§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201511120600
DOI 10.6846/TKU.2015.00730
論文名稱(中文) 不同人種與不同年齡之視神經底盤損傷對正常眼壓型青光眼的影響
論文名稱(英文) Normal-tension glaucoma influence from damage in optic disc of different ethnicities and ages
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 楊舜鈞
研究生(英文) Shun-Chun Yang
學號 603370072
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-01
論文頁數 71頁
口試委員 指導教授 - 李宗翰
委員 - 李宗翰
委員 - 史建中
委員 - 黃曼菁
關鍵字(中) 正常眼壓型青光眼
視神經盤
角膜
人種
年齡
關鍵字(英) normal-tension glaucoma
optic disc
cornea
ethnicities
ages
第三語言關鍵字
學科別分類
中文摘要
正常眼壓型青光眼對視神經盤造成傷害是本文主要的研究重點,正常眼壓型青光眼前房壓力介於10-20mmHg屬正常範圍內,由於視神經盤的發育缺陷,導致視神經盤無法承受正常範圍眼壓的壓迫而產生視野缺損。本研究借由設計完整的眼球膜型,並參照正常眼壓型青光眼的發病機制進行模擬分析。分析結果得到前房壓力值符合正常眼壓型青光眼臨床壓力值範圍,從應力分布現象來看,最大應力集中在鞏膜後端與視神經盤處。本研究針對白種人、亞洲人、非洲人進行探討,人種間的主要差異在於視神經盤的大小不同,研究發現在相同眼壓下,非洲人在視神經盤應力集中現象大於白種人與亞洲人,而亞洲人又較白種人大。本文也針對不同人種、不同眼壓、不同組織楊氏系數進行探討。本研究之分析結果,能提供往後相關研究一個重要的依據。
英文摘要
In this study, the main body of research is focused on injuries to the optic disc of the eye ball due to normal-tension glaucoma. Because of developmental defects in the optic disc, the anterior intraocular pressure falls outside of the nominal range, producing visual field defects. The anterior IOP due to normal tension glaucoma is generally between the 10-20 mmHg. This study discusses the comprehensive design of an eye model, with analysis and reference to the simulation of the pathogenesis of normal-tension glaucoma. The resulting modeled values found for anterior pressure during normal-tension glaucoma were found to be in line with clinical pressure ranges. Utilizing stress distribution models, the maximum stress concentration was found to be in the rear of the sclera and the optic disc. In this study, the optic discs of Caucasians, Asians, and Africans are discussed, with the main difference between the three ethnicities lying in the different sizes of the optic disc of each respective ethnicity. This study found that, for the same anterior IOP, those of African descent will experience the highest stress concentrations in the optic disc of the three ethnicities, with those of Asian and Caucasian descent coming in second and third, respectively. This study also covers variations due to different ethnicities, different anterior IOPs, and different Young’s moduli. The results of this study can provide an important basis for future research.
第三語言摘要
論文目次
目錄
第一章序論	1
1-1 前言	1
1-2 研究背景與動機	2
1-3 正常眼壓型青光眼	4
1-4 文獻回顧	5
第二章研究方法	12
2-1 有限元素法概論	12
2-2 應用軟體	13
2-3 研究過程	14
第三章分析理論	16
3-1 連續方程式	17
3-2 動量方程式	18
3-3 可壓縮能量方程式	19
3-4 壓力方程式	20
3-5 收斂檢測	21
第四章參數條件設定	22
4-1 定義分析元素	22
4-1-1 流體元素分析	22
4-1-2 結構體元素分析	23
4-2 材料性質	24
4-3 模型建立	27
4-4 初始條件設定	31
4-5 負載條件設定	32
第五章數值模型分析結果	34
5-1 結果分析	34
5-1-1 流體分析結果	34
5-1-2 結構體分析結果	36
5-2 結果驗證	38
5-3 結果討論	42
5-3-1白種人、亞洲人、非洲人視神經盤差異比較討論	42
5-3-2不同人種不同眼壓與相同材料參數做比較討論	46
5-3-3不同人種相同的眼壓與不同的材料參數做比較討論	54
第六章結論與未來展望	62
6-1 結論	62
6-2 未來展望	64
參考文獻	66

圖目錄
圖1-1青光眼視野缺損的演進	2
圖1-2房水流動示意圖[8]	4
圖1 3正常眼壓型青光眼房水流動示意圖[9]	5
圖2-1研究流程圖	15
圖4 1FLUID 142 元素圖[40]	23
圖4 2SOLID 45 元素圖[40]	23
圖4-3眼球簡易尺寸圖[54]	30
圖4-4眼球結構圖[55]	30
圖4 5眼球模型剖面圖	31
圖4 6房水流場設定圖	32
圖4 7邊界條件示意圖	33
圖5 1正常眼壓型青光眼前後房壓力分布圖	35
圖5 2正常眼壓型青光眼前後房流場圖	35
圖5 3正常眼壓型青光眼前後房流線圖	36
圖5 4正常眼壓型青光眼之應力分布圖	37
圖5 5正常眼壓型青光眼應變分布圖	37
圖5 6正常眼壓型青光眼與文獻[19]比較之應力分布圖	40
圖5 7正常眼壓型青光眼與文獻[26]比較之應力分布圖	41
圖5-8白種人、亞洲人、非洲人視神經盤差異之應力分佈比較圖	44
圖5-9白種人、亞洲人、非洲人視神經盤差異之應變分布比較圖	45
圖5-10白種人相同材料參數與不同眼壓之應力分布比較圖。	48
圖5-11白種人相同材料參數與不同眼壓之應變分布比較圖。	49
圖5-12亞洲人相同材料參數與不同眼壓之應力分布比較圖。	50
圖5-13亞洲人相同材料參數與不同眼壓之應變分布比較圖。	51
圖5-14非洲人相同材料參數與不同眼壓之應力分布比較圖。	52
圖5-15非洲人相同材料參數與不同眼壓之應力分布比較圖。	53
圖5 16白種人,三種年齡層眼壓為10mmHg之應力分布比較圖	56
圖5 17白種人,三種年齡層眼壓為10mmHg之應變分布比較圖	57
圖5 18亞洲人,三種年齡層眼壓為10mmHg之應力分布比較圖	58
圖5 19亞洲人,三種年齡層眼壓為10mmHg之應力分布比較圖	59
圖5 20非洲人,三種年齡層眼壓為10mmHg之應力分布比較圖	60
圖5 21非洲人,三種年齡層眼壓為10mmHg之應力分布比較圖	61

表目錄
表4 1房水材料參數表	24
表4 2模擬結構體眼球組織之材料參數表	27
表5 1正常眼壓型青光眼與文獻[19]之尺寸對照表	39
表5 2正常眼壓型青光眼與文獻[19]之楊氏係數對照表	39
表5 3正常眼壓型青光眼與文獻[19]之結果倍數比較表	40
表5 4正常眼壓型青光眼與文獻[26]之尺寸對照表	41
表5 5正常眼壓型青光眼與文獻[26]之楊氏係數對照表	41
表5 6不同人種相同眼壓與相同楊氏係數數據表	43
表5 7不同人種、不同的楊氏係數與相同眼壓數據表	55
參考文獻
參考文獻
1.	http://www.cqvip.com/read/read.aspx?id=22479327

2.	Y. Yokoyama, et al. “Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk” Clinical Ophthalmology, pp.1721-1727 (2011)

3.	http://www.kmuh.org.tw/www/kmcj/data/8807/4273.htm

4.	http://www.kgh.com.tw/health/09-01.HTML

5.	http://cht.a-hospital.com/w/%E9%9D%92%E5%85%89%E7%9C%BC

6.	L. Kagemann, et al. “3D visualization of aqueous humor outflow structures in-situ in humans” Experimental Eye Research, Vol.93, pp.308-315 (2011)

7.	http://depart.femh.org.tw/oph/oph/ch/MedicalTeam-Glaucoma-1.html

8.	https://classconnection.s3.amazonaws.com/252/flashcards/753252/png/screen_shot_2013-10-09_at_112940_pm-141B4070E2858BFE064.png

9.	S. Kumar, “Numerical Solution of Ocular Fluid Dynamics”, Department of Mechanical Engineering, Louisiana State University, (2001)

10.	R. C. Tripathi, B. J. Tripathi, “Functional anatomy of the anterior chamber angle”, Biomedical Foundations of Ophthalmology Philadelphia, pp.197 (1982)

11.	J. B. Jonas, et al. “Optic Disc, Cup and Neuroretinal Rim Size, Configuration and Correlations in Normal Eyes” Investigative Ophthalmology and Visual Science, Vol.29, pp.1151-1158 (1988)

12.	T. W. Olsen, et al. “Human Sclera: Thickness and Surface Area” American Journal of Ophthalmology, vol. 29, pp.1151-1158 (1988)

13.	M. Johnson, K. Erickson “Mechanisms and Routes of Aqueous Humor Drainage”Principles and Practice of Ophthalmo- logy, Vol.1  (2000)

14.	A. Villamarin, et al. “3D simulation of the aqueous flow in the human eye” Medical Engineering & Physics, Vol.34, pp.1462-1470(2012)

15.	J. S. M. Lai, R. A. Gangwani “Medication-induced acute angle closure attack”Hong Kong Med J, Vol.18, No 2(2012)

16.	D. B. Yan, et al. “Deformation of the lamina cribrosa by elevated intraocular pressure” British Fournal of Ophthalmology, Vol.83, pp.1106-1111(1999)

17.	C. F. Burgoyne, et al. “Measurement of Optic Disc Compliance by Digitized Image Analysis in the Normal Monkey Eye” Ophthalmology, Vol.102, pp.1790-1799(1995)

18.	E. Uchio, S. Ohno, J. Kudoh, K. Aoki, L.T. Kisielewicz “Simulation model of an eyeball based on finite element analysis on a supercomputer” British Journal Ophthalmology, Vol.83, pp.1106–1111(1999)

19.	A. J. Bellezza, R. T. Hart, C. F. Burgoyne “The optic nerve head as a biomechanical structure: initial finite element modeling” Investigative Ophthalmology and Visual Science, Vol.41, pp.2991-3000(2000)

20.	E. M. Hoffmann, L. M. Zangwill, J. G. Crowston, R. N. Weinreb,  "Optic Disk Size and Glaucoma" Survey Ophthalmology, Vol.52, pp.32-49(2007)

21.	C. Zangalli, S. R. Gupta, G. L. Spaeth, "The disc as the basis of treatment for glaucoma" Saudi Journal of Ophthalmology, Vol.25, pp.381-387(2011)

22.	M. J. A. Girard, et al. “Peripapillary and Posterior scleral mechanics-Part II: Experimental and inverse finite element characterization” Journal of Biomechanical Engineering, Vol.131(2009)

23.	R. E. Norman, et al. “Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma” Experimental Eye Research, Vol.93, pp. 4-12 (2011)

24.	Y. Agoumi, et al. “Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls” Ophthalmology, Vol.118, pp.52-59 (2011)

25.	http://ophthalmology.medicine.pitt.edu/personnelDetail.asp?pid=4444&id=127&ptype=2&pnavcat=2

26.	I. A. Sigal, et al. “Finite element modeling of optic nerve head biomechanics” Investigative Ophthalmology and Visual Science, Vol.45, pp.4378-4387 (2004)

27.	黃士豪,「眼球前後房房水壓力數值模擬分析研究」,淡江大學機械與機電工程研究所,2008。

28.	邱湘傑,「運用ANSYS FLOTRAN CFD於隅角閉鎖型青光眼在玻璃體外部所造成之壓力分析」,淡江大學機械與機電工程研究所,2009。

29.	蕭天偉,「超音波晶體乳化手術併人工水晶體植入於隅角閉鎖型青光眼治療之研究」,淡江大學機械與機電工程研究所,2010。

30.	陳定杰,「超音波晶體乳化手術併人工水晶體植入後隅角閉鎖型青光眼治療之分析與研究」,淡江大學機械與機電工程研究所,2011。

31.	賴俊良,「隅角閉鎖型青光眼於視神經盤之壓力分析」,淡江大學機械與機電工程學研究所,2013。
32.	S. Schutte, et al. “A finite-element analysis model of orbital biomechanics” Vision Research, Vol.46, pp.1724-1731 (2006)

33.	呂岳翰,「隅角閉鎖型青光眼影響視神經底盤之力學分析」,淡江大學機械與機電工程學研究所,2014。

34.	J. Wu, M. A. Nasserib, M. Ederc, M. A. Gavaldonc, C. P. Lohmannd,  A. Knollc, “The 3D Eyeball FEA Model with Needle Rotation”  APCBEE Procedia, Vol.7, pp.4-10 (2013)

35.	M. E. Kavousanakis, N. G. Kalogeropoulos, D. T. Hatziavramidis, “Computational  modeling of drug delivery to the posterior eye” Chemical Engineering Science, Vol.108, pp.203-212 (2014)

36.	戴吉謙,「正常眼壓型青光眼脂角膜厚度與眼球壓力分析」,淡江大學機械與機電工程學研究所,2011。

37.	Y. Morad, E. Sharon, L. Hefetz, P. Nemet, “Corneal thickness and curvature in normal-tension glaucoma”, American Journal of Ophthalmology, Vol.125, No.2, pp.164-168(1998)
	
38.	M. I. Konareva-Kostianeva, M. A. Atanassov, “Central Corneal Thickness in Patients with Normal-tension Glaucoma”, Journal of Folia Medical, Vol.85, pp.36-41(2007)

39.	L.A. Carvalho, M. Prado, R.H. Cunha, A. Costa Neto, A. Paranhos Jr, P. Schor, W. Chamon, “Keratoconus prediction using a finite element model of the cornea with local biomechanical properties” Arquivos Brasileiros de Oftalmologia, Vol.72, No2, pp.139-145(2009)

40.	http://www.ansys.com/

41.	J.J. Heys, V.H. Barocas, “A boussinesq model of natural convection in the human eye and the formation of Krukenbergs spindle” Annals of Biomedical Engineering, Vol.30, pp.392-401 (2002)

42.	S. Kling, S. Marcos, “Finite-Element Modeling of Intrastromal Ring Segment Implantation into a Hyperelastic Cornea”, Investigative Ophthalmology and Visual Science, Vol.54, No.1, pp.881-900(2013)

43.	W. X. Zhang, C. L. Li, F. Wang, “Cinical application and biocompatibility of ophthalmic implants”, Journal of Clinical Rehabilitative Tissue Engineering Research, Vol.13, No.42(2009)

44.	R. Amini, J.E. Whitcomb, M.K. Al-Qaisi, T. Akkin, S. Jouzdani, S. Dorairaj, T. Prata, E. Illitchev, J.M. Liebmann, R. Ritch, V.H. Barocas, "The posterior location of the dilator muscle induces anterior iris bowing during dilation, even in the absence of pupillary block." Investigative Ophthalmology and Visual Science, Vol.53, pp.1188-94 (2012)

45.	K. Jyoti, ”Numerical Solution of Flow Resistance in Outflow Pathway and Intravitreal Drug Delivery in Vitrectomised Eyes” (2002)

46.	J. L. Battaglioli, R. D. Kamm, “Measurements of the compressive properties of scleral tissue” Investigative Ophthalmology and Visual Science, Vol.25, pp.59-65 (1984)

47.	I. A. Sigal, et al. “IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related” Investigative Ophthalmology and Visual Science, Vol.52, pp.9023-9032 (2011)

48.	J. D. Stitzel, et al. “A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture” Journal of Stapp Car Crash, Vol.46, pp.81-102 (2002)

49.	D. A. Atchison, G. Smith “Optics of the human eye,” Chapter.1, pp.3-10 (2001)

50.	http://www.nei.nih.gov/eyeonnei/visionary/archive/0210.asp

51.	http://telemedicine.orbis.org/data/1/rec_docs/87_Ch%203%20-%20Summary%20of%20the%20Gross%20Anatomy%20of%20the%20Extraocular%20Muscles,%20p.%2038-51.pdf

52.	http://blog.remakehealth.com/blog_Healthcare_Consumers-0/bid/11597/What-does-an-MRI-of-the-Orbits-Eyes-show

53.	http://flickrhivemind.net/User/ambioct/Interesting

54.	J. D. Stitzel, S. M. Duma, J. M. Cormier, I. P. Herring, “A Nonlinear Finite Element Model of the Eye with Experimental Validation for the Prediction of Globe Rupture”, Journal of Stapp Car Crash, Vol.46, pp.81-102(2002).

55.	http://lh3.ggpht.com/_eKegJm9ta5k/S6CxR2XHL7I/AAAAAAAAACM/KbPzlETWNVc/s800/1%20%E7%9C%BC%E7%9D%9B%E7%B5%90%E6%A7%8B%E4%B8%AD%E8%8B%B1%E6%96%87%E5%B0%8D%E7%85%A7.jpg
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信