 1, pp. 97-101.
16.Gource, J. P., and Faure, Y. H.,(1992), “Filter Criteria for Geotextiles”, Proceedings of the 5th International Conference on Geotextiles, Geomembrances, and Related Producted Products, Vol. 3, pp. 949-971.

17., E., (1993), “Filtration Criteria for Cohesive Soil Geotextile System”, Filters in Geotechnical and Hydraulic Engineering, Balkema, Rotterdam, pp. 217-224.
18.Haliburton, T. A., and Wood, P. D., (1982), “Evaluation of the U.S. Army Corps of Engineer Gradient Ratio Test for Geotextile Performance”, Proceedings of the 2nd International Conference on Geotextile, Las Vegas, Vol. 1, pp. 97-101.
19.Holtz, R. D., and Luna, L. D., (1989), “Pore Size Distribution of Nonwoven Geotextile”, Geotechnical Testing Journal, GTJODJ, Vol. 12, No. 4, pp. 261-268.
20.Kenney, T. C., and Lau, D., (1985), “Internal Stability of Granular Filters”, Can. Geotech. J., Vol. 22, pp. 215-225.
21.Koerner, R. M., and Ko, F. K., (1982), “Laboratory Studies on Long Term Drainage Capacity of Geotextiles”, Proceedings of the 2nd International Conference on Geotextiles, Las Vegas, Vol. 1, pp. 91-96.
22.Lawson, C. R., (1982), “Filter Criteria for Geotextile:Relevance and Use”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, No. 10, pp. 1300-1317.
23.Mlynarek, J. B. L., Andrel, R., and Gilles, B., (1991) “Soil Geotextile System Interaction”, Geotextile and Geomembrances, Vol. 10, pp.161-176.
24.Rollin, A. L., Andrel, L., and Lombard, G., (1988), “Mechanisms Affecting Long-Term Filtration Behavior of Geotextile”, Geotextiles and Geomembrances, Vol. 7, pp. 119-145.
25.Rollin, A. L., Broughton, R. S., and Bolduc, G., (1985), “Synthetic Envelope Materials for Surface Drainage Tubes”, CPTA Annual Meeting, Fort Lauderdale, FL.

26.Shi, Y. C., Fannin, R. J., and Vaid, Y. P., (1994), “Interpreation of Gradient Ratio Test Result”, Proceedings of the 5th International Conference on Geotextiles, Geomembranes and Related Products, Singapore, Vol.2, pp. 673-676.
27.Smith, J. L., (1993) “The Pore-Size Distribution of Geotextile”, Master’s Thesis, Syracuse University, Syracuse, NY.
28.Williams N. D., and Luettich S. M., (1990), “Labortory Measurement of Geotextile Filtration Charateristics”, Proceedings of the 4th International Conference on Geotextiles Geomembrances and Related Products, the Hague, Netherlands, pp. 273-278.
29.Wu, C. S., Hong, Y. S., and Wang, R.H. (2008) “The Influence of Uniaxial Tensile Strain on the Pore Size and Filtration Characteristics of Geotextiles”. Geotextiles and Geomembranes, Vol. 26, pp. 250-262.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信