淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2307202012232700
中文論文名稱 政府員工在工作場所內使用整合式資通技術的行為意圖研究 − 聖克里斯多福及尼維斯聯邦的個案研究
英文論文名稱 A study of government employees’ behavioral intentions towards the use of integrated ICT within the workplace – Case study of ICT integration in Saint Christopher and Nevis
校院名稱 淡江大學
系所名稱(中) 經營管理全英語碩士學位學程
系所名稱(英) Master's Program in Business and Management (English-Taught Program)
學年度 108
學期 2
出版年 109
研究生中文姓名 卡莉雅
研究生英文姓名 Kalia Huggins
學號 608585013
學位類別 碩士
語文別 英文
口試日期 2020-07-01
論文頁數 72頁
口試委員 指導教授-時序時
委員-時序時
委員-陳怡妃
委員-張炳騰
中文關鍵字 行為意圖  個人創新  資通技術  聖克里斯多福及尼維斯  技接受使用理論  任務科技配適度 
英文關鍵字 Behavioral intention  Personal Innovativeness  Information and Communication Technology  Saint Christopher and Nevis  Unified Theory of Technology and Acceptance  Task-Technology Fit 
學科別分類
中文摘要 本研究在分析聖克里斯多福及尼維斯聯邦 (Federation of Saint Christopher and Nevis) 政府員工在政府內部整合資通技術(Information and Communication Technology, ICT) 的行為意圖(Behavioral Intentions, BI)。儘管資通技術是一新興且重要趨勢,但此技術發展的不斷整合使該國幾乎無法達成電子化政府的目標,即中有非常大比例的部門無法有效使用此技術。由於員工行為意圖對組織績效的直接影響,因此值得深究此問題以協助該國制定較佳執行策略。 透過問卷調查蒐集資料,對象是 Saint Christopher and Nevis 聯邦政府內全職員工,有 711 份有效問卷,並藉 SPSS 進行統計分析。利用整合性科技接受使用理論 (Unified Theory of Acceptance and Use of Technology, UTAUT) 探究行為意圖的 影響以及任務科技配適度 (Task-Technology Fit, TTF) 模型探討資訊系統利用率與個人績效間的關係。這兩模型與擴展因素一起被採用,個人創新能力 (Personal Innovativeness) 用於評估員工的創新水準,並對諸如年齡、性別、教育程度和經驗等調整因素如何影響員工的行為意圖。結果顯示,四個調整因素中的年齡和經驗對行為意圖有顯著影響,但性別和文化程度的影響並不顯著。此外,諸如個人創新能力、努力預期 (Effort Expectancy)、社會影響力 (Social Influences) 和任務科技配適度等獨立變數對行為意圖產生重大影響。鑑於以往研究中認為績效預期 (Performance Expectancy) 與影響員工行為意圖的最重要因 素,本研究則顯示兩者關係不顯著。此外,一些次要結果是,績效預期和努力預期對個人創新能力沒有中介作用,而任務科技配適度對績效預期沒有影響。
本研究結果將促使資訊部門主管在資通技術計畫中更積極主動參與,將有助於他們能夠理解年齡、性別、教育程度和經驗等因素,以及員工在整合過程的行為意圖的影響。此外,聖克里斯多福及尼維斯聯邦政府可以制定更有效的計畫建議和培訓計畫,以利其員工更快速有效的技術整合。此持續改善建議可作為該國和其他加勒比海國家推動電子政府的指南。
英文摘要 This study aims to analyze government employees’ behavioral intentions (BI) towards the integration of Information and Communication Technology (ICT) within the government in the federation of Saint Christopher and Nevis. Though ICT is an emerging and important trend, the continuous integration of ICT development has made it near impossible for the government to reach the goal of e-government, i.e., a very higher percentage of its departments ineffectively adopted ICT. Hence, the employees’ BI towards use of ICT is worth examining, due to their direct impact on an organization’s performance, to develop a better execution policy.

The data was gathered from full-time employees in Saint Christopher and Nevis government, 711 effectively respondents, and analyzed via SPSS software. Unified Theory of Acceptance and Use of Technology (UTAUT) model, major for BI, and Task-Technology Fit (TTF) model, between information system utilization and individual’s performance, were employed for the evaluation. Both models were employed within this study along with extended factors, Personal Innovativeness (PI) was utilized to assess employee level of innovativeness and apply a complete perspective on how adjustment factors such as age, gender, education and experience influences employees’ BI. The results show that two of the four adjustment factors, age and experience, have a significant impact on BI, though gender and education level had no significance. Moreover, independent variables such as Personal Innovativeness (PI), Effort Expectancy (EE), Social Influences (SI) and TTF portrayed significant impact on BI. Given that Performance Expectancy (PE) in previous studies is described as the most important and influential factor related to employees’ BI, this study illustrates that the relationship between the two is insignificant. In addition, some secondary results are that PE and EE have no intermediary effect on PI ability, and TTF has no effect on PE.

The results promote the supervisors of the departments to be more proactive within the ICT initiative, and this will assist them in better understanding factors such as age, gender, education and experience and their influence on employees’ BI towards integration processes. Moreover, it will help to achieve more successful and faster integrations, as ICT units can create more effective proposal and training programs to assist employees. With continuous advancement of technology this research can be used as a guide to a successful and productive e-Government in the federation of Saint Christopher and Nevis and other Caribbean countries.
論文目次 Chinese Abstract .....................................................................................................I
English Abstract......................................................................................................III
Acknowledgements ................................................................................................ V
Table of Contents....................................................................................................VI
List of Figures.........................................................................................................IX
List of Tables ......................................................................................................... X

Chapter 1 Introduction.............................................................................................1
1.1 Research Background ....................................................................................... 1
1.2 Background and Rationale ................................................................................ 2
1.3 Statement of Problem.........................................................................................3
1.4 Research Gap ................................................................................................... 4
1.5 Research Motivation and Objective ...................................................................5
1.6 Research Questions ..........................................................................................6
1.7 Research Structure ...........................................................................................6

Chapter 2 Literature Review ...................................................................................8
2.1 Literature Search Strategy.................................................................................8
2.1.1 Behavioral Intentions Influence toward Use of ICT ........................................ 8
2.1.2 Adaptation Towards ICT .................................................................................9
2.1.3 ICT Influence in Workplace ...........................................................................11
2.1.4 Personal Innovativeness and Behavioral Intention ....................................... 13
2.2 Theories of Technology Acceptance ...............................................................14
2.2.1 The Unified Theory of Acceptance and Use of Technology ..........................15
2.2.2 Performance Expectancy ............................................................................. 17
2.2.3 Effort Expectancy ........................................................................................18
2.2.4 Social Influences ........................................................................................ 18
2.2.5 Facilitating Conditions ................................................................................ 19
2.2.6 Task-Technology Fit......................................................................................19
2.2.7 Personal Innovativeness................................................................................21
2.3 Combination of Theoretical Frameworks ........................................................22
2.4 Summary ........................................................................................................23

Chapter 3 Design & Methodology ........................................................................24
3.1 Research Framework and Hypothesis Development .......................................24
3.2 Research Design.............................................................................................24
3.2.1 Research Framework ...................................................................................25
3.2.2 Hypothesizes of Research ......................................................................... 26
3.3 Research Strategy..........................................................................................28
3.3.1 Population and Setting ............................................................................... 29
3.3.2 Selected Departments.................................................................................29
3.3.3 Sample Size.................................................................................................32
3.3.4 Sampling strategy........................................................................................33
3.3.5 Data Collection Procedure ..........................................................................33
3.4 Data Collection Instrument ........................................................................... 34
3.4.1 Questionnaire Design ................................................................................. 34
3.4.2 Variables of Research ............................................................................... 35
3.4.3 Reliability ................................................................................................... 37
3.4.4 Ethical considerations ................................................................................ 37

Chapter 4 Results & Findings................................................................................39
4.1 Descriptive Analysis ....................................................................................... 39
4.2 Data Analysis ..................................................................................................39
4.2.1 Demographic Analysis...................................................................................39
4.2.2 Statistical Data Analysis .............................................................................. 41
4.2.3 Relationship between Personal Innovativeness and Behavioral Intention......41
4.2.4 Performance Expectancy and Personal Innovativeness Correlations ...........42
4.2.5 Relationship between Effort Expectancy and Personal Innovativeness.........43
4.2.6 Relationship between Performance Expectancy and Behavioral Intentions...43
4.2.7 Relationship between Effort Expectancy and Behavioral Intentions .............44
4.2.8 Relationship between Social Influence and Behavioral Intentions.................44
4.2.9 Relationship between Facilitating Conditions and Behavioral Intentions.......45
4.2.10 Relationship between age and individual’s Behavioral Intentions................45
4.2.11 Relationship between Gender and individual’s Behavioral Intentions ..........46
4.2.12 Relationship between Experience and individual’s Behavioral Intentions ....46
4.2.13 Relationship between Educational level and individual’s Behavioral Intentions..48
4.2.14 Relationship between Task-Technology Fit and individual’s Behavioral Intentions..48
4.2.15 Relationship between Task-Technology Fit and Performance Expectancy...49

Chapter 4 Conclusions..........................................................................................52
5.1 Research Findings and Contribution (s) ..........................................................52
5.2 Conclusion and Recommendations..................................................................53
5.2.1 Conclusion ...................................................................................................54
5.2.2 Recommendations .......................................................................................54
5.3 Limitations of Research ..................................................................................55
References............................................................................................................56
Appendix ............................................................................................................. 68
Appendix A............................................................................................................68


List of Figures
Fig. 1.1 Research Outline .......................................................................................... 7
Fig. 2.1 The Unified Theory of Acceptance Model. .................................................. 17
Fig. 2.2 The Task-Technology Fit Model. ................................................................ 21
Fig. 3.1 Conceptual Research Framework ................................................................ 25
Fig. 3.2 Hypothesis Conceptual Research Framework .............................................. 27
Fig. 3.3 Research Structure Analysis Procedure ........................................................ 28
Fig. 3.4 SKN ICT Integrated Government Departments............................................ 31
Fig. 4.1 Percentage of Respondents per subsector .................................................... 40
Fig. 4.2 Department Demographic Data ................................................................... 41

List of Tables
Table 2.1 Theoretical Framework used in The Study…………………….……..….14
Table 2.2 Description of UTAUT Variables and Construction Bases………….…..16
Table 3.1 Saint Christopher and Nevis Approved Position and Department……….29
Table 3.2 Saint Christopher and Nevis ICT Departments Approved Positions.….…31
Table 3.3 Variables of Study….………………………………………….…...….....36
Table 4.1 Personal Innovativeness and Behavioral Intentions Correlations……......42
Table 4.2 Performance Expectancy and Personal Innovativeness Correlations….....42
Table 4.3 Effort Expectancy and Personal Innovativeness Correlations …..….…....43
Table 4.4 Performance Expectancy and Behavioral Intentions Correlations ……....43
Table 4.5 Effort Expectancy and Behavioral Intentions Correlations…….….……..44
Table 4.6 Social Influence and Behavioral Intentions Correlations ……..………....44
Table 4.7 Facilitating Conditions and Behavioral Intentions Correlations ………....45
Table 4.8 Age and Behavioral Intentions Correlations ……...…….….………….....46
Table 4.9 Gender and Behavioral Intentions ANOVA ……..………….….……......46
Table 4.10 Experience and Behavioral Intentions ANOVA ……………………......47
Table 4.11 Experience Post Hoc Multiple Comparison……...…….…….……….....48
Table 4.12 Education and Behavioral Intentions ANOVA ……………...…….........48
Table 4.13 Task-Technology Fit and Behavioral Intentions Correlations…….….....49
Table 4.14 Task-Technology Fit and Performance Expectancy ……..……….….....50
Table 4.15 Hypothesis Correlation Summary……...………….………………….....50
Table 4.16 Hypothesis ANOVA Summary……………………………...………......51
參考文獻 1. Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204–215. doi:10.1287/isre.9.2.204
2. Ajam, A. S., & Nor, K. (2013). Influencing factors on behavioral intention to adopt internet banking service. World Applied Sciences Journal, 22(11), 1652-1656. Retrieved January, 29, 2020, from http://www.idosi.org/wasj/wasj22(11)13/18.pdf
3. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Action Control, 11–39. doi:10.1007/978-3-642-69746-3_2
4. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. doi:10.1016/0749-5978(91)90020-t
5. Ajzen, I. (2012). The theory of planned behavior. Handbook of Theories of Social Psychology, 1, 438-459. doi:10.4135/9781446249215.n22.
6. Ajzen, I., Timko, C., & White, J. B. (1982). Self-monitoring and the attitude-behavior relation. Journal of Personality and Social Psychology, 42(3), 426–435. doi:10.1037/0022-3514.42.3.426
7. Al-Dabbagh, B., Scornavacca, E., Sylvester, A., & Johnstone, D. (2016). The effect of ICT self-discipline in the workplace. Australasian Conference on Information Systems 2015, Adelaide, 1-7. Retrieved January, 29, 2020, from: https://www.researchgate.net/publication/303812046_The_Effect_of_ICT_Self-Discipline_in_the_Workplace
8. Alapetite, A., Andersen, B. H., & Hertzum, M. (2009). Acceptance of speech recognition by physicians: A survey of expectations, experiences, and social influence. International Journal of Human-Computer Studies, 67(1), 36–49. doi:10.1016/j.ijhcs.2008.08.004
9. Almaiah, M. A., Alamri, M. M., Al-Rahmi, W. (2019). Applying the UTAUT model to explain the students’ acceptance of mobile learning system in higher education. IEEE Access, 7, 174673-174686. doi: 10.1109/ACCESS.2019.2957206.
10. Almatari, A. Y., Iahad, N. A., & Balaid, A. S. (2013). Factors influencing students' intention to use M-learning. Journal of Information Systems Research and Innovation, 1-8. Retrieved November 19, 2019, from https://pdfs.semanticscholar.org/d0d1/c82844308d22f67ac8fae2cb0449725aac8b.pdf
11. Anderson, J., Schwager, P., & Kerns, R. (2006). The drivers for acceptance of tablet PCs by faculty in a college of business. Journal of Information Systems Education, 17(4), 429-439. Retrieved January 20, 2020, from https://www.researchgate.net/publication/265657363_The_Drivers_for_Acceptance_of_Tablet_PCs_by_Faculty_in_a_College_of_Business
12. Araujo, A. (2019). The importance of technology in the workplace. Nova Medical Centres. Retrieved January 22, 2020, from https://n-o-v-a.com/blog/the-importance-of-technology-in-the-workplace/
13. Bagozzi, R. P. (1992). The self-regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55(2), 178-193. doi:10.2307/2786945
14. Bouckenooghe, D. (2010). Positioning change recipients’ attitudes toward change in the organizational change literature. The Journal of Applied Behavioral Science, 46(4), 500–531. doi:10.1177/0021886310367944
15. Bozan, K., Parker, K., & Davey, B. (2016). A closer look at the social influence construct in the UTAUT model: An institutional theory based approach to investigate health IT adoption patterns of the elderly. 2016 49th Hawaii International Conference on System Sciences (HICSS), 3105-3114. doi:10.1109/hicss.2016.391
16. Bravo, E. R., & Bayona, H. A. (2020). Explaining multidimensional facebook benefits: A task-technology fit approach. Proceeding of the 53rd Hawaii International Conference on System Sciences, 2020, 4474-4482. doi:10.24251/HICSS.2020.547
17. Burt, E., & Taylor, J. (2003). New technologies, embedded values, and strategic change: Evidence from the U.K. voluntary sector. Nonprofit and Voluntary Sector Quarterly, 32(1), 115–127. doi:10.1177/0899764002250009
18. Cairney, P. (2013). Standing on the shoulders of giants: How do we combine the insights of multiple theories in public policy studies? Policy Studies Journal, 41(1), 1–21. doi:10.1111/psj.12000
19. Cao, J., Shang, Y., Mok, Q., & Lai, I. K. W. (2019). The impact of personal innovativeness on the intention to use cloud classroom: An empirical study in China. Technology in Education: Pedagogical Innovations, 179–188. doi:10.1007/978-981-13-9895-7_16
20. Carroll, J. (2006). ‘What’s in it for me?’: Taking m-government to the people. 1-13. Retrieved December 18, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.2198&rep=rep1&type=pdf
21. Chen, C. F., & Chen, P. C. (2011). Applying the TAM to travelers’ usage intentions of GPS devices. Expert Systems with Applications, 38(5), 6217–6221. doi:10.1016/j.eswa.2010.11.047
22. Chinyamurindi, W.T., & Louw, G.J. (2010). Gender differences in technology acceptance in selected South African companies: Implications for electronic learning. SA Journal of Human Resource Management/SA Tydskrif vir Menslikehulpbronbestuur, 8(1), Art. #204, 7 pages. doi:10.4102/sajhrm.v8i1.204
23. Chomeya, R. (2010). Quality of psychology test between likert scale 5 and 6 points. Journal of Social Science, 6(3), 399-403. Retrieved June, 1, 2020, from https://thescipub.com/pdf/10.3844/jssp.2010.399.403.pdf
24. Coetsee, L. (1999). From resistance to commitment. Public Administration Quarterly, 23(2), 204-222. Retrieved January 22, 2020, from www.jstor.org/stable/40861780
25. Compeau, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information Systems Research, 6(2), 118–143. doi:10.1287/isre.6.2.118
26. D’Ambra, J., Wilson, C. S., & Akter, S. (2012). Application of the task-technology fit model to structure and evaluate the adoption of E-books by academics. Journal of the American Society for Information Science and Technology, 64(1), 48–64. doi:10.1002/asi.22757
27. Datta, P., Byrd, T., Okoli, C., & Mbarika, V. (2005). The neglected continent of IS research: A research agenda for Sub-Saharan Africa. Journal of the Association for Information System, 6(5), 130-170. doi:10.17705/1jais.00067.
28. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-343. doi:10.2307/249008
29. De Lima, M. D. V. (2011). Research design: A contribution to the author. Online Brazilian Journal of Nursing, 10(2), 1-18. Retrieved December 26, 2011, from https://www.redalyc.org/comocitar.oa?id=361441674011
30. De Wet, W., Koekemoer, E., & Nel, J. A. (2016). Exploring the impact of information and communication technology on employees’ work and personal lives. SA Journal of Industrial Psychology, 42(1), 1-11. doi:10.4102/sajip.v42i1.1330
31. Do Monte, P. A. (2017). Public versus private sector: Do workers’ behave differently? EconomiA, 18(2), 229–243. doi:10.1016/j.econ.2017.01.001
32. Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2017). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719-734. doi:10.1007/s10796-017-9774-y
33. Elsobeihi, M., & Abu-Naser, S. (2017). Effects of mobile technology on human relationships. International Journal of Engineering and Information System 1(5), 110-125. Retrieved April 8, 2020, from https://www.researchgate.net/publication/319212701_Effects_of_Mobile_Technology_on_Human_Relationships
34. Ghalandari, K. (2012). The effect of performance expectancy, effort expectancy, social influence and facilitating conditions on acceptance of e-banking services in Iran: The moderating role of age and gender. Semantic Scholar 12(6), 801-807. Retrieved November 29, 2019, from http://idosi.org/mejsr/mejsr12(6)12/8.pdf
35. Ghorbanzad, Y., & Beig, M. (2012). The impact of information technology on productivity using structural equations technique in Iran Behnoush Company. Management Science Letters, 2, 1195-1202. 10.5267/j.msl.2012.03.001.
36. Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236. doi:10.2307/249689
37. Goodman-Deane, J., Mieczakowski, A., Johnson, D., Goldhaber, T., & Clarkson, P. J. (2016). The impact of communication technologies on life and relationship satisfaction. Computers in Human Behavior, 57, 219–229. doi:10.1016/j.chb.2015.11.053
38. Grandón, E. E., Nasco, S. A., & Mykytyn, P. P. (2011). Comparing theories to explain e-commerce adoption. Journal of Business Research, 64(3), 292–298. doi:10.1016/j.jbusres.2009.11.015
39. Gupta, B., Dasgupta, S., & Gupta, A. (2008). Adoption of ICT in a government organization in a developing country: An empirical study. The Journal of Strategic Information Systems, 17(2), 140–154. doi:10.1016/j.jsis.2007.12.004
40. Hall, B., & Khan, B. (2003). Adoption of new technology. The National Bureau of Economic Research, Working Paper 9730, 1-19. doi:10.3386/w9730
41. Hamzat, S., & Manawonku, I. (2018). Influence of Performance Expectancy and Facilitating Conditions on use of Digital Library by Engineering Lecturers in universities in South-west, Nigeria. Library Philosophy and Practice (e-journal), 1670, 1-16. Retrieved January 28, 2020, from https://digitalcommons.unl.edu/libphilprac/1670.
42. Huisman, S., Edwards, A., & Catapano, S. (2012). The impact of technology on families. International Journal of Education and Psychology in the Community. 2(1), 44-62. Retrieved November 28, 2019, from https://www.researchgate.net/publication/265582308_The_impact_of_technology_on_families
43. International Cooperation and Development Fund (2019). TaiwanICDF assists Saint Christopher and Nevis improve world ranking in e-government. Retrieved January 7, 2020, from http://www.icdf.org.tw/ct.asp?xItem=54622&ctNode=29877&mp=moben
44. Joseph, R. C. (2013). A structured analysis of e-government studies: Trends and opportunities. Government Information Quarterly, 30(4), 435–440. Retrieved from: doi:10.1016/j.giq.2013.05.006
45. Kaba, B., & Touré, B. (2014). Understanding information and communication technology behavioral intention to use: Applying the UTAUT model to social networking site adoption by young people in a least developed country. Journal of the Association for Information Science and Technology, 65(8), 1662–1674. doi:10.1002/asi.23069
46. Khayati S., & Zouaou S. K. (2013). Perceived usefulness and use of information technology: the moderating influences of the dependence of a subcontractor towards his contractor. Journal of Knowledge Management, Economics and Information Technology, 3(6), 1-28. Retrieved December 18, 2019, from http://www.scientificpapers.org/download/294/
47. Lasrado, F., & Bagchi, T. (2011). A cross-cultural evaluation of the contemporary workplace and its managerial implications. Journal of Business Management and Social Sciences, 2(1), 1–15. Retrieved January 29, 2020, from https://www.researchgate.net/publication/263581956_A_cross-cultural_evaluation_of_the_contemporary_workplace_and_its_managerial_implications
48. Lederman, N. G., & Lederman, J. S. (2015). What is a theoretical framework? A practical answer. Journal of Science Teacher Education, 26(7), 593–597. doi:10.1007/s10972-015-9443-2
49. Lee, E. J. (2003). Effects of “gender” of the computer on informational social influence: the moderating role of task type. International Journal of Human-Computer Studies, 58(4), 347–362. doi:10.1016/s1071-5819(03)00009-0
50. Lengnick-Hall, M. L., & Moritz, S. (2003). The impact of e-HR on the human resource management function. Journal of Labor Research, 24(3), 365–379. doi:10.1007/s12122-003-1001-6
51. Li, H., & Fan, S. (2015). A research on the comprehensive measure of international competitiveness of Chinese ICT industry. International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, 2015, 1-5, doi: 10.1109/LISS.2015.7369808.
52. Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191. doi:10.1287/isre.2.3.173
53. Maurer, R. (1996). Transforming resistance: Training & development. Gale Academic Onefile, 50(12), 20-38. Retrieved January 27, 2020, from https://go.gale.com/ps/anonymous?id=GALE%7CA19045453&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=10559760&p=AONE&sw=w
54. Ministry of Finance Government of St. Kitts and Nevis (2019). Government expenditure and revenue plans; estimates 2020, 1-24. Retrieved January 28, 2020, from https://mof.gov.kn/wp-content/uploads/2020/01/VOLUME- second.pdf
55. Okundaye, K., Fan, S. K., & Dwyer, R. J. (2019). Impact of information and communication technology in Nigerian small- to medium-sized enterprises. Journal of Economics, Finance and Administrative Science, 24(47), 29-46. doi:10.1108/jefas-08-2018-0086
56. Onaolapo, S., & Oyewole, O. (2018). Performance expectancy, effort expectancy, and facilitating conditions as factors influencing smart phones use for mobile learning by postgraduate employees of the University of Ibadan, Nigeria. Interdisciplinary Journal of e-Skills and Lifelong Learning, 14, 95-115. https://doi.org/10.28945/4085
57. Palmatier, R. W., Houston, M. B., & Hulland, J. (2018). Review articles: purpose, process, and structure. Journal of the Academy of Marketing Science, 46, 1–5. https://doi.org/10.1007/s11747-017-0563-4
58. Patel, H., & Connolly, R. (2007). Factors influencing technology adoption: A review. Information Management in the Networked Economy: Issues & Solutions, 416-431. Retrieved April 26, 2020, from https://www.researchgate.net/publication/273140050_Factors_Influencing_Technology_Adoption_A_Review
59. Phua, P. L., Wong, S. L., & Abu, R. (2012). Factors influencing the behavioural intention to use the internet as a teaching-learning tool in home economics. Procedia - Social and Behavioral Sciences, 59 (1), 180–187. doi:10.1016/j.sbspro.2012.09.263
60. Polit, D. F., & Beck, C. T. (2010). Generalization in quantitative and qualitative research: Myths and strategies. International Journal of Nursing Studies, 47(11), 1451–1458. doi:10.1016/j.ijnurstu.2010.06.004
61. Pradhan, J. (2002). Information technology in Nepal: What role for the government? The Electronic Journal of Information Systems in Developing Countries, 8(1), 1–13. doi:10.1002/j.1681-4835.2002.tb00047.x
62. Radovan, M., & Kristl, N. (2017). Acceptance of technology and its impact on teacher’s activities in virtual classroom: Integrating UTAUT and CoI into a combined model. The Turkish Online Journal of Educational Technology – July 2017, volume 16 issue 3, 11-22. Retrieved January 19, 2020, from https://files.eric.ed.gov/fulltext/EJ1152624.pdf
63. Rai, R. S., & Selnes, F. (2019). Conceptualizing task-technology fit and the effect on adoption – A case study of a digital textbook service. Information & Management, 56(8), 1-10. doi:10.1016/j.im.2019.04.004
64. Razi, M. J. M., & Karim, A. N. (2018). An instrument to assess organizational readiness to implement knowledge management process. Knowledge Management International Conference 2010, At Kuala Terengganu, Malaysia, 302-307. Retrieved November 23, 2019, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.4246&rep=rep1 &type=pdf
65. Rogers, E. M. (1971). Diffusion of innovations. Glencoe, IL: Free Press, 1-451. Retrieved November 18, 2019, from https://teddykw2.files.wordpress.com/2012/07/everett-m-rogers-diffusion-of-innovations.pdf
66. Rogers, E. M. (1995). Diffusion of innovations: Modifications of a model for telecommunications. Die Diffusion von Innovationen in Der Telekommunikation, 25–38. doi:10.1007/978-3-642-79868-9_2
67. Rogers, E. M. (2004). A prospective and retrospective look at the diffusion model. Journal of Health Communication, 9(1), 13–19. doi:10.1080/10810730490271449
68. Sauro, J. (2019). Do attitudes predict behavior? MeasuringU. Retrieved December 29, 2019, from https://measuringu.com/attitudes-behavior/
69. Schoonenboom, J., & Johnson, R. B. (2017). How to Construct a Mixed Methods Research Design. KZfSS Kölner Zeitschrift Für Soziologie Und Sozialpsychologie, 69(S2), 107–131. doi:10.1007/s11577-017-0454-1
70. Seo, H. J., Lee, Y., Hur, J. J., & Kim, J. (2012). The impact of information and communication technology on skilled labor and organization types. Information Systems Frontiers, 14(2), 445-455. doi:10.1007/s10796-010-9276-7
71. Sharma, G., Xi, B., & Wang, Q. (2012). Public attitude, service delivery and bureaucratic reform in e-government: a conceptual framework. Information Technology Journal 11 (11), 1544-1552. doi: 10.3923/itj.2012.1544.1552.
72. Sharma, R., & Mishra, R. (2004). A review of evolution of theories and models of technology adoption, 6(2), 17-29. Retrieved January 29, 2020, from https://www.researchgate.net/publication/295461133_A_Review_of_Evolution_of_Theories_and_Models_of_Technology_Adoption
73. Smith, C. D., & Mentzer, J. T. (2010). Forecasting task-technology fit: The influence of individuals, systems and procedures on forecast performance. International Journal of Forecasting, 26(1), 144–161. https://doi.org/10.1016/j.ijforecast.2009.05.014
74. Spiker, B. K., & Lesser, E. (1995). We have met the enemy. Journal of Business Strategy, 16(2), 17-21. Retrieved January 27, 2020, from https://doi.org/10.1108/eb039686
75. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85–92. doi:10.1287/mnsc.42.1.85
76. Tan, M., & Teo, T. S. H. (2000). Factors influencing the adoption of internet banking. Journal of the Association for Information Systems, 1(5), 1-42. Retrieved April 6, 2020, from http://130.18.86.27/faculty/warkentin/SecurityPapers/Leigh/ZafarClark2009%20Other%20References/TanTeo2000_JAIS1_FactorsInfluencingInternetBankingAdoption.pdf
77. Teo, T. (2010). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: a structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11(2), 253–262. https://doi.org/10.1007/s12564-009-9066-4
78. The Caribbean Development Portal (2006). Saint Kitts and Nevis National Information and Communications Technology (ICT) Strategic Plan. Retrieved January 27, 2020, from http://caribbean.cepal.org/content/st-kitts-and-nevis-national-information-and-communications-technology-ict-strategic-plan.
79. The Commonwealth (2020). Member countries: St. Kitts and Nevis. Retrieved January 29, 2020, from https://thecommonwealth.org/our-member-countries/st-kitts-and-nevis
80. Tripathi, S. (2015). Task-Technology Fit (TTF) model to evaluate adoption of cloud computing: A multi-case study. International Journal of Applied Engineering Research, 10(5), 9185-9200. Retrieved November 18, 2019, from https://www.researchgate.net/publication/278463397_Task-Technology_Fit_TTF_Model_To_Evaluate_Adoption_of_Cloud_Computing_A_Multi-Case_Study
81. Tusubira, F. F., & Mulira, N. (2004). Integration of ICT in organizations: Challenges and best practice recommendations based on the experience of Makerere University and other organizations. Presented to Conference on “Universities: Taking a leading role in ICT enabled human development”, 6 – 8 September 2004, Kampala, Uganda, 1-9. Retrieved November 17, 2019, from https://pdfs.semanticscholar.org/502b/534a5657eddcbe913fc2a274658ea591f5d6.pdfUnderhill
82. UN E-Government Knowledgebase (2018). United nations e-government survey. E-government Development Index (EGDI). Retrieved January 28, 2020, from https://publicadministration.un.org/egovkb/en-us/Reports/UN-E-Government-Survey-2018
83. Venkatesh, V., Bala, H., & Sykes, T. A. (2010). Impacts of information and communication technology implementations on employees’ jobs in service organizations in India: A multi-method longitudinal field study. Production and Operations Management, 19(5), 591–613. doi:10.1111/j.1937-5956.2010.01148.x
84. Venkatesh, V., Morris, G. M., Davis, B. G., & Davis, D. F. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. doi:10.2307/30036540
85. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17( 5), 328–376. Retrieved July 8, 2020, from https://ssrn.com/abstract=2800121
86. Wang, S. T. (2014). Consumer characteristics and social influence factors on green purchasing intentions. Marketing Intelligence & Planning, 32(7), 738–753. doi:10.1108/mip-12-2012-0146
87. Wang, S., & Lin, C. J. (2011). The effect of social influence on bloggers’ usage intention. Online Information Review, 35(1), 50–65. doi:10.1108/14684521111113588
88. West, D. M. (2005). Digital government: Technology and public sector, 1-21. Retrieved January 20, 2020 from https://books.google.com/books?hl=en&lr=&id=bFY7Hyf588QC&oi=fnd&pg=PR9&dq=West,+D.M.+(2005)+)++process+of+technology&ots=aWIsVhz4ed&sig=qi5k3FBUDBJxIRU3ST4jO6_CweM#v=onepage&q&f=false
89. Widagdo, P. P., Ramadiani, R., & Susanto, T. D. (2016). The effect of task technology fit toward individual performance on the Generation X (1956–1980) using information technology. 2016 2nd International Conference on Science in Information Technology (ICSITech), 2, 181-186. doi: 10.1109/ICSITech.2016.7852630 ·
90. Wijesundara, T. R., & Xixiang, S. (2018). Social Networking Sites Acceptance: The Role of Personal Innovativeness in Information Technology. International Journal of Business and Management, 13(8), 75. doi:10.5539/ijbm.v13n8p75
91. Williams, M.D, Rana, N. P., & Dwivedi, Y.K. (2015). The unified theory of acceptance and use of technology (UTAUT): A literature review. Journal of Enterprise Information Management, 28(3), 443-448. https://doi.org/10.1108/JEIM-09-2014-0088
92. Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221–232. doi:10.1016/j.chb.2016.10.028
93. Yadegaridehkordi, E., Iahad, N. A., & Ahmad, N. (2014). Task-technology fit and user adoption of cloud-based collaborative learning technologies. International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, 2014, 1-6. doi: 10.1109/ICCOINS.2014.6868439.
94. Yen, D. C., Wu, C. S., Cheng, F. F., & Huang, Y. W. (2010). Determinants of users’ intention to adopt wireless technology: An empirical study by integrating TTF with TAM. Computers in Human Behavior, 26(5), 906–915. doi:10.1016/j.chb.2010.02.005
95. Yeoh, S. F., & Fah, B. C. Y. (2011). Internet banking adoption in Kuala Lumpur: An application of UTAUT model. International Journal of Business and Management, 6(4), 161-167. doi:10.5539/ijbm.v6n4p161
96. Yousafzai, S.Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: A mete-analysis of the TAM: Part 1. Journal of Modelling in Management, 2(3), 251-280. https://doi.org/10.1108/17465660710834453
97. Yu, C. (2012). Factors affecting individuals to adopt mobile banking: empirical evidence from the UTAUT model. Journal of Electronic Commerce Research, 13(2), 104-121. Retrieved November, 25, 2019, from http://ojs.jecr.org/jecr/sites/default/files/13_3_p01_0.pdf .
98. Zhan, Y., Wang, P., & Xia, S. (2011). Exploring the drivers for ICT adoption in government organization in China. Fourth International Conference on Business Intelligence and Financial Engineering, Wuhan, 2011, 220-223. doi:10.1109/bife.2011.63
99. Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760–767. doi:10.1016/j.chb.2010.01.013
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-08-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-08-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信