§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201914584500
DOI 10.6846/TKU.2019.00733
論文名稱(中文) 超音速流場與側向液態噴流之數值模擬
論文名稱(英文) Simulation of Supersonic Flow Over a Liquid Side Jet
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 吳崇豪
研究生(英文) Chung-Hao Wu
學號 606430188
學位類別 碩士
語言別 英文
第二語言別
口試日期 2019-07-01
論文頁數 81頁
口試委員 指導教授 - 牛仰堯
委員 - 牛仰堯
委員 - 周逸儒
委員 - 袁曉峰
委員 - 劉登
關鍵字(中) 多相流
噴流
震波
粒子破碎
汽化
關鍵字(英) multi-phase flows
side jet
shock waves
droplet break up
evaporation
第三語言關鍵字
學科別分類
中文摘要
本文利用數值模擬分析超音速氣流與側向噴流的交互關係,研究目的在於建立一套模型能夠預測並捕捉當一道噴流噴入超音速流場中兩相交互的物理現象。我們利用尤拉-拉格朗日法來描述,並用KH-RT模型描述噴流,我們將液滴視為粒子並將粒子資訊儲存於網格之中,當粒子移動時,網格之間會交換粒子資訊並更新粒子在不同時間點的位置、速度等。流場是使用MUSCL+Roe通量分離法並由三階Runge-Kutta計算提高時間離散準確度。模擬結果有明顯的壓縮波,噴流前方的壓縮波下的迴流區也非常明顯,而噴流高度和實驗值相比也有不錯的結果。
英文摘要
This paper describes a numerical investigation of the interaction between supersonic crossflow and a side liquid jet. The goal is to develop an in-house code that is capable of predicting the detailed evolution of a side jet injected to a supersonic crossflow. In this study, we present a two-way coupling Eulerian-Lagrangian method to simulate the multiphase flow. The atomization of liquid droplets are simulated using the KH-RT breakup model, in which droplet breakup is induced by liquid instability. This breakup model considers both the surface instability and the sudden deformation of a high-speed droplet. The transport of liquid droplets considers the interaction of the liquid and gas phases. The gas phase equations are solved using the Roe-type flux-difference splitting with a MUSCL spatial differencing scheme and a third-order of Runge-Kutta time-splitting method for better accuracy. Predicted droplet distributions are compared with experimental data in various conditions. Good levels of agreement between simulations and measurements are achieved.
第三語言摘要
論文目次
Table of Contents
Nomenclature	viii
List of Figure	xiii
1.	Introduction	1
1.1.	Background	1
1.2.	Literature Review	3
1.3.	Purpose and Motivation	11
2.	Numerical Models	13
2.1. Navier-Stokes Equations	13
2.2.	Turbulence Model	15
2.3.	Particle Motion Equations	17
2.4.	Droplet Momentum Coupling	20
2.5.	Breakup Model	21
2.5.1.	KH-RT Breakup Model	21
2.5.1.1.	Kelvin-Helmholtz Model	22
2.5.1.2.	Rayleigh-Taylor Model	25
2.6.	Droplet Evaporation	27
2.7.	Numerical Scheme	29
3.	Numerical Results	32
3.1.	Part I	33
3.1.1.	Influence of Momentum Flux Ratio	34
3.1.2.	Influence of Droplet Size	35
3.1.3.	Influence of Injector Diameter	35
3.1.4.	Penetration Height	36
3.1.5.	Contour of Test Domain	38
3.2.	Part II	40
3.2.1.	Effects of Breakup Model	41
3.2.2.	Effects of KH and RT Breakup Model	43
3.2.3.	Sauter Mean Diameter	44
3.2.4.	Effects of Breakup Time Constant B_1	46
3.2.5.	Influence of Momentum Ratio	49
3.2.6.	Influence of Injector Diameter	52
3.2.7.	Influence of droplet number	55
3.2.8.	Liquid Trailing Phenomenon	58
3.2.9.	Penetration Height	59
3.3.	Part III	63
4.	Conclusions	66
5.	References	68
Appendix	75

List of Figure
Figure 1 1: Schematic of the liquid jet into cross flow( Liu et al. 2014)	3
Figure 2 1: Spray breakup region and the model	22
Figure 2 2: Illustrated the KH-Breakup process	22
Figure 3 1: Computational domain of the flow field	32
Figure 3 2 Schematic of the spray droplet velocity profile	33
Figure 3 3: Influence of momentum ratio on penetration height: d_p=50 μm, d_j=0.5 mm, and q= (a): 1, (b): 5, (c): 20.	34
Figure 3 4: Influence of droplet size on spray profile: q=10, d_j=0.5 mm, and d_p = (a): 10 μm, (b): 30 μm, (c): 50 μm.	35
Figure 3 5: Influence of injector diameter: d_p=50 μm, q=10, and d_j= (a): 1mm, (b): 2mm, (c): 5mm.	36
Figure 3 6: Penetration height and correlation functions: d_p=50 μm, q=10, and d_j=0.5mm.	37
Figure 3 7: Contour of computational domain: (a): Numerical Schlieren with droplets, (b): Numerical Schlieren without droplets, (c): Mach number, (d): pressure contour.	39
Figure 3 8: Distributions of droplets: q=7, d_j=0.5 mm(a): No breakup, (b) KH breakup(B_1=10)	42
Figure 3 9: Droplet quantity vs. time.	42
Figure 3 10: Droplet trajectory: q=7, d_j=0.5 mm, B_1=10 (a):KH breakup (b):KH-RT breakup	44
Figure 3 11: SMD: q=7, d_j=0.5 mm, B_1=10 (a):Global (b):By location(KH-RT)	45
Figure 3 12: Influence of constant B_1 on penetration height: q=7, d_j=0.5 mm, B_1= (a) 5, (b) 10, (c) 20	47
Figure 3 13: Influence of constant B_1 on droplet size: q=7,  d_j=0.5 mm, B_1= (a) 5, (b) 10, (c) 20	47
Figure 3 14: Contour of computational domain: q=7, d_j=0.5 mm, B_1= (a) 5, (b) 10, (c) 20	48
Figure 3 15: Influence of momentum ratio on penetration height: d_j=0.5 mm, B_1=10, and q= (a): 5, (b): 10, (c): 15, (d): compare of (a),(b) and (c).	50
Figure 3 16: Influence of momentum ratio on droplet size: d_j=0.5 mm, B_1=10, and q= (a): 5, (b): 10, (c): 15.	50
Figure 3 17: Contour of computational domain: d_j=0.5 mm, B_1=10, and q= (a): 5, (b): 10, (c): 15.	51
Figure 3 18: Influence of injector diameter on penetration height: q=7, B_1=10, and d_j= (a): 0.1 mm, (b): 0.3mm, (c): 0.5mm.	53
Figure 3 19: Influence of injector diameter on droplets size: q=7, B_1=10, and d_j= (a): 0.1 mm, (b): 0.3mm, (c): 0.5mm.	53
Figure 3 20: Contour of computational domain: q=7, B_1=10, and d_j= (a): 0.1 mm, (b): 0.3mm, (c): 0.5mm.	54
Figure 3 21: Influence of droplet number on penetration height: q=7, d_j=0.5 mm, B_1=10, droplet number is (a) 2, (b)3, (c)4	56
Figure 3 22: Influence of droplet number on droplet size: q=7, d_j=0.5 mm, B_1=10, droplet number is (a) 2, (b)3, (c)4	56
Figure 3 23: Contour of computational domain:q=7, d_j=0.5 mm, B_1=10, droplet number is (a) 2, (b)3, (c)4	57
Figure 3 24: (a)The liquid-trailing phenomenon of jet spray (Li et al. 2017) (b) The liquid-trailing phenomenon predicted by our simulations: q=7, d_j=0.5 mm, B_1=10.	58
Figure 3 25: Penetration height and correlation functions: q=7, B_1=10, d_j=0.5 mm, refill droplet in every (a)100, (b)300, (c)500 computational time step	61
Figure 3 26: Penetration height and droplet size: q=7, B_1=10, d_j=0.5 mm, refill droplet in every (a)100, (b)300, (c)500 computational time step	61
Figure 3 27: Contour of computational domain: q=7, B_1=10, d_j=0.5 mm, refill droplet in every (a)100, (b)300, (c)500 computational time step.	62
Figure 3 28: Influence of constant B_1 on penetration height: q=7, d_j=0.5 mm, liquid jet temperature =50℃, B_1= (a) 20, (b) 15, (c) 10	64
Figure 3 29: Influence of constant B_1 on droplet size: q=7, d_j=0.5 mm, liquid jet temperature =50℃, B_1= (a)20, (b) 15, (c) 10	64
Figure 3 30: Influence of injector diameter on penetration height: q=7, B_1=10, liquid jet temperature =50℃, and d_j= (a): 0.1 mm, (b): 0.3mm, (c): 0.5mm.	64
Figure 3 31: Influence of injector diameter on droplet size: q=7, B_1=10, liquid jet temperature =50℃, and d_j= (a): 0.1 mm, (b): 0.3mm, (c): 0.5mm.	65
Figure 3 32 Numerical Schlieren of computational domain: q=7, B_1=10, d_j=0.5 mm, liquid jet temperature =50℃.	65
參考文獻
5.	References
[ 1 ] Wu, P.-K., et al. (1997). "Breakup Processes of Liquid Jets in Subsonic Crossflows." Journal of Propulsion and Power 13(1): 64-73.
[ 2 ] Wu, P.-K., et al. (1998). "Spray Structures of Liquid Jets Atomized in Subsonic Crossflows." Journal of Propulsion and Power 14(2): 173-182. 
[ 3 ] Rachner, M., et al. (2002). "Modelling of the atomization of a plain liquid fuel jet in crossflow at gas turbine conditions." Aerospace Science and Technology 6(7): 495-506. 
[ 4 ] Tambe, S., et al. (2005). "Liquid Jets in Subsonic Crossflow." 43rd AIAA Aerospace Sciences Meeting and Exhibit.
[ 5 ] Lin, K.-C. and P. Kennedy (2000). "Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows. " 38th Aerospace Sciences Meeting and Exhibit.
[ 6 ] Lin, K.-C., et al. (2002). "Penetration heights of liquid jets in high-speed crossflows. " 40th AIAA Aerospace Sciences Meeting & Exhibit.
[ 7 ] Lin, K.-C., et al. (2004). "Structures of Water Jets in a Mach 1.94 Supersonic Crossflow. " 42nd AIAA Aerospace Sciences Meeting and Exhibit.
[ 8 ] Beresh, S., et al. (2004). "Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow." 42nd AIAA Aerospace Sciences Meeting and Exhibit.
[ 9 ] Beresh, S. J., et al. (2005). "Turbulent Characteristics of a Transverse Supersonic Jet in a Subsonic Compressible Crossflow." AIAA Journal 43(11): 2385-2394.
[ 10 ] Beresh, S. J., et al. (2006). "Crossplane Velocimetry of a Transverse Supersonic Jet in a Transonic Crossflow." AIAA Journal 44(12): 3051-3061.
[ 11 ] Westerweel, J., Elsinga, G. E., & Adrian, R. (2013). "Particle image velocimetry for complex and turbulent flows. " Annual Review of Fluid Mechanics, 45, 409-436.
[ 12 ] Husted, B. P., et al. (2009). "Comparison of PIV and PDA droplet velocity measurement techniques on two high-pressure water mist nozzles." Fire Safety Journal 44(8): 1030-1045.
[ 13 ] Sallam, K. A., et al. (2004). "Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow." AIAA Journal 42(12): 2529-2540.
[ 14 ] Fric, T., & Roshko, A. (1994). "Vortical structure in the wake of a transverse jet. " Journal of Fluid Mechanics, 279, 1-47.
[ 15 ] Lim, T. T., et al. (2001). "On the development of large-scale structures of a jet normal to a cross flow." Physics of Fluids 13(3): 770-775.
[ 16 ] VanLerberghe, W. M., et al. (2000). "Mixing of a Sonic Transverse Jet Injected into a Supersonic Flow." AIAA Journal 38(3): 470-479.
[ 17 ] Mcdaniel, J. and J. J. Graves (1986). "A laser-induced-fluorescence visualization study of transverse, sonic fuel injection in a nonreacting supersonic combustor." 24th Aerospace Sciences Meeting.
[ 18 ] McMillin, B. K., et al. (1994). "Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfield." AIAA Journal 32(10): 1945-1952. 
[ 19 ] Ben-Yakar, A., et al. (2006). "Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows." Physics of Fluids 18(2): 026101.
[ 20 ] Rothstein, A. and P. Wantuck (1992). "A study of the normal injection of hydrogen into a heated supersonic flow using planar laser-induced fluorescence." 28th Joint Propulsion Conference and Exhibit.
[ 21 ] Smith, S., & Mungal, M. (1998). "Mixing, structure and scaling of the jet in crossflow." Journal of Fluid Mechanics, 357, 83-122.
[ 22 ] Horn, K. P. and R. E. Reichenbach (1971). "Investigation of injectant properties on jet penetration in a supersonic stream." AIAA Journal 9(3): 469-472.
[ 23 ] Santiago, J. G. and J. C. Dutton (1997). "Velocity Measurements of a Jet Injected into a Supersonic Crossflow." Journal of Propulsion and Power 13(2): 264-273.
[ 24 ] Gruber, M. R., et al. (1995). "Mixing and Penetration Studies of Sonic Jets in a Mach 2 Freestream." Journal of Propulsion and Power 11(2): 315-323.
[ 25 ] Gruber, M. R., et al. (1997). " Compressibility effects in supersonic transverse injection flowfields." Physics of Fluids 9(5): 1448-1461.
[ 26 ] Gruber, M. R., et al. (2000). "Transverse Injection from Circular and Elliptic Nozzles into a Supersonic Crossflow." Journal of Propulsion and Power 16(3): 449-457.
[ 27 ] O'Rourke, P. J. and A. A. Amsden (1987). "The Tab Method for Numerical Calculation of Spray Droplet Breakup." SAE International.
[ 28 ] Patterson, M. A. and R. D. Reitz (1998). "Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission." SAE International.
[ 29 ] Catton, D. E. H. I. and R. P. Mcraes (1968). "Study of Liquid Jet Penetration in a Hypersonic Stream." AIAA Journal 6(11): 2084-2089.
[ 30 ] Schetz, J. A., et al. (1980). "Wave phenomena in liquid jet breakup in a supersonic crossflow." AIAA Journal 18(7): 774-778.
[ 31 ] Im, K.-S., et al. (2005). "Spray Atomization of Liquid Jet in Supersonic Cross Flows." 43rd AIAA Aerospace Sciences Meeting and Exhibit.
[ 32 ] B. Liu, A., et al. (1993). "Modeling the Effects of Drop Drag and Breakup on Fuel Sprays."
[ 33 ] Li, P., et al. (2017). "Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow." Acta Astronautica 134: 333-344.
[ 34 ] Fan, X., et al. (2018). "Eulerian–Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model." Advances in Mechanical Engineering.
[ 35 ] Arunajatesan, S. (2012). "Evaluation of Two-Equations RANS Models for Simulation of Jet-in-Crossflow Problems." 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
[ 36 ] Arunajatesan, S. and M. A. McWherter-Payne (2013). "Unsteady Modeling of Jet-in-Crossflow Problems." 43rd Fluid Dynamics Conference.
[ 37 ] Tam, C.-J., et al. (1999). "Numerical study of jet injection into a supersonic crossflow." 35th Joint Propulsion Conference and Exhibit.
[ 38 ] Maddalena, L., et al. (2006). "Experimental and Computational Investigation of Light-Gas Injectors in a Mach 4.0 Crossflow." Journal of Propulsion and Power 22(5): 1027-1038.
[ 39 ] Viti, V., et al. (2004). "Jet Interaction with a Primary Jet and an Array of Smaller Jets." AIAA Journal 42(7): 1358-1368.
[ 40 ] Schaupp, C. and R. Friedrich (2010). "Large-eddy simulation of a plane reacting jet transversely injected into supersonic turbulent channel flow." International Journal of Computational Fluid Dynamics 24(10): 407-433.
[ 41 ] Kawai, S. and S. Lele (2008). "Mechanisms of Jet Mixing in a Supersonic Crossflow: A Study Using Large-Eddy Simulation." 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
[ 42 ] Kawai, S. and S. Lele (2009). "Large-Eddy Simulation of Jet Mixing in a Supersonic Turbulent Crossflow." 19th AIAA Computational Fluid Dynamics.
[ 43 ] Kawai, S. and S. K. Lele (2010). "Large-Eddy Simulation of Jet Mixing in Supersonic Crossflows." AIAA Journal 48(9): 2063-2083.
[ 44 ] Boles, J., et al. (2008). "Hybrid LES/RANS Simulation of Transverse Sonic Injection into a Mach 2 Flow." 46th AIAA Aerospace Sciences Meeting and Exhibit.
[ 45 ] Boles, J. A., et al. (2010). "Large-Eddy/Reynolds-Averaged Navier-Stokes Simulations of Sonic Injection into Mach 2 Crossflow." AIAA Journal 48(7): 1444-1456.
[ 46 ] Hassan, E., et al. (2011). "Multi-Scale Turbulence Model in Simulation of Supersonic Crossflow." 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
[ 47 ] Hassan, E., et al. (2011). "Adaptive Turbulent Schmidt number approach for Multi-Scale Simulation of Supersonic Crossflow." 20th AIAA Computational Fluid Dynamics Conference.
[ 48 ] Hassan, E., et al. (2012). "Multi-Scale Turbulence Model in Simulation of Supersonic Crossflow Part 2: Inclined Injection." 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
[ 49 ] Brinckman, K., et al. (2008). "A CFD Methodology for Liquid Jet Breakup and Vaporization Predictions of Compressible Flows." 46th AIAA Aerospace Sciences Meeting and Exhibit. 
[ 50 ] Xiao, F., et al. (2013). "Large Eddy Simulation of Liquid-Jet Primary Breakup in Air Crossflow." AIAA Journal 51(12): 2878-2893.
[ 51 ] Leong, M. Y., et al. (2001). "Effect of Ambient Pressure on an Airblast Spray Injected into a Crossflow." Journal of Propulsion and Power 17(5): 1076-1084.
[ 52 ] Beloki Perurena, J., et al. (2009). "Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow." Experiments in Fluids 46(3).
[ 53 ] Turns, S. R. (2012). An introduction to combustion: Concepts and applications. New York: McGraw-Hill.
[ 54 ] Sauter, J. (1926). Die Grössenbestimmung der im Gemischnebel von Verbrennungskraftmaschinen vorhandenen Brennstoffteilchen: (Mitteilung aus d. Labor. f. techn. Physik d. Techn. Hochsch. München); mit 26 Abb. u. 8 Zahlentaf. Berlin: VDI-Verl
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信