淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2307201312251300
中文論文名稱 保險業顧客生命價值之實證研究
英文論文名稱 Customer Lifetime Value in Insurance Industry: an Empirical Study
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 101
學期 2
出版年 102
研究生中文姓名 汪芳國
研究生英文姓名 Fang-Kuo Wang
學號 894560308
學位類別 博士
語文別 英文
口試日期 2013-06-03
論文頁數 93頁
口試委員 指導教授-吳坤山
委員-莊忠柱
委員-陳宥杉
委員-和家慧
委員-張瑋倫
中文關鍵字 保險業  顧客生命價值  約略集理論  形式概念分析  決策樹 
英文關鍵字 insurance industry  customer lifetime value  rough sets theory  formal concept analysis  decision tree 
學科別分類
中文摘要 國內保險市場的發展蓬勃,市場滲透度高居世界第一,公司家數眾多且競爭激烈,善用電腦科技挖掘有用訊息,以制定妥善的市場區隔策略,有助於穩固市場地位及提升佔有率。
本論文以國內大型壽險公司大台北地區保戶資料為基礎,計算保險業客戶價值,並提出顧客價值矩陣。再分別利用約略集理論來分析四個區隔之客戶特性,以FCA來分析各特性間之從屬關係,並提出行銷人員可利用之行銷重點。其次,再針對影響公司市場發展之鑽石級區隔及鈦級區隔,以決策樹方法深入探討不同目標下之重要影響因素,並以此二區隔客戶提出行銷策略及執行規劃。最後,針對個案公司整體市場策略提出建議。
透過研究,依顧客現在價值與潛在價值,建立2x2顧客價值區隔矩陣,分別命名為鑽石級(HH)、鈦級(LH)、銀級(LL)及黃金級(HL)等顧客群。以RST分析發現鑽石級顧客主要購買PL保單(v12),主約保費低於$2,500(v71);鈦級顧客群較常購買PWL保單(v15),總保費為最高級(v95),年收入介於58至76萬元間(v83)。以FCA執行結果,在鑽石級客群中,購買PL保單的客戶特徵為:保額介於20~50萬元間(v62)、保單繳費期間10-20年(v52)、總保費最高(v95)、但主約保費最低(v71);鈦級顧客群中客戶總保費最高級(v95)會受下列因素影響:被保險人年齡低於24歲以下、保額介於50-100萬元間(v63)、主約保費介於5,000-7,000元間(v73)。
對公司整體市場區隔策略之建議為:1.建立更明確的品牌形象,深入都會區以外的市場;2.強化資源基礎理論;3. 進行差異化行銷策略;4. 強化客戶資料庫的功能,提升向上或交叉行銷的機會。
英文摘要 Abstract
Domestic insurance business has boomed for decades and the penetration rate is the top of world. There are many insurance companies and business is very competitive among them. It is possible to be stable or increase market share if insurers can propose marketing segregation strategies and use computer technologies to excavate available data.
This research takes customer profiles, provided by a domestic insurance company, in metro-Taipei area as the targets to discuss customer values. The themes of this research include: taking customer current and potential values as two dimensions to process customer segregation and propose customer value matrix, applying Rough Sets Theory to analyze customer characteristics in the matrix, applying FCA to analyze the subordination among customer characteristics, and proposing feasible marketing key-issues for salespersons. Using decision tree to discuss influential factors of diamond and titanium level customers under various goals, proposing marketing strategies and implementation processes are subsequent themes of this research. The last, comprehensive strategies and suggestion are proposed to the company based on depicted above.
A 2x2 customer value matrix is established based on current and potential customer value in this study and the customers in four quadrants of the matrix are segregated into Diamond (HH), Titanium (LH), Silver (LL) and Gold (HL). From the RST results, most of customers in Diamond (HH) quadrant bought PL (v12), premium of master contract is lower than 2,500 NTD (v71); customers in Titanium (LH) quadrant bought PWL, total premium (v95) is the highest among other quadrants and annual income is between 0.56 and 0.76 million NDT (v83). As the FAC results, the customer characteristics of Diamond quadrant who bought PL includes: amount of insured is between 0.2 and 0.5 million NTD (v62), the policy duration is about 10 to 20 years, the gross premium (v95) is the highest, premium of master contract is the lowest (v71); customers in Titanium (LH) quadrant who having high gross premium can be affected by following factors: the age of insured under 24 years old, amount of insured between 0.5 and 1 million NTD (v63), premium of master contract between 5,000 and 7,000 NTD (v73).
The suggested marketing segregation strategies are: 1. Build up a clear brand image to penetrate market in non-metro area, 2. Strengthen resource-based view, 3. Promote differentiated marketing strategies, 4. Enhance the customer database functions and enhance upstream/cross selling opportunities.
論文目次 CONTENTS I
LIST OF FIGURES III
LIST OF TABLES IV
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION AND RESEARCH QUESTIONS 1
1.2 RESEARCH OBJECTIVES 3
CHAPTER 2 REVIEW OF LITERATURES 5
2.1 CUSTOMER RELATIONSHIP MANAGEMENT (CRM) 5
2.2 CUSTOMER LIFETIME VALUE (CLV) 7
2.3 MARKET SEGMENTATION 13
2.4 DATA MINING 15
2.5 K-MEANS METHOD 16
2.6 ROUGH SET THEORY 17
2.7 FORMAL CONCEPT ANALYSIS 18
2.8 DECISION TREE 19
CHAPTER 3 METHODOLOGY 23
3.1 QUESTION OF RESEARCH QUESTION 23
3.2 CUSTOMER CURRENT VALUE 24
3.3 CUSTOMER POTENTIAL VALUE 25
3.4 K-MEANS METHOD 26
3.5 ROUGH SETS THEORY 27
3.6 FORMAL CONCEPT ANALYSIS 31
3.7 DECISION TREE 32
3.8 THE PROCESS OF THIS THESIS 33
CHAPTER 4 EMPIRICAL RESULT 35
4.1 DATA DESCRIPTION 35
4.2 DATA PREPARATION 36
4.3 CALCULATE CUSTOMER CURRENT VALUE (CV) AND POTENTIAL VALUE (PV) 37
4.4 CLUSTER OF CV AND PV 39
4.5 CV AND PV MARKET SEGMENTATION 40
4.6 ROUGH SET THEORY EXECUTION 42
4.7 FCA EXECUTION 45
CHAPTER 5 CUSTOMER SEGMENTATION ANALYSIS 51
5.1 CUSTOMER SEGMENTATION MATRIX 51
5.2 DIAMOND LEVEL CUSTOMER ANALYSIS 52
5.3 TITANIUM LEVEL CUSTOMER ANALYSIS 58
CHAPTER 6 CONCLUSIONS AND SUGGESTIONS 67
6.1 CUSTOMER VALUE SEGMENTATION STRATEGIES AND PLANNING AND IMPLEMENTATION 67
6.2 MARKET SEGREGATION STRATEGY 70
6.3 RESEARCH LIMITATIONS 72
6.4 FUTURE RESEARCH 72
REFERENCES 73
APPENDIX 79

List of Figures
Figure 2- 1: Evolution of Business Orientation .................................................................................10
Figure 2- 2: An Example of Decision Tree ..........................................................................................20
Figure 3- 1: Research Scheme ...........................................................................................................24
Figure 3- 2: Research Process..............................................................................................................34
Figure 4- 1: Lattice Diagram for Decision Rules of Segment I ...........................................................47
Figure 4- 2: Lattice Diagram for Decision Rules of Segment II..........................................................48
Figure 4- 3: Lattice Diagram for Decision Rules of Segment III ........................................................49
Figure 4- 4: Lattice Diagram for Decision Rules of Segment IV ........................................................50
Figure 5- 1: Decision Tree Results Policy on Diamond Level (Category of products as the targets)..54
Figure 5- 2: Gains Chart of Diamond Level (Category of product as the targets)...............................55
Figure 5- 3: Gains Chart of Diamond Level (PMC as the target) ........................................................56
Figure 5- 4: Decision Tree Results on Diamond Level (PMC as the target)........................................57
Figure 5- 5: Result of Decision Tree on Titanium Level (Category of products as the targets)...........61
Figure 5- 6: Gains Chart by C5.0 of Titanium Level (Category of products as the targets) ................62
Figure 5- 7: Results of Decision Tree on Titanium Level (Policy duration as the target)....................63
Figure 5- 8: Gains Chart of Titanium Level (Policy duration as the target) ........................................64
Figure 5- 9: Gains Chart of Titanium Level (Age as the target) ..........................................................65
Figure 5- 10: Results of Decision Tree on Titanium Level (Age as the target) ...................................66

List of Figures
Figure 2- 1: Evolution of Business Orientation .................................................................................10
Figure 2- 2: An Example of Decision Tree ..........................................................................................20
Figure 3- 1: Research Scheme ...........................................................................................................24
Figure 3- 2: Research Process..............................................................................................................34
Figure 4- 1: Lattice Diagram for Decision Rules of Segment I ...........................................................47
Figure 4- 2: Lattice Diagram for Decision Rules of Segment II..........................................................48
Figure 4- 3: Lattice Diagram for Decision Rules of Segment III ........................................................49
Figure 4- 4: Lattice Diagram for Decision Rules of Segment IV ........................................................50
Figure 5- 1: Decision Tree Results Policy on Diamond Level (Category of products as the targets)..54
Figure 5- 2: Gains Chart of Diamond Level (Category of product as the targets)...............................55
Figure 5- 3: Gains Chart of Diamond Level (PMC as the target) ........................................................56
Figure 5- 4: Decision Tree Results on Diamond Level (PMC as the target)........................................57
Figure 5- 5: Result of Decision Tree on Titanium Level (Category of products as the targets)...........61
Figure 5- 6: Gains Chart by C5.0 of Titanium Level (Category of products as the targets) ................62
Figure 5- 7: Results of Decision Tree on Titanium Level (Policy duration as the target)....................63
Figure 5- 8: Gains Chart of Titanium Level (Policy duration as the target) ........................................64
Figure 5- 9: Gains Chart of Titanium Level (Age as the target) ..........................................................65
Figure 5- 10: Results of Decision Tree on Titanium Level (Age as the target) ...................................66
參考文獻 References
Beynon, M.J. & Peel, M.J. (2001). Variable precision rough set theory and data discrimination: An application to corporate failure prediction, MEGA: International Journal of Management Science, Vol. 29 No. 6, pp. 561 - 576.
Bose, I. & Chen, X. (2009). Hybrid models using unsupervised clustering for prediction of customer churn, Journal of Organizational Computing and Electronic Commerce, Vol. 19 No. 2, pp. 131 - 151.
Bruggemann, R., Voigt, K. & Steinberg, C.E.W. (1997). Application of formal concept analysis to evaluate environmental databases, Pergamum, Vol. 35, No. 3, pp. 479 - 486.
Chen, F.L. & Li, F.C. (2010). Combination of feature selection approaches with SVM in credit scoring, Expert Systems with Applications,Vol. 37, No. 7, pp. 4902 - 4909.
Derrig, R.A. (2002). Insurance fraud, The Journal of Risk and Insurance, Vol. 69, No. 3 (Sep.), pp.271-287.
Devale, A.B. & Kulkarni, R.V., Applications of data mining techniques in life insurance, International Journal of Data Mining & Knowledge Management Process (IJDKP), Vol. 2, No. 4 (July), pp. 31-40.
Dombi, J. & Zsiros, A. (2005). Learning multicriteria classification models from examples: decision rules in continuous space, European Journal of Operational Research, Vol. 160 No. 3, pp.663 - 675.
Donkers, B., Verhoef, P.C. & Jong, M.G. (2007). Modeling CLV: A test of competing models in the insurance industry, Quantitative Marketing and Economics, Vol. 5 No. 2, pp. 163 - 190.
D’Souza, R., Krasnodebski, M. & Abrahams, A. (2007). Implementation study: using decision tree induction to discover profitable locations to sell pet insurance for a startup company, Database Marketing & Customer Strategy Management, Vol.14 No. 4, pp. 281 - 288.
Dwyer, F.R. (1997). Customer lifetime valuation to support marketing decision making, Journal of Direct Marketing, Vol. 11, No. 4, pp. 6 - 13.
Eggert, A. & Ulaga, W. (2002). Customer perceived value: A substitute for satisfaction in business markets, Journal of Business & Industrial Marketing, Vol. 17 No. 2/3, pp. 107 - 118.
Fader, P.S.K, Hardie, B.G.S. & Lee, K.L. (2005). Counting your customers the easy way: An alternative to the Pareto/NBD model, Marketing Science, Vol. 24 No. 2, pp. 275 - 284.
Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, AAAI Press.
Formica, A. (2008). Concept similarity in formal concept analysis: an information content approach, Knowledge-Based Systems, Vol. 21, No. 1, pp. 80 - 87.
Frost & Sullivan (2009). Implementing a customer lifetime value approach to sales
Greco, S., Matarazzo, B. & Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, Vol. 129, No. 1, pp. 1 - 47.
Gupta, S., Hanssens, D., Hardie, Kahn, B., Kumar, W. V., Lin, N. & Ravishank, N. (2006). Modeling customer lifetime value, Journal of Service Research, Vol. 9 No. 2, pp. 139 - 155.
Gupta, S. & Lehmann, D.R. (2003). Customers as assets, Journal of Interactive Marketing, Vol. 17 No. 1, pp. 9 - 24.
Haenlein, M., Kaplan, A.M. & Beeser, A.J. (2007). A model to determine customer lifetime value in a retail banking context, European Management Journal, Vol. 25 No. 3, pp. 221 - 234.
Han, J., Kamber, M.A. & Tung K. H. (2001). Spatial clustering methods in data mining: A survey, Geographic Data Mining and Knowledge Discovery, London: Taylor and Francis.
Harrison, T. (2003). Understanding the behaviour of financial services consumers: A research agenda. Journal of Financial Service Marketing, Vol. 8, No. 1, pp. 6 - 9.
Hautaniemi, S., Kharait, S., Iwabu, A., Wells, A. & Lauffenburger, D.A. (2005). Modeling of signal-response cascades using decision tree analysis, Bioinformatics, Vol. 21 No. 9, pp. 2027 - 2035.
Heczkova, M. & Stoklasa, M. (2011). Customer relationship management–theory and principles. In Acta Academica Karviniensia 4. Karvina: SU OPF, s. 80-91. ISSN 1212-415X.
Hsieh, Y. L., Tzeng, G. H., Lin, T. R. & Yu, H.C. (2010). Wafer sort bitmap data analysis using the PCA-based approach for yield analysis and optimization, IEEE Transactions on Semiconductor Manufacturing, Vol. 24, No. 4, pp. 493 - 502.
Hwang, H., Jung, T. & Suh, E. (2004). An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry, Expert Systems with Applications, Vol. 26 No. 2, pp. 181 - 188.
Jackson, B.B. & Bund, B. (1985). Winning and keeping industrial customer, Lexington Books, MA: D.C. Heath and Company
Jackson, D. (1989). Determining a customer’s lifetime value, Direct Marketing, Vol. 51 No. 11, pp. 60 - 62.
Jackson, J. (2002). Data mining: a conceptual overview, Communications of the Association for Information Systems, 8, pp. 267 - 296.
Jain, D. & Singh, S.S. (2002). Customer lifetime value research in marketing: A review and future directions, Journal of Interactive Marketing, Vol. 16 No. 2, pp. 34 - 46.
Khalifa, A.S. (2004). Customer value: a review of recent literature and an integrative configuration, Management Decision, Vol. 42, No.5/6, pp. 645 - 666.
Kumar, V., Lemon, K. N. & Parasurama, A. (2006). Managing customers for value: an overview and Research agenda, Journal of Service Research, Vol. 9, No. 2, pp. 87 - 94.
Kumar, V., Venkatesan, R., Gohling, T. & Beckmann, D. (2008). The power of CLV: managing customer lifetime value at IBM, Marketing Science, Vol. 27, No. 4, pp.585-599
Laukaitis, A., Vasilecas, O. & Plikynas, D. (2008). Formal Concept Analysis for business information systems, Information Technology and Control, Vol. 37, No.1, pp. 33 - 37.
Li, R. & Wang, Z.O. (2004). Mining classification rules using rough sets and neural networks, European Journal of Operational Research, Vol. 157 No. 2, pp. 439 - 448.
Liou, J-H., Tzeng, G-H. (2010), A Dominance-based Rough Set Approach to customer behavior in the airline market, Information Sciences, Vol. 180, pp. 2230 - 2238.
Liu, M., Shao, M., Zhang, W. & Wu, C. (2007). Reduction method for concept lattices based on rough set theory and its application, Computer and Mathematics with Applications, Vol. 53, No. 9, pp. 1390 - 1410.
Matušinska, K. (2009). Marketing finančnich služeb. Karvina, ISBN 978-80-7248-520-8.
Olaru, D., Purchase, S. & Peterson, N. (2008). From customer value to repurchase intentions and recommendations, Journal of Business & Industrial Marketing, Vol. 23 No. 8, pp. 554 - 565.
Olson, D.L. (2007). Data mining in business services, Service Business, Vol. 1, pp. 181 – 191.
Ou Yang, Y.P., Shieh, H.M., Tzeng, G.H., Yen, L. & Chan, C.C. (2011). Combined rough sets with flow graph and formal concept analysis for business aviation decision-making, Journal of Intelligent Information Systems, Vol. 36, No. 3, pp. 347 - 366.
Rao, A.S., Gandhi, P., Busse S., and Cripel, F. (2013). Information as a game changer: analytics for improving insurance customer retention, Insurance & Technology, April 05, 2013.
Parvatiyar, A. & Sheth, J. N. (2001). Customer relationship management: Emerging practice, process, and discipline. Journal of Economic & Social Research, Vol. 3, No. 2, pp. 1 - 34.
Pawlak, Z. (2002). Rough sets, decision algorithms and Bayes' theorem, European Journal of Operational Research, Vol. 136 No. 1, pp. 181 - 189.
Peelen, E. (2005). Customer relationship management, Pearson Education, ISBN :978-0-273-68177-9.
Ryals, L. (2005). Making customer relationship management work: The measurement and profitable management of customer relationships, Journal of Marketing, Vol. 69, No. 4, pp. 252 - 261.
Salazar, M. T., Harrison, T. & Ansell, J. (2007). An approach for the identification of cross-sell and up-sell opportunities using a financial services customer database, Journal of Financial Services Marketing, Vol. 12 No. 2, pp. 115 - 131.
Salcedo-Sanza, S., Fernandez-Villacanas, J.L., Segovia-Vargas, M.J. & Bousono-Calzona, C. (2005), Genetic programming for the prediction of insolvency in non-life insurance companies, Computers & Operations Research, Vol. 32, pp.749 - 765.
Shyng, J.Y., Tzeng, G.H. & Wang, F.K. (2007), Rough set theory in analyzing the attributes of combination values for the insurance market, Expert Systems with Applications, Vol. 32, No. 1, pp. 56 - 64.
Shyng, J.Y., Shieh, H.M., Tzeng, G.H. & Hsieh, S.H. (2009). Using FSBT technique with Rough Set Theory for personal investment portfolio analysis, European Journal of Operational Research, Vol. 201, No. 2, pp. 601 - 607.
Shyng, J.Y., Shieh, H.M. & Tzeng, G.H. (2010). An integration method combining rough set theory with formal concept analysis for personal investment portfolios, Knowledge-Based Systems, Vol. 23, No. 6, pp. 586 - 597.
Soeini, R.A. & Rodpysh, K.V. (2012). Applying data mining to insurance customer churn management, 2012 IACSIT Hong Kong Conferences, IPCSIT Vol. 30, pp.82-92.
Thiprungsri, S. & Vasarhelyi, M. A. (2011). Cluster analysis for anomaly detection in accounting data: An audit approach, The International Journal of Digital Accounting Research, Vol. 11, No. 17, pp. 69 - 84.
Tsumoto, S. (2004). Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model, Information Sciences, Vol. 162, No. 2, pp.65-80.
Verhoef, P.C. & Donkers, B.(2001). Predicting customer potential value an application in the insurance industry, Decision Support System, Vol. 32, No. 2, pp. 189 - 199.
Wang, X.Z., Zhai, J.H. & Lu, S.X. (2008). Induction of multiple fuzzy decision trees based on rough set technique, Information Sciences, Vol. 178, No. 16, pp. 3188 - 3202.
Wei, J.M., Wang, S.Q., Wang, M.Y., You, J.P. & Liu, D.Y. (2007). Rough set based approach for inducing decision trees, Knowledge-Based Systems, Vol. 20, No. 8, pp. 695 - 702.
Wille, R. (2005). Formal concept analysis as methodical theory of concepts and concept hierarchies, in: Ganter, B. et al. (Eds.), Formal Concept Analysis, LNAI, Vol. 3626, pp. 1 - 3.
Witlox, F. & Tindermans, H. (2004). The application of rough sets analysis in activity-based modeling opportunities and constraints, Expert Systems with Applications, Vol. 27, No. 2, pp. 171 - 180.
Wormuth, B. & Becker, P. (2004). Introduction to formal concept analysis, in: 2nd International Conference of Formal Concept Analysis, February 23-27, Sydney, Australia.
Wu, C.H., Kao, S.C., Su, Y.Y. & Wu, C.C. (2005). Targeting customers via discovery knowledge for the insurance industry, Expert Systems with Applications, Vol. 29, No. 2, pp.291 - 299.
Wu, C.H. (2003). On the granulation simplicity for the decision rule discovery in databases: EWI vs. EFI, International Journal of Science and Technology, Vol. 14, pp. 28-36.
Yellasiri, R., Rao, C.R. & Reddy, V. (2005). Decision Tree Induction Using Rough Set Theory-Comparative Study, Journal of Theoretical and Applied Information Technology, Journal of Theoretical and Applied Information Technology, Vol. 3, No. 4, pp.110 - 114.
Zhai, L., Khoo, L. & Fok, S. (2002). Feature extraction using rough set theory and genetic algorithms an application for the simplification of product quality evaluation. Computers and Industrial Engineering, Vol. 43, No. 4, pp. 661 - 676.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信