§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201221414900
DOI 10.6846/TKU.2012.00986
論文名稱(中文) 無線感知網路之多頻道媒體存取控制技術
論文名稱(英文) A Multi-Channel MAC Protocol for Cognitive Radio Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 藍念慈
研究生(英文) Nian-Ci Lan
學號 600410020
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2012-06-07
論文頁數 137頁
口試委員 指導教授 - 張志勇(cychang@mail.tku.edu.tw)
指導教授 - 鄭建富(cfcheng@mail.tku.edu.tw)
委員 - 廖文華(whliao@ttu.edu.tw)
委員 - 張兆村(cctas@mail.hust.edu.tw)
委員 - 游國忠(yugj@mail.au.edu.tw)
委員 - 張志勇(cychang@mail.tku.edu.tw)
關鍵字(中) 感知無線電
媒介存取控制通訊協定
感知網路
多頻道
關鍵字(英) Cognitive Radio
MAC protocol
CRNs
Multi-Channel
第三語言關鍵字
學科別分類
中文摘要
近年來,由於無線網路使用者日益增加,開發多頻道利用率已受到學者們的重視,而會面問題與多頻道隱藏節點問題是Multi-Channel中首要解決的兩大挑戰,如何發展一好的協定以克服其兩大挑戰,已成為一熱門的研究議題。此外,由於Cognitive Radio Networks (CRNs)環境,皆為多頻道之網路環境,因此,亦必須克服會面問題與多頻道隱藏節點問題,且現存之次級使用者(Secondary Users,SUs)如何能達到不影響優先使用者(Primary Users,PUs)傳輸的前提下,尋找並使用其頻道傳輸,亦為一重要的研究議題。因此,本論文針對CRNs環境與一般多頻道網路環境研發出三種不同的MAC Protocol,分別為SMC-CR-MAC、QM-MAC與HM-MAC,其中SMC-CR-MAC作用於CRNs中,QM-MAC與HM-MAC則作用於一般的多頻道網路環境中。SMC-CR-MAC,將解決SUs會面與頻寬資源浪費的問題,使各個SUs能夠在不影響PUs的情況下進行資料傳輸,提高頻寬利用率以及降低SUs的資料傳輸延遲時間。透過QM-MAC,能夠提高網路效能,HM-MAC則針對QM-MAC所產生的公平性問題進行修改,進一步達到網路平衡。
英文摘要
Recently, developing the Medium Access Control (MAC) protocol has been considered in such a way for improving the utilization of wireless spectrum. However, to develop the multi-channel MAC protocol, there are two challenges need to be considered, the Rendezvous Problem and Multi-Channel Hidden Terminal Problem. To handle the rendezvous problem, some literatures can be classified into the control-channel based (CCB) channel model. In this channel model, all node stay on the control channel to reserve the proper data channel for data exchange. Nevertheless, the channel model will introduced the multi-channel hidden terminal problem. Herein, to overcome the above-mentioned problems, other previous studies can fall into the class of control-period based channel model (CPB) channel model. In this channel model, all nodes stay on the ATIM window of the predefined channel to exchange control packets to reserve the data window. However, since all nodes should switch to the default channel for participating in the ATIM windows, the ATIM windows of all channels other than the default channel will not be used, resulting in poor network performance. 
This thesis firstly proposed two multi-channel MAC protocols which aim at improving the channel utilization without rendezvous and multi-channel hidden terminal problems. The first MAC protocol, named QM-MAC, employs the concept of the Quorum system. By applying the Quorum system, the node only equips with one transceiver can resolve the rendezvous and multi-channel hidden terminal problems. Moreover, the network throughput can be obviously improved. On the other hand, in the second multi-channel MAC protocol, called HM-MAC, applies the Hadamard matrix to increase the network performance in terms of the utilization of control window, traffic load-balanced, and network throughput. 
As a result, the wireless spectrum can be fully utilized, however, the wireless spectrum demand has greatly increased in the last few decades because that the rapid deployment of new wireless devices and applications. Cognitive Radio (CR) is a novel and promising spectrum management technique proposed recently, which is able to alleviate the inefficient spectrum utilization and spectrum scarcity problems by opportunistically employing portions of the licensed bands. 
To ensure that the operation of licensed users will not be adversely affected, this paper proposes a stepwise multi-channel MAC protocol, called SMC-CR-MAC. By applying the proposed SMC-CR-MAC protocol, the spectrum utilization can be maximized, hence increasing the network throughput. In addition, two types of the detection situations are considered. According to the detection situation, several problems might occur, resulting in the failure data exchange. To successfully exchange data between sender and receiver, the proposed SMC-CR-MAC applies Contiguous Channel Swap and Sender-Receiver Channel Swap approaches. By applying above two approaches, the rendezvous, packet collision and the channel congestion problems can be overcome. Simulation results show that the proposed QM-MAC, HM-MAC and SMC-CR-MAC protocols can obviously improve the network performance in terms of utilization of wireless spectrum, traffic load-balanced, and network throughput.
第三語言摘要
論文目次
目錄
圖目錄	VI
表目錄	IX
第一章 簡介	1
第二章 相關研究	8
第三章 SMC-CR-MAC Protocol	12
3.1	網路環境與問題描述	12
3.1.1	網路環境	12
3.1.2	問題描述	13
3.2	THE PROPOSED MAC PROTOCOL	17
3.2.1	Channel Model	17
3.2.2	Homogeneous Sensing Situation	22
3.2.3	Heterogeneous Sensing Situation	32
3.3	SMC-CR-MAC流程圖與演算法	36
3.4	實驗數據及結果	41
3.4.1	實驗環境	41
3.4.2	模擬結果	42
第四章 QM-MAC Protocol	55
4.1	網路環境與問題描述	55
4.2	Preliminary	59
4.3	THE PROPOSED MAC PROTOCOL	61
4.3.1	Applied Channel Model	61
4.3.2	Basic QM-MAC	63
4.3.3	Advanced QM-MAC	70
4.4	實驗數據及結果	80
4.4.1	模擬環境	80
4.4.2	模擬結果	81
第五章 HM-MAC Protocol	90
5.1	網路環境與問題描述	90
5.2	THE PROPOSED MAC PROTOCOL	94
5.2.1	Applied Channel Model	94
5.2.2	HM-MAC	96
5.3	HM-MAC流程圖與演算法	109
5.4	實驗數據及結果	111
5.4.1	模擬環境	111
5.4.2	模擬結果	112
第六章 結論	120
參考文獻	123
附錄—英文論文	128
 
圖目錄
圖1.1 無線感知網路示意圖	2
圖3.1 The Channel Model of SMC-CR-MAC	18
圖3.2 Bitmap用法之示意圖	21
圖3.3 SU傳輸對執行CCSA以尋找合適的頻道進行會面	28
圖3.4 SU執行SRCSA以繼續未完成的資料傳輸	32
圖3.5 SMC-CR-MAC之流程圖	36
圖3.6 The procedure of SMC-CR-MAC protocol	37
圖3.7 HOSS的處理程序	38
圖3.8 HESS的處理程序	40
圖3.9 在沒有PU出現的情況下,不同頻道數對於網路吞吐量的影響	43
圖3.10 當PU出現在control channel/ATIM window對於SU傳輸對會面機率的影響	44
圖3.11 當PU出現在control channel/ATIM window對於SU傳輸對網路吞吐量的影響	46
圖3.12 當PU出現在 data channel/DATA window對於SU傳輸對網路吞吐量的影響	47
圖3.13 PU出現的機率與時間長對於平均封包延遲時間及網路吞吐量的影響	49
圖3.14 SU傳輸對數量對於網路吞吐量的影響	50
圖3.15 SU傳輸對數對於頻道流量標準差的影響	52
圖3.16 PU出現的時間長短對於網路吞吐量的影響	53
圖3.17 PU出現的機率與時間長度對於網路吞吐量的影響	54
圖4.1 The Channel Model of QM-MAC	63
圖4.2 Basic QM-MAC之主機會面與排程	66
圖4.3 Primary Matrix用法之例子	70
圖4.4 Advanced QM-MAC之主機會面與排程	73
圖4.5 Advanced QM-MAC之主機會面公平化	75
圖4.6 QM-MAC之流程圖	78
圖4.7 The procedure of QM-MAC protocol	79
圖4.8 不同頻道數對於主機在ATIM Winodw中會面成功率的影響	82
圖4.9 不同頻道數對於網路吞吐量的影響	84
圖4.10 不同的網路流量對於網路吞吐量的影響	85
圖4.11 不同的網路流量對於平均延遲時間的影響	86
圖4.12 不同的傳輸對數量對於網路吞吐量的影響	87
圖4.13 不同的傳輸對數量對於封包碰撞率的影響	88
圖4.14 不同的contol slot數量對於網路吞吐量的影響	89
圖5.1 The Channel Model of HM-MAC	96
圖5.2 HM-MAC之不同頻道主機會面與排程	101
圖5.3 HM-MAC之相同頻道主機會面與排程	104
圖5.4 HM-MAC之例子	106
圖5.5 HM-MAC之流程圖	109
圖5.6 The procedure of HM-MAC protocol	110
圖5.7 不同頻道數對於主機在ATIM Winodw中會面成功率的影響	113
圖5.8 不同頻道數對於網路吞吐量的影響	114
圖5.9 不同的網路流量對於網路吞吐量的影響	115
圖5.10 不同的網路流量對於平均延遲時間的影響	116
圖5.11 不同的傳輸對數量對於網路吞吐量的影響	118
圖5.12 不同的傳輸對數量對於封包碰撞率的影響	119

表目錄
表3.1 SMC-CR-MAC實驗參數	42
表4.1 QM-MAC符號表	56
表4.2 QM-MAC實驗參數	81
表5.1 HM-MAC符號表	91
表5.2 HM-MAC實驗參數	112
參考文獻
[1].	Report of the Spectrum Efficiency Working Group, “Federal Communications Commission Spectrum Policy Task Force,” FCC, November, 2002.
[2].	J. Mittal III and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Auguest 1999.
[3].	FCC, ET Docket No 03-222 Notice of proposed rule- making and order, December 2003.
[4].	R. W. Thomas, D. H. Friend, L. A. Dasilva, and A. B. Mackenzie. Cognitive Networks: Adaptation and Learning to Achieve End-to-End Performance Objectives. IEEE Communications Magazine, vol. 44, no. 12, pp. 51-57, December 2006.
[5].	R. Thomas, Cognitive networks. Virginia Polytechnic Institute and State University: United States -- Virginia, 2007.
[6].	Ian F. Akyildiz, Won-Yeol Lee and Kaushik R. Chowdhury. “CRAHNs: Cognitive Radio Ad Hoc Networks,” Ad Hoc Networks, vol. 7, pp. 811-836, July 2009.
[7].	C. Cormio and K. Chowdhury, “A survey on MAC protocols for cognitive radio networks,” Ad Hoc Networks Journal (Elsevier), vol. 7, no. 7, pp. 1315-1329, September 2009.
[8].	IEEE 802.22 Working Group on Wireless Regional Area Networks, http://www.ieee802.org/22/.
[9].	N. Choi, Y. Seok, and Y. Choi, “Multi-Channel MAC Protocol for Mobile Ad Hoc Networks,” Proc. IEEE VTC, USA, Oct. 2003.
[10].	D. Nguyen, G. L. Aceves, and K. Obraczka, “Collision-Free Asynchronous Multi-Channel Access in Ad Hoc Networks,” IEEE GLOBECOM, USA, Dec. 2009.
[11].	T. J. Tsai, H. W. Tseng, and A. C. Pang, “A New MAC Protocol for Wi-Fi Mesh Network,” IEEE AINA, Austria, Apr. 2006.
[12].	S. L. Wu, C. Y. Lin, Y. C. Tseng, and J. P. Sheu, “A New Multi-Channel MAC Protocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad Hoc Networks,” IEEE I-SPAN, USA, Dec. 2000.
[13].	K. H. Almotairi and X. Shen, “MMAC-HR: Multi-Channel Medium Access Control with Hopping Reservation for Multi-Hop Wireless Networks,” IEEE GLOBECOM, USA, Dec. 2010.
[14].	J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A Hardware-Constrained Cognitive MAC for Efficient Spectrum Management,” IEEE Journal on Selected Areas in Communication, vol. 26, no. 1, pp. 106–17, January 2008.
[15].	H. Su and X. Zhang, “Opportunistic MAC Protocols for Cognitive Radio Based Wireless Networks,” IEEE CISS, March 2007.
[16].	W. Jeon, J. Han and D. Jeong, D, “A Novel MAC Scheme for Multi-Channel Cognitive Radio Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. PP, no. 99, June 2011.
[17].	J. So and N. Vaidya, “MultiChannel MAC for Ad Hoc Networks:Handling MultiChannel Hidden Terminals Using A Single Transceiver,” Proc. ACM MobiHoc, Japan, May 2004.
[18].	J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic, “TMMAC: An Energy Efficient Multi-Channel MAC Protocol for Ad Hoc Networks,” Proc. IEEE ICC, England, June 2007.
[19].	C. M. Chao and Y. Z. Wang, “A Multiple Rendezvous Multichannel MAC Protocol for Underwater Sensor Networks,” IEEE WCNC, Australia, April 2010.
[20].	S. M. Kamruzzaman, “CR-MAC: a Multichannel MAC Protocol for Cognitive Radio Ad Hoc Networks,” IEEE International Journal of Computer Networks and Communications, vol. 2, no. 5, September 2010.
[21].	S. M. Kamruzzaman, “An Energy Efficient Multichannel MAC Protocol for Cognitive Radio Ad Hoc Networks,” International Journal of Communication Networks and Information Security (IJCNIS),vol. 2, no. 2, August 2010.
[22].	C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, pp. 379–423, 623–656, July and Oct. 1948.
[23].	Y. C. Tseng, C. S. Hsu, and T. Y. Hsieh, “Power-Saving Protocols for IEEE 802.11-Based Multi-Hop Ad Hoc Networks,” IEEE INFOCOM, USA, June 2002.
[24].	C. M. Chao and J. P. Sheu, “An Adaptive Quorum-Based Energy Conserving Protocol for IEEE 802.11 Ad Hoc Networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 5, pp. 560–570, May 2006.
[25].	J. R. Jiang, Y. C. Tseng, C. S. Hsu, and T. H. Lai, “Quorum-Based Asynchronous Power-Saving Protocols for IEEE 802.11 Ad Hoc Networks,” ACM Mobile Networking and Application, vol. 10, no. 1-2, pp. 169–181, Feb. 2005.
[26].	J. J. Sylvester, “Thoughts on Inverse Orthogonal  Matrices, Simultaneous Sign Successions, and  Lesselated Pavements in Two or More Colours, with Applications to Newton’s Rule, Ornamental Tilework and the Theory of Numbers,” Phil. Mag., vol. 34, pp. 461-475, 1867.
[27].	S. Matsufuji and N. Suehiro, “Factorization of bent function type complex Hadamard matrices,” Proc. IEEE ISSSTA, USA, Sep. 1996.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信