§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201316422700
DOI 10.6846/TKU.2013.00942
論文名稱(中文) Bacillus cereus TKU031 所生產一種幾丁聚醣酶之純化與應用
論文名稱(英文) Purification and application of a chitosanase from Bacillus cereus TKU031
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 蘇建瑋
研究生(英文) Jian-Wei Su
學號 600180219
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2013-07-04
論文頁數 73頁
口試委員 指導教授 - 王三郎(sabulo@mail.tku.edu.tw)
委員 - 陳佑汲(askachen@mail.vnu.edu.tw)
委員 - 梁慈雯
關鍵字(中) Bacillus cereus
幾丁聚醣酶
烏賊軟骨
關鍵字(英) Bacillus cereus
chitosanase
squid pen
第三語言關鍵字
學科別分類
中文摘要
菌株TKU031係以烏賊軟骨粉為唯一碳/氮源,篩選自台灣淡水三芝土壤,經鑑定為Bacillus cereus之幾丁聚醣酶及蛋白酶生產菌。幾丁聚醣酶較適生產條件為,以含有1%烏賊軟骨粉、0.1 % K2HPO4、0.05 % MgSO4.7H2O之100mL液態培養基( pH 7),於37℃搖瓶 ( 150 rpm ) 培養2天。所得發酵液經離心、硫酸銨沉澱以及 DEAE–Sepharose與 Macro-PrepR DEAE Cartridge陰離子交換層析等步驟,純化出的一種經SDS–PAGE測定分子量為43 kDa幾丁聚醣酶CHS。CHS的最適反應pH、最適反應溫度、pH安定性以及熱安定性分別為pH 5、50℃、pH 5–9以及<50℃。CHS的酵素活性活性會受1mM的 Zn2+、Cu2+、Fe2+及5mM 的Mn2+、EDTA所抑制。
    於較適培養,添加0.1%硼砂進行培養發現可促進B. cereus TKU031菌體生長達122%,若添加0.1%硼砂及0.05%硼酸則可促進B. cereus TKU031幾丁聚醣酶之生產,相對活性分別是未添加之培養基培養第3天177%及第2天的 195%。
英文摘要
Strain TKU031, a chitosanase– and protease– producing bacteria, was isolated from the soil of Sanjhih, Taiwan with squid pen powder (SPP) as the sole carbon/nitrogen source and identified as Bacillus cereus. Optimized culture condition for chitosanase production was found when the organism was cultured at 37℃ for two days in 100mL medium (pH 7) containing 1%SPP (w/v), 0.1 % K2HPO4、0.05 % MgSO4.7H2O.
One chitosanase (CHS) was purified from the culture supernatant of B. cereus TKU031 by ammonium sulfate precipitation, DEAE–Sepharose chromatography and Macro-PrepR DEAE Cartridge chromatography. The molecular weight of CHS was determined by SDS-PAGE approximately to be 43kDa. The optimum pH, optimum temperature, pH stability, and thermal stability of CHS was pH 5, 50℃, pH 5–9, <50℃. CHS was inhibited by EDTA and completely inactivated by 1mM Zn2+、Cu2+、Fe2+, and 5mM Mn2+.
In addition, the growth of B. cereus TKU031 was found to be promoted up to 1.22-fold by adding 0.1% sodium tetraborate in the culture medium. The productivities of chitosanase were also increased by adding 0.1% sodium tetraborate and 0.05% boric acid, which enhanced 1.77- and 1.95- folds, respectively.
第三語言摘要
論文目次
目錄

中文摘要.......................................................................................................................Ⅰ
英文摘要.......................................................................................................................Ⅱ
目錄...............................................................................................................................Ⅳ
圖目錄...........................................................................................................................Ⅹ
表目錄.........................................................................................................................XII

第一章 緒論...................................................................................................................1
第二章 文獻回顧...........................................................................................................2
2.1幾丁質與幾丁聚醣.................................................................................................2

2.2 N-乙醯幾丁寡醣及幾丁寡醣.................................................................................5

2.3 幾丁質酶及幾丁聚醣酶........................................................................................5

2.4 蛋白酶....................................................................................................................6

2.5益生質(prebiotics)...................................................................................................7

2.6 Bacillus cereus 之簡介...........................................................................................7

第三章  材料與方法.....................................................................................................8

3.1實驗菌株 ...............................................................................................................8

3.2 實驗材料................................................................................................................8

 3.3實驗儀器.................................................................................................................9

 3.4 酵素生產菌株之篩選............................................................................................9

 3.5幾丁聚醣酶之活性測定.......................................................................................10

 3.6蛋白酶活性測定...................................................................................................10

 3.7較適培養條件探討...............................................................................................11

 3.7.1碳/氮源濃度.......................................................................................................11

 3.7.2 培養體積...........................................................................................................11

 3.8酵素之分離純化...................................................................................................11

 3.8.1 粗酵素液製備...................................................................................................11

 3.8.2陰離子交換層析 (一)........................................................................................11

 3.8.3陰離子交換層析 (二)........................................................................................12

 3.9蛋白質電泳分析...................................................................................................12

 3.10 酵素性分析........................................................................................................12

 3.10.1 酵素最適反應溫度.........................................................................................13

 3.10.2酵素熱安定性..................................................................................................13

 3.10.3 酵素最適反應pH...........................................................................................13

 3.10.4酵素pH安定性...............................................................................................13

 3.10.5 金屬離子及化學藥品對酵素活性之影響.....................................................14

 3.10.6 界面活性劑對酵素活性之影響.....................................................................14

 3.10.7 酵素基質特異性.............................................................................................14

 3.11 還原醣量之測定................................................................................................15

 3.12 總醣量之測定....................................................................................................15

 3.13 幾丁聚醣酶水解基質及寡醣分析....................................................................16

 3.13.1 基質水解.........................................................................................................16

 3.13.2 N-乙醯幾丁寡醣製備......................................................................................16

 3.13.3 N-乙醯幾丁寡醣之組成分析..........................................................................16

第四章 結果與討論.....................................................................................................17

 4.1 幾丁聚醣酶與蛋白酶生產菌之篩選..................................................................17
.
 4.1.1 菌株TKU031 之鑑定......................................................................................17

 4.2 酵素較適生產條件探討......................................................................................17

 4.2.1碳/氮源濃度.......................................................................................................17

 4.2.2培養液體積........................................................................................................18

 4.3 幾丁聚醣酶之純化分離......................................................................................18

 4.3.1粗酵素液製備....................................................................................................19

 4.3.2 離子交換樹脂層析 (一)..................................................................................19

 4.3.2離子交換樹脂層析 (二)...................................................................................20

 4.3.3 綜合結果...........................................................................................................20

 4.4 幾丁聚醣酶之分子量測定..................................................................................21

 4.4.1 SDS-PAGE.........................................................................................................21

 4.5 幾丁聚醣酶之特性分析......................................................................................22

 4.5.1幾丁聚醣酶之最適反應溫度及熱安定性........................................................22

 4.5.2幾丁聚醣酶之最適反應pH及pH安定性......................................................22

 4.5.3 金屬離子及化學品對幾丁聚醣酶活性之影響...............................................23

 4.5.4 界面活性劑對幾丁聚醣之影響.......................................................................23

 4.5.5幾丁聚醣酶之基質特異性................................................................................24

 4.6 水解基質之探討..................................................................................................24

 4.6.1 還原糖及總糖含量之分析...............................................................................24

 4.6.2利用MALDI-TOF-MS進行幾丁寡醣分析.....................................................24

 4.7促進乳酸菌生長...................................................................................................25

 4.8 抗菌測試..............................................................................................................26

 4.9 硼化合物對B.cereus TKU031之影響...............................................................26

 4.9.1 菌體生長影響...................................................................................................26

 4.9.2 幾丁聚醣酶活性影響.......................................................................................27

 4.9.3 綜合結果...........................................................................................................28

第五章 結論.................................................................................................................30

第六章 參考文獻.........................................................................................................66






















圖目錄

圖2.1 幾丁質、幾丁聚醣及纖維素之結構................................................................3

圖4.1 B. cereus TKU031之16S rDNA 部分鹼基序列分析....................................31

圖4.2 SPP濃度對B.cereus TKU031 所產生幾丁聚醣酶及蛋白酶之影響
......................................................................................................................................32

圖4.3培養液體積B.cereus TKU031 所產生幾丁聚醣酶及蛋白酶之影響
......................................................................................................................................33

圖4.4 B.cereus TKU031 幾丁聚醣酶DEAE-Sepharose CL-6B層析圖譜
......................................................................................................................................34

圖4.5 B.cereus TKU031 幾丁聚醣酶Macro-PrepR DEAE Cartridge層析圖譜
......................................................................................................................................35

圖4.6 B.cereus TKU031 幾丁聚醣酶之 SDS-PAGE 圖.........................................36

圖4.7 幾丁聚醣酶之最適反應溫度及熱安定性......................................................37

圖4.8 幾丁聚醣酶之最適反應pH及pH安定性....................................................38

圖4.9 水溶性幾丁聚醣經 B.cereus TKU031粗酵素液水解不同時間所得總醣及還原醣含量......................................................................................................................49

圖4.10水溶性幾丁聚醣經B.cereus TKU031粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析圖.....................................................................40

圖4.11 WSC 經 B.cereus TKU031 粗酵素液水解所得上清液添加於乳酸菌生長之影響......................................................................................................................... 43

圖4.12 WSC 經B.cereus TKU031粗酵素液水解所得上清液添加於 (A) S. aureus (B) P. aeruginosa K-187 生長之影響.........................................................................44

圖4.13 硼酸添加於 Bacillus cereus 生長之影響....................................................45

圖4.14 硼砂添加於 Bacillus cereus生長之影響.....................................................46

圖4.15硼酸添加於培養基對 Bacillus cereus 所生產之幾丁聚醣酶之影響.........47

圖4.16硼砂添加於培養基對 Bacillus cereus 所生產之幾丁聚醣酶之影響.........48











表目錄

表2.1 幾丁質與幾丁聚醣之應用.................................................................................4

表3.1 DNS試劑組成...................................................................................................15

表4.1 API試驗.............................................................................................................49

表4.2 B. cereus TKU031及以含幾丁質水產廢棄物為幾丁聚醣酶/幾丁質酶/蛋白酶生產菌較適培養條件之比較.......................................................................................50

表4.3蛋白酶生產較適條件上清液及硫銨沉澱之幾丁聚醣酶及蛋白酶活性........51
.
表4.4 B.cereus TKU031 幾丁聚醣酶純化總表.........................................................52

表4.5 金屬離子及化學品對幾丁聚醣酶之影響.......................................................53

表4.6 不同濃度金屬離子對幾丁聚醣酶之影響.......................................................54

表4.7 界面活性劑對幾丁聚醣酶CHS活性之影響.................................................55

表4.8 B.cereus TKU031幾丁聚醣酶之基質特異性..................................................56

表4.9 微生物來源之幾丁聚醣酶、幾丁質酶特與蛋白酶特性比較.......................57

表4.10 WSC 經B.cereus TKU031粗酵素液水解不同時間之水解率......................61

表4.11 水溶性幾丁聚醣經B.cereus TKU031粗酵素液水解不同時間之MALDI-TOF-MS幾丁寡醣組成分析.........................................................................62

表4.12 B.cereus TKU031 水解水溶性幾丁聚醣所得上清液對乳酸菌生長(24與48小時)之影響..................................................................................................................63

表4.13硼酸添加於培養基對 Bacillus cereus 所生產之幾丁聚醣酶之影響。
.......................................................................................................................................64

表4.14硼砂添加於培養基對 Bacillus cereus 所生產之幾丁聚醣酶之影響。
.......................................................................................................................................64

表4.15硼化合物對B.cereus幾丁聚醣酶之影響......................................................65
參考文獻
參考文獻
Aiba S (1994) Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydrate Research, 256:323–328

Ai H, Wang F, Xia Y, Chen X, Lei C (2012) Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L. Food Chemistry, 132:493–498

Algam SAE, Xie G, Li B, Yu S, Su T and Larsen J (2010) Effects of Paenibcillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology, 92:593–600

Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Functional characterization of chitin and chitosan. Current Chemical Biology, 3: 203–230

Bernfeld P (1955) Amylase, α and β. Methods of Enzymology, 1:149–158

Chang WT, Chen CS, Wang SL (2003) An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a Carbon source. Current Microbiology, 47:102–108

Cabib E (1981) Chitin: Structure, metabolism and regulation of biosynthesis.Encyclopedia of Plant Physiology, 13: 395–415

Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: The construction of a biological structure. Microbiological Science, 5:370–375

Cho YW, Cho YN, Chung SH, Yoo G, Ko SW (1999) Water-soluble chitin as a wound healing accelerator. Biomaterials, 20:2139–2145

Choque Delgado GT, Tamashiro WMSC, Junior MRM, Moreno YMF, Pastore GM (2011) The putative effects of prebiotics as immunomodulatory agents. Food Research International, 44:3167–3173

Cortizoa MS, Berghoff CF, Alessandrini JL (2008) Characterization of chitin from Illex argentinus squid pen. Carbohydrate Polymers, 74:10–15

Datta PK, Basu PS, Datta TK ( 1984) Isolation and characterization
of Vicia faba lectin affinity purified on chitin column. Preparative Biochemistry, 14:373–87

Dembitsky VM, Quntar AAAA, Srebnik M (2011) Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chemical Reviews, 111:209-237

Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith F (1956) colorimetric method for determination of sugar and related substances.
Analytical Chemistry, 28:350–356

Dutta PK, Dutta J, and Tripathi VS (2004) Chitin and chitosan: chemistry properties and application. Journal of Scientific and Industrial Research, 63:20–31

Ekowati C, Hariyadi P, Witarto AB, Hwang JK, Suhartono MT (2006) Biochemical characteristics of chitosanase from the Indonesian Bacillus licheniformis MB-2.Molecular Biotechnology, 33:93–102 

Felt O, Buri P, Gurny R (1998) Chitosan the unique polysaccharide for drug delivery. Drug development and industrial pharmacy, 27:979–993

Fernandes JC, Eaton P, Gomes AM, Pintado ME, Malcata FX (2009) Study of the antibacterial effects of chitosans on Bacillus cereus(and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy, 109:854–860

Gao XA, Ju WT, Jung WJ, Park RD (2008) Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers, 72:513–520

Gibson, GR, Probert H M, Van Loo J, Rastall RA, Roberfroid M B (2004) Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews 17:259–275.

Giustina A and Ventura P (1995) Weight-reducing regimens in obese subjects: effects of a new dietary fiber integrator. Acta Toxicologica et Therapeutica, 16:199-214

Haddar A, Sellami-Kamoun A, Fakhfakh-Zouari N, Hmidet N, Nasri M (2010) Characterization of detergent stable and feather degrading serine proteases from Bacillus mojavensis A21. Biochemical Engineering Journal, 51:53–63

Harish Prashanth KV and Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential–an overview. Trends in Food Science & Technology, 18:117–131

Imoto T, Yagishita K (1971) A simple activity measurement of
lysozyme. Agricultural and Biological Chemistry, 35:1154–1156

Jeon Y J, Shahidi F, Kim S K (2000). Preparation of chitin and
chitosan oligomers and their applications in physiological functional
foods. Food Review International, 61:159–176

Kaur N, Gupta, AK (2002) Applications of inulin and oligofructose in health and nutrition. Journal of Bioscience, 27:703–714

Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology, 8: 276–281

Kim SK, Rajapaksea N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review Carbohydrate Polymers, 62:357–368

Kofuji K, Qian CJ, Nishimura M, Sugiyama I, Murata Y, Kawashima S (2005) Relationship between physicochemical characteristics and
functional properties of chitosan. Europe Polymer Journal, 41: 2784–
2791

Kruger M, Brown K, Collet G, Layton L, Chollum L (2003) The effect of frutooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Experimental Biology and Medicine, 228:683–688

Kuranda MJ and Robbins PW (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. The Journal Of Biological Chemistry, 266:19758–19767

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680 – 685

Lee HW, Park YS, Jung JS, Shin WS (2002) Chitosan oligosaccharides, dp 2–8 have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8:319–324

Lee SH, Suh JS, Kim HS, Lee JD, Song JS, Lee SK (2003)
Evaluation of radiation synovectomy of the knee by means of intraarticular injection of holmium-166-chitosan complex in patients with rheumatoid arthritis: Results at 4-month follow-up. Korean Journal of Radiology, 4:170–178

Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS ONE, 5: Issue 1 p1

Liang TW, Kuo YH, Wu PC, Wang CL, Dzunge NA, Wang SL (2010)
Purification and characterization of a chitosanase and a protease by
conversion of shrimp shell wastes fermented by Serratia marcescens
Subsp. Sakuensis TKU019. Journal of the Chinese Chemical Society, 57: 857-863

Liang TW, Hsieh JL, Wang SL (2012) Production and purification of a protease, a chitosanase, and chitinoligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydrate Research, 362:38–46
Liu YL, Jiang S, Ke ZM, Wu HS, Chi CW, Guo ZY (2009)  Recombinant expression of a chitosanase and its application in chitosan oligosaccharide production. Carbohydrate Research, 344:815–819

Macchi G (1996) A new approach to the treatment of obesity: Chitosan’s
effects on body weight reduction and plasma cholesterol levels. Acta
Toxicological Therapeutics, 27:303–320

Marteau P (2001) Prebiotics and probiotics for gastrointestinal health. Clinical Nutrition, 20:41–45

Merzendorfer H (2011) The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology, 90:759–769

Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Analytical Chemistry, 31:426–428

Muzzarelli RAA (1993) Chitin and its derivatives: New trends of applied research. Carbohydrate Polymers, 3:53–75

Nilegaonkar SS, Zambare VP, Kanekar PP, Dhakephalkar PK, Sarnaik SS (2007) Production and partial characterization of dehairing protease   from Bacillus cereus MCM B-326, Bioresource Technology 98:1238–1245

Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I
(1984) Immunological activity of chitin and its derivatives. Vaccine, 2:
93–99

Nishimura S, Nishi N, Tokura S, Nishimura K, Azuma I (1986)
Bioactive chitin derivatives. Activation of mouse-peritoneal macrophages by O-(carboxymethyl) chitins. Carbohydrate Research, 146:251–258



Potumarthi R, Ch. S, Jetty A (2007) Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: Effect of aeration and agitation regimes. Biochemical Engineering Journal, 34:185–192

Ravi Kumar MNV (2000) A review of chitin and chitosan applications. Reactive and Functional Polymer, 46:1–27 

Rinaudo M (2006) Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31:603–632

Sajomsang W, Gonil P (2010) Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering C, 30: 357–363

Singh SK, Singh SK, Tripathi VR, Garg SK (2012) Purification, characterization and secondary structure elucidation of a detergent stable, halotolerant, thermoalkaline protease from Bacillus cereus SIU1. Process Biochemistry, 47:1479–1487 

Sundararajan S, Kannan CN, Chittibabu S (2011) Alkaline protease from Bacillus cereus VITSN04: Potential application as a dehairing agent. Journal of Bioscience and Bioengineering, 111:128–133

Todd EW (1949) Quantitative studies on the total plasmin and the trypsin inhibitor of human blood serum. Journal of Experimental Medicine, 39:295–308 

Tokoro A, Kobayashi M, Tatekawa N, Suzuki S, Suzuki M (1989)
Protective effect of N-acetyl chitohexaose on Listeria monocytogens
infection in mice. Microbiology Immunology, 33:357–367

Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials, 18:567–575

Wang SL and Chio SH (1998) Deproteinization of shrimp and
crab shell with the protease of Pseudomonas aeruginosa K-187.
Enzyme and Microbial Technology, 22:629–633 

Wang SL, Yeh PY (2006) Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007 Process Biochemistry, 41: 1545–1552

Wang SL, Lin TY, Yen YH, Liao HF, Y J Chen (2006) Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Research, 341:2507–2515

Wang SL, Peng JH, Liang TW, Liu KC (2008a) Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydrate Research, 343:1316–1323

Wang SL, Chen SJ, Wang CL (2008b) Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydrate Research, 343:1171–1179

Wang SL, Yeh PY (2008c) Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochemistry, 43:132–138

Wang SL, Lin CL, Liang TW, Liu KC, Kuo YH (2009a)
Conversion of squid pen by Serratia ureilytica for the production
of enzymes and antioxidants. Bioresource Technology, 100:316–323

Wang SL, Chen TR, Liang TW, Wu PC (2009b) Conversion and  degradation of shellfish wastes by Bacillus cereus TKU018
fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal, 48:111–117

Wang SL, Wu PC, Liang TW (2009c) Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydrate Research, 344: 979–984

Wang SL, Liou JY, Liang TW, Liu KC (2009d) Conversion of squid pen by using Serratia sp. TKU020 fermentation for theproduction of enzymes, antioxidants, and N-acetylchitooligosaccharides. Process Biochemistry 44:854–861

Wang SL, Liang TW, Yen YH (2011) Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials Carbohydrate Polymers, 84:732–742

Wang SL, Liu CP, Liang TW (2012) Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydrate Polymers, 90: 1305–1313

Wang Y, Chang Y, Yu L, Zhang C, Xu X, Xue Y, Li Z, Xue C (2012) Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba). Carbohydrate Polymers, 92: 90–97

Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X (2007)
N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochemical and Biophysical Research Communications, 357:26–31

Xu JX, Jiang M, Sun HL, He BF (2010) An organic solvent-stable protease from organic solvent-tolerant Bacillus cereus WQ9-2: Purification, biochemical properties, and potential applicationin peptide synthesis. Bioresource Technology, 101: 7991–7994

Xu ZH, Zhanga YP, Fu HC, Zhong HM, Hong K, Zhua WM, (2011) Antifungal quinazolinones from marine-derived Bacillus cereus
and their preparation. Bioorganic & Medicinal Chemistry Letters, 21:  4005–4007

Ziemer CJ and Gibson GR (1998) An overview of probiotics, prebiotics
and synbiotics in the functional food concept: Perspectives and Future strategies, International Dairy Journal, 8:473–479
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信