§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201914520200
DOI 10.6846/TKU.2019.00732
論文名稱(中文) 爆震管中的流場模擬
論文名稱(英文) Simulation of Flowfields Inside a Detonation Tube
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 黃星諺
研究生(英文) Shing-Ian Huang
學號 606430022
學位類別 碩士
語言別 英文
第二語言別
口試日期 2019-06-27
論文頁數 138頁
口試委員 指導教授 - 牛仰堯
委員 - 牛仰堯
委員 - 張建成
委員 - 吳明勳
委員 - 劉登
關鍵字(中) 脈衝爆震引擎
爆震波
震波
關鍵字(英) Pulse Detonation Engines
Detonation Wave
Shock wave
第三語言關鍵字
學科別分類
中文摘要
脈衝爆震發動機的基礎是由於爆震波在爆震管中點燃後向下游傳播,通過噴嘴後會產生超音速的流體並且提供推力。為了清楚的模擬出爆震管中物理現象,在本研究中,我們提出了HMSTH type AUSMD方法來解決爆震波中的問題,同時這個方法是也可以擴展到二維問題的。而為了驗證上述數值方法捕獲震波,擴散波和爆炸波的能力,我們比較了另外兩種數值方法,分別是MUSCL type AUSMD和THINC-EM type AUSMD方法。最後,我們觀察並且比較哪種方法可以在相同條件下得到爆震管中最明顯的物理現象,並提出HMSTH type AUSMD方法確認有向未來發展的可能性。
英文摘要
A pulse detonation engine (PDE) is replied on the detonation wave propagates downstream after being ignited in the detonation tube, then producing supersonic wave through the nozzle to achieve the thrust. In order to simulate the physical phenomenon in the detonation tube, in this study, we propose the Hybrid MUSCL with THINEM (HMSTH) type AUSMD flux scheme to solve the stiffened Euler equations to achieve accurate simulation of the detonation waves, shock waves, and the expansion fans. To verify the proposed numerical methods, one and two-dimensional shock tube and the detonation tube and nozzles are chosen as benchmark test cases. The numerical results show that the proposed HMSTH type AUSMD scheme has great potential for further complicated detonation and PDE flow problems.
第三語言摘要
論文目次
Table of Contents
Nomenclature ......................................................................................... VI
List of Figure........................................................................................ VIII
1. Introduction ...................................................................................... 1
1.1. Background......................................................................................... 1
1.2. Review of Numerical Algorithm Literature ......................................... 5
1.3. Review of Pulse Detonation Engine .................................................... 7
1.4. Detonation Physics ........................................................................... 15
1.4.1 CJ Theory ................................................................................... 16
1.4.2 ZND Detonation Wave Structure ............................................... 23
1.5. Pulse detonation engines .................................................................. 25
1.5.1 The simple introduction of the PDE ........................................... 25
1.5.2 The Structure and Mesh Contour of the PDE ............................. 28
1.5.3 The Cycle Operation Process of the PDE ................................... 29
2. Numerical Models ........................................................................... 32
2.1. Governing Equations ........................................................................ 32
2.2. AUSMD ........................................................................................... 35
2.3. Strang Splitting ................................................................................. 41
2.4. MUSCL ............................................................................................ 43
2.5. THINC-EM....................................................................................... 45
2.6. HMSTH ............................................................................................ 47
3. Numerical Results ........................................................................... 49
3.1. One-Dimension Simulation Result .................................................... 49
3.1.1 Detonation Wave Case 1 ............................................................ 49
3.1.4 Detonation Wave Case 2 ............................................................ 55
3.1.5 Grid Independence Case ............................................................. 64

3.2 Two-Dimensional Simulation Results ............................................... 66
3.2.1 Two-Dimensional Benchmark Case ........................................... 66
3.2.1.1 Grid independent test........................................................... 68
3.2.1.2 Calculations by THINC-EM ................................................ 71
3.2.1.3Calculations by HMSTH ...................................................... 74
3.2.2 Single-nozzle tube case .............................................................. 96
3.2.1 The Propagation Process of the Detonation Wave .................. 98
3.2.2 Enlarged Views of Pressure Contours .................................. 107
4. Conclusions ................................................................................... 121
5. References ..................................................................................... 123

Appendix .............................................................................................. 130

Figure 1 Schematic diagram of a stationary 1D combustion wave ..... 16
Figure 2 Rayleigh lines and Hugoniot curve for p versus 1/density (from Kuo, 1986) ................................ ................................ ................... 20
Figure 3 Properties of a ZND detonation wave (adapted from Kuo, 1986)................................ ................................ ................................ ...... 25
Figure 4 Single detonation tube with CD nozzle ................................ . 29
Figure 5 The PDE’s operation process ................................ ................ 30
Figure 6 the Structure of the One-dimensional Riemann problem ..... 37
Figure 7 .Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 The HMSTH method and the THINC-EM method is using the beta=1.2. ( A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 51
Figure 8 Numerical results for One-Dimensional Detonation Wave
Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =1.5. ( A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 52
Figure 9. Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =1.7. ( A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 54
Figure 10. Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =2.3. ( A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 55
Figure 11 Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =1.2. (A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 57
Figure 12 Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the
THINC-EM method is using the  beta =1.5. (A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 58
Figure 13 Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =1.7. (A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 59
Figure 14 Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =1.8. (A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 61
Figure 15 . Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =1.9. (A) density ;(B) pressure ;(C) temperature ;(D)Z. ................................ ................. 62
Figure 16 . Numerical results for One-Dimensional Detonation Wave Case at time = 1×10−7 s . The HMSTH method and the THINC-EM method is using the  beta =2.3. (A) density ;(B)
pressure ;(C) temperature ;(D)Z. ................................ ................. 63
Figure 17 Grid Independence test. ................................ ....................... 65
Figure 18. The initial state. As can be seen, z on the left side of the interface is 0, and z on the right side of the interface is 1. .......... 67
Figure 19. The density contour by the MUSCL’s grid independent test................................. ................................ ................................ ...... 69
Figure 20. The density contour by the HMSTH method,  beta=1.2,alpha =100, grid-independent test chart. ................................ ......................... 71
Figure 21. The density contour by the THINC-EM method,  beta =1.2–1.8................................. ................................ ................................ ...... 73
Figure 22 .The density contour by the HMSTH method,alpha =50, beta =1.2–2.1 ................................ ................................ ....................... 77
Figure 23. The density contour by the HMSTH methodalpha =100,  beta =1.2-1.9 ................................ ................................ ........................ 80
Figure 24 The density contour by the HMSTHalpha =500,  beta =1.2–1.8................................. ................................ ................................ ...... 83
Figure 25 The density contour by the HMSTHalpha =1000,  beta =1.2–1.6................................ ................................ ................................ ...... 85
Figure 26 The density contour by HMSTH methodalpha = 2000,  beta =1.2-1.5 ................................ ................................ ................................ 87
Figure 27 The density contour by the HMSTH,  beta =1.5,alpha =1000, 2000, 10000, 100000, comparison chart ................................ ................ 89
Figure 28 Good results. ................................ ................................ ........ 92
Figure 29 Density field along the central line of x-direction by the HMSTH method at t =1.7×10−7. ................................ ............ 95
Figure 30 Density field along the central line of x-direction by the MUSCL and the THINC-EM at t =1.7×10−7. ........................ 96
Figure 31 170,000 grid cells contour. ................................ .................. 97
Figure 32 Multiblock divided into six parts. ................................ ....... 98
Figure 33 Time evolution of Mach number (left-side) and the density-gradient (right-side). ................................ ................................ .. 101
Figure 34 Time evolution of Mach number (left-side) and pressure (right-side) along the central line. ................................ .............. 106
Figure 35 The enlarged views of pressure contours with the result at time=10.4μs and time=6.5μs ................................ .............. 108
Figure 36 The enlarged views of pressure contours with the result at time=10.4μs and time=6.5μs ................................ .............. 109
Figure 37 The enlarged views of pressure contours with the results by HMSTH,alpha=100, beta=1.2~1.5, 1.7~1.8. ................................ 111
Figure 38 The enlarged views of pressure contours with the result by HMSTH,alpha=100,1000,10000 , beta=1.7. .............................. 112
Figure 39 The enlarged views of pressure contours by THINC-EM method,  beta=1.2~1.3 ................................ ................................ ... 115
Figure 40 The Mach number field along the central line of x-direction in the single nozzle tube. ................................ ........................... 119
參考文獻
References
Weizhu Bao and Shi Jin (2000), “The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms.” Journal of Computational Physics, Vol. 163, pp.216-248.
Matania Ben-Artzi (1989), “The Generalized Riemann Problem For Reactive Flows.” Journal of Computational Physics, Vol. 81, pp.70-101.
Meng-Sing Liou (1996), “A Sequel to AUSM: 〖AUSM〗^+.” Journal of Computational Physics, Vol. 129, pp.364-382.
Yasuhiro Wade and Meng-Sing Liou (1997), “An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities.” SIAM Journal on Scientific Computing, Vol. 18, No. 3, pp. 633-657. 
F. XIAO, Y. Honma, and T. Kono (2005), “A Simple Algebraic Interface Capturing Scheme Using Hyperbolic Tangent Function.” International Journal for Numerical Methods in Fluids, Vol. 48, pp. 1023-1040. 
Yang-Yao Niu and James N. Scott (1995), “MUSCL Type Limiters for Flux Splitting Methods and Applications,” 26th AIAA Fluid Dynamics Conference, 19-22.
Fuhua Ma (2003), “Thrust Chamber Dynamics and Propulsive Performance of Airbreathing Pulse Detonation Engines.”
Fuhua Ma, Jeong-Yeol Choi, and Vigor Yang (2006), “Propulsive Performance of Airbreathing Pulse Detonation Engines.” Journal of Propulsion and Power, Vol. 22, No. 6.  
E. Wintenberger and J.E. Shepherd (2006), “A Model for the Performance of Air-Breathing Pulse Detonation Engines.” Journal of Propulsion and Power, Vol. 22(3), pp.593-603.  
R.J. LeVeque and Helen C. Yee (1990), “A Study of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms.” Journal of Computational Physics, Vol. 86, pp.187-210.
D Mahaboob Valli and TK Jindal (2014), “Pulse Detonation Engine: Parameters Affecting Performance.” International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3. Issue 4. 
Xi Deng, Bin Xie, Feng Xiao, and Honghui Teng (2018). "New Accurate and Efficient Method for Stiff Detonation Capturing." AIAA Journal, Vol. 56, No. 10, pp. 4024-4038.
Weizhu Bao (2002), “The Random Projection Method for a Model Problem of Combustion with Stiff Chemical Reactions.” Applied Mathematics and Computation. Vol. 130, pp.561-571.
Wintenberger, E., Austin, J.M., Cooper, M., Jackson, S., and Shepherd, J.E. (2004), “Analytical model for the impulse of single-cycle pulse detonation tube.” 
Roy, G.D., Frolov, S.M., Borisov, A.A., and Netzer, D.W. (2004), “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective.” Progress in Energy and Combustion Science, Vol. 30, No. 6, pp. 545-672.
S. M. Frolov, V. S. Aksenov, V. S. Ivanov, I. O. Shamshin, and A. E. Zangiev (2019), “Air-breathing pulsed detonation thrust module: Numerical simulations and firing tests.” Aerospace Science and Technology. Vol 89, June , pp. 275-287
Jonathan Sosa, Kareem A. Ahmed, Robert Fievisohn, John Hoke, and Frederick Schauer (2019), “Supersonic driven detonation dynamics for rotating detonation engines.” International Journal of Hydrogen Energy, Vol. 44, Issue 14, 15 March, pp. 7596-7606.
Nicolas Jourdaine, Nobuyuki Tsuboi, Kohei Ozawa, Takayuki Kojima, and A. Koichi Hayashi (2019), “Three-dimensional numerical thrust performance analysis of hydrogen fuel mixture rotating detonation engine with aerospike nozzle.” Proceedings of the Combustion Institute, Vol. 37, Issue 3, pp. 3443-3451.
Berke Olcucuoglu and Bayindir H. Saracoglu (2018), “A preliminary heat transfer analysis of pulse detonation engines.” Transportation Research Procedia, Vol. 29, pp. 279-288.
Qibin Zhang, Ke Wang, Rongxiao Dong, Wei Fan, and Yongjia Wang, (2019), “Experimental research on propulsive performance of the pulse detonation rocket engine with a fluidic nozzle.” Energy, Vol. 166. pp. 1267-1275.
 Zhiwu Wang, Yang Zhang, Jingjing Huang, Zijian Liang, and Jie Lu. (2016), “Ignition method effect on detonation initiation characteristics in a pulse detonation engine.” Applied Thermal Engineering, Vol. 93, pp. 1-7.
 Ling Lin, Chunsheng Weng, Qingzhang Chen, and Hongyu Jiao (2017), “Study on the effects of ionization seeds on pulse detonation characteristics.” Aerospace Science and Technology, Vol. 71,pp. 128-135.
 Carlos Xisto, Olivier Petit, Tomas Grönstedt, Andrew Rolt, and Guillermo Paniagua (2018), “The efficiency of a pulsed detonation combustor–axial turbine integration.” Aerospace Science and Technology, Vol. 82–83,pp. 80-91.
 Qibin Zhang, Wei Fan, Ke Wang, Wei Lu, and Yongjia Wang (2016). “Impact of nozzles on a valveless pulse detonation rocket engine without the purge process.” Applied Thermal Engineering, Vol. 100, pp.1161-1168.
 M. Mirzaei, M. J. Torkaman Asadi, and R. Akbari (2015). “On vibrational behavior of pulse detonation engine tubes.” Aerospace Science and Technology, Vol. 47, pp. 177-190.
 Yu Yan, Wei Fan, Ke Wang, Xu-dong Zhu, and Yang Mu (2011). “Experimental investigations on pulse detonation rocket engine with various injectors and nozzles.” Acta Astronautica, Vol. 69, Issues 1–2, pp. 39-47.
 Zhen-Cen Fan, Wei Fan, Hong-yan Tu, Jian-Ling Li, and Chuan-jun Yan (2012), “The effect of fuel pretreatment on performance of pulse detonation rocket engines.” Experimental Thermal and Fluid Science, Vol. 41,pp. 130-142.
 Changxin Peng, Wei Fan, Longxi Zheng, Zhiwu Wang, and Cheng Yuan (2013). “Experimental investigation on valveless air-breathing dual-tube pulse detonation engines.” Applied Thermal Engineering, Vol. 51, Issues 1–2, pp. 1116-1123.
 Ke Wang, Wei Fan, Wei Lu, Qibin Zhang, and Qiang Xia (2015), “Propulsive performance of a pulse detonation rocket engine without the purge process.” Energy, Vol. 79, pp. 228-234.
 Zhiwu Wang, Jie Lu, Jingjing Huang, Changxin Peng, and Longxi Zheng (2014). “Experimental investigation on the operating characteristics in a multi-tube two-phase valveless air-breathing pulse detonation engine.” Applied Thermal Engineering, Vol. 73, Issue 1, pp. 23-
Weiqiang Chen, Jianhan Liang, Xiaodong Cai, and Zhiyong Lin (2018), “The initiation and propagation of detonation in supersonic combustible flow with boundary layer.” International Journal of Hydrogen Energy, Vol. 43, Issue 27, pp.12460-12472.
Deok-Rae Cho, Su-Hee Won, Jae-Ryul Shin, and Jeong-Yeol Choi (2013), “Numerical study of three-dimensional detonation wave dynamics in a circular tube.” Proceedings of the Combustion Institute, Vol. 34, Issue 2, pp. 1929-1937.
Yen-Cheng Wu (2018), “Preliminary Numerical Simulation of Flow Field Through the Nozzle of Pulse Detonation Engines.”
 Colella, P., Majda, A., and Roytburd, V. (1986), “Theoretical and numerical structure for reacting shock waves.” SIAM Journal on Scientific and Statistical Computing 7(4), 1059-1080. 
 Harten, A., “High Resolution Schemes for Hyperbolic Conservation Laws.” Journal of Computational Physics, Vol. 49, 1983, pp. 357-393.
 Chorin, A. J. (1977), “Random choice methods with applications to reacting gas flow”. Journal of Computational Physics, 25, 253. 
Kuo, K (1986), “Principles of Combustion”, Chapter 4, John Wiley and Sons. 
R. Courant and K. O. Friedrichs (1971), “Supersonic Flow and Shock Waves”, Interscience, New York,.
B. Engquist and B. Sjogreen, (1991), “Robust Difference Approximations of Stiff Inviscid Detonation Wave”, CAM Report 91-03 (UCLA).
G. Strang and Siam Journal on Numerical Analysis, 5, 506 (1968).
R. F. Warming, P. Kutler, and H. Lomax, AZAA Journal, 189 (1973).
K.A. Hoffmann and Steve T. Chiang, “Computational Fluid Dynamics Volume 2,” Fourth Edition.
K.A. Hoffmann and Steve T. Chiang, “Computational Fluid Dynamics Volume 1,” Fourth Edition.
Liou, M. S. and Wada, Y., “A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities.” 32nd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, AIAA-94-0083, 1994. 
Van Leer, B., “Flux Vector Splitting for the Euless Equations.” Lecture Notes in Physics Vol. 170, pp. 507-508, 1982. 
Toro, F (2009)., “Riemann Solvers and Numerical Methods for Fluid Dynamics.” Third Edition, Springer, .
Toro, E. F., Spruce, M., and Speares, W., “Restoration of the Contact Surface in the HLL Riemann Solver.” Shock Waves, Vol. 4, 1994, pp. 25-34.
C.-H. Chang and M.-S. Liou (2007), “A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme.” Journal of Computational Physics 225 (1) 840-873.
Yee, H. C., Kotov, D. V., Wang, W., and Shu, C. (2013). “Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities”. Journal of Computational Physics, 241, pp 266-291
Daniel A.Cassidy, Jack R.Edwards and MingTian (2009), “An Investigation of Interface Sharpening Schemes for Multiphase Mixture Flows”, Vol 228, Issue 16, pp 5628-5649
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信