§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201201222500
DOI 10.6846/TKU.2012.00975
論文名稱(中文) 探討固定化微藻攝取營養鹽與生產油脂之研究
論文名稱(英文) The Studies of Nutrients Uptake and Lipid Production by Immobilized Chlorella sp.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 黃巧旻
研究生(英文) Chiao-Min Huang
學號 600480122
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2012-06-18
論文頁數 109頁
口試委員 指導教授 - 高思懷(shgau@mail.tku.edu.tw)
委員 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 孫常榮(sun.3409@hotmail.com)
關鍵字(中) Chlorella sp.
微藻
C/N
F/M
廢水處理
關鍵字(英) Chlorella sp.
microalgae
C/N
F/M
wastewater treatment
第三語言關鍵字
學科別分類
中文摘要
微藻是一個很好水質汙染的處理者,廢污水中的氮和磷皆是微藻生長必要的元素,藉由微藻的處理可快速的淨化水質並且也相對的有高的生物質量產生,因此,相對而言微藻也是很好的燃料生產者,而且微藻擁有高的光合效率以及生長速率比其他能源作物快。但是通常利用微藻處理廢水的其中一個主要問題是在於微藻的回收,然而微藻固定化是其中一種解決之方式。
    為了找出小球藻(Chlorella sp.)生長和營養鹽去除最佳操作參數,本研究先以不同C/N比濃度的光合異營培養為基礎,了解小球藻生長機制,接著利用這個最佳C/N比濃度,加入不同F/M的固定化顆粒與不同顆粒數,找出固定化培養的最佳生長條件。
    實驗結果顯示,在不同C/N比濃度的光合異營培養下,C/N比為10時,擁有高的比生長速率為2.44 1/day,以及對氮與碳的去除量最高,分別為16.71 mg/g‧hr和86.99 mg/g‧hr。另外,在固定化培養實驗中,發現到顆粒越多,食微比越低,並不會使小球藻生長更好或是去除效果更好。除此之外,也發現到空白顆粒(沒包覆任何藻體)對營養鹽的去除效果良好,硝酸鹽氮和總有機碳分別共去除141 mg/L和684 mg/L,這表示空白顆粒可以吸附這些營養鹽,因此,在這個實驗中,當食微比為0.2和投入的顆粒數為6:1(v/v)時,對硝酸鹽氮和總有機碳量最高,分別去除141 mg/g‧hr和684 mg/g‧hr。
英文摘要
Microalgae are useful material to treat wastewater. Nitrogen and phosphorus of the wastewater are the necessary elements of microalgae growth. Microalgae could quickly purify wastewater and also could generate a large amount of biomass. Microalgae are great producer for fuel because it has higher photosynthetic efficiency and growth rate than other energy crops. However, a big problem for using microalgae to treat the waste water is separation of the microalgae and liquid. Immobilization of microalgae is one of the solution methods for this problem.
   For finding out the optimum parameters of microalgae growth and nutrient removal, this study used the different C/N ratios of photosynthetic heterotrophic culture as basis to explore the mechanism of the microalgae growth. The different C/N ratios and F/M ratios of the immobilized particle number and particle size were tested to find out the optimum growth parameters of the immobilized culture.
   The results showed that the highest specific grower rate is 2.44 1/day in photosynthetic heterotrophic culture when the C/N ratio is 10. And the highest remove rate of N and C were 16.71 mg/g·hr and 86.99 mg/g·hr, respectively. Furthermore, in immobilized culture, the more of particle number and the less of the F/M ratio did not improve the Chlorella sp. growth and nutrient removal. In the blank experiment, the gel particle without seeding with microalgae, the nitrate nitrogen and total organic carbon were removed 141 mg/L and 684 mg/L, which indicated that the gel particle could absorb that nutrient. Therefore, in this study, when the F/M ratio is 0.2 and particle number is 6:1(v/v), the highest removed quantity of nitrate and total organic carbon were 141 mg/g·hr and 684 mg/g·hr, respectively.
第三語言摘要
論文目次
目錄 -------------------------------------------------------------------------------- I
圖目錄 ---------------------------------------------------------------------------- V
表目錄 ---------------------------------------------------------------------------- X
第一章 前言 ---------------------------------------------------------------------- 1
1-1 研究緣起 ---------------------------------------------------------------- 1
1-2 研究目的 ------------------------------------------------------------------ 3
第二章 文獻回顧 ---------------------------------------------------------------- 4
2-1 藻類介紹 ------------------------------------------------------------------ 4
2-2 小球藻 (Chlorella sp.) --------------------------------------------------- 4
2-3 小球藻生殖方式 --------------------------------------------------------- 6
2-4 光合作用 ------------------------------------------------------------------ 8
2-5 小球藻生長方式 ------------------------------------------------------- 12
2-6 小球藻培養方式 ------------------------------------------------------- 13
2-7 影響小球藻成長因子 ------------------------------------------------- 15
2-7-1 小球藻生長與營養鹽的關係 ----------------------------------- 15
2-7-2 光照強度和週期的影響 ----------------------------------------- 17
2-7-3 小球藻與pH 的關係 --------------------------------------------- 19
2-8 固定化微生物技術的研究 ------------------------------------------- 20
2-8-1 固定化的特性 ----------------------------------------------------- 20
2-8-2 固定化的方法 ----------------------------------------------------- 21
2-8-3 固定化優缺點 ----------------------------------------------------- 25
2-8-4 固定化之擔體的使用 -------------------------------------------- 26
2-8-5 褐藻膠(alginate) --------------------------------------------------- 30
第三章 實驗材料與方法 ----------------------------------------------------- 34
3-1 藻種來源 ---------------------------------------------------------------- 34
3-2 培養基 ------------------------------------------------------------------- 34
3-3 實驗方法 ---------------------------------------------------------------- 35
3-4 實驗步驟 ---------------------------------------------------------------- 41
3-4-1 Chlorella sp.的前期培養 ----------------------------------------- 41
3-4-2 小球藻(Chlorella sp.)的自營性空白實驗 ------------------ 41
3-4-3 主要培養基碳氮成分濃度比實驗(C/N 比) ------------------- 42
3-4-4 小球藻(Chlorella sp.)固定化培養 -------------------------- 43
3-5 分析方法 ----------------------------------------------------------------- 45
3-5-1 懸浮培養分析項目 ---------------------------------------------- 45
3-5-1-1 藻體生長濃度(OD660 值)的測定 -------------------------- 45
3-5-1-2 藻體生物質量(biomass)的測定 --------------------------- 45
3-5-1-3 葡萄糖濃度的測定 ------------------------------------------ 46
3-5-1-4 藻類比生長速率計算 --------------------------------------- 46
3-5-2 固定化分析的項目 ---------------------------------------------- 47
3-5-2-1 顆粒溶解方法 ------------------------------------------------ 47
3-5-2-2 顆粒內藻體之生物質量測量 ------------------------------ 47
3-5-2-3 藻體油脂含量測定 ------------------------------------------ 47
3-5-2-4 顆粒內部觀察 ------------------------------------------------ 47
3-6 實驗設備 ---------------------------------------------------------------- 49
第四章 結果與討論 --------------------------------------------------------- 53
4-1 Chlorella sp.空白自營性實驗 -------------------------------------- 53
4-2 Chlorella sp.培養於不同碳氮比(C/N)的實驗結果 --------- 58
4-3 固定化與懸浮式培養對細胞生長的影響 ------------------------ 65
4-4 不同F/M 與顆粒數對細胞生長的影響 -------------------------- 70
4-5 不同F/M 顆粒內的小球藻對營養鹽去除結果 ----------------- 87
4-6 不同F/M 與顆粒數對油脂變化的影響 -------------------------- 92
第五章 結論 ------------------------------------------------------------------ 95
第六章 參考文獻 ------------------------------------------------------------ 97

圖目錄
圖2- 1 小球藻剖析圖 .............................................................................. 5
圖2- 2 光學顯微鏡下的小球藻(400X) ............................................. 6
圖2- 3 Chlorella sp. 生長圖 ................................................................... 7
圖2- 4 光合作用之光反應流程圖 ......................................................... 9
圖2- 5 光合作用之暗反應流程圖 ....................................................... 10
圖2- 7 固定化技術一般分類 ............................................................... 23
圖2- 8 固定化技術圖 ........................................................................... 23
圖2- 9 海藻酸鈉的結構 ........................................................................ 31
圖3- 1 實驗流程圖…………………………………………………………….40
圖3- 2 小球藻固定化操作流程圖 ......................................................... 44
圖3- 3 小球藻固定化操作圖 ................................................................. 45
圖3- 4 高壓滅菌釜 ................................................................................ 49
圖3- 5 無菌操作台 ................................................................................ 49
圖3- 6 培養箱 ......................................................................................... 50
圖3- 7 燈管 ............................................................................................. 50
圖3- 8 分光光度計 ................................................................................. 50
圖3- 9 高速微量離心機 ......................................................................... 51
圖3- 10 細胞計數器 .............................................................................. 51
圖4- 1 Chlorella sp.自營培養中總有機碳與硝酸鹽氮變化情形..…...56
圖4- 2 Chlorella sp.自營培養中硝酸鹽氮和藻體生物量變化情形 . 56
圖4- 3 Chlorella sp.自營培養中藻體濃度和細胞數變化情形 ......... 57
圖4- 4 Chlorella sp.生長變化 .............................................................. 57
圖4- 5 Chlorella sp.異營培養中不同C/N 之藻體濃度變化情形 ..... 60
圖4- 6 Chlorella sp.異營培養中不同C/N 之藻體生物質量變化情形60
圖4- 7 Chlorella sp.異營培養中不同C/N 之比生長速率。 ............. 61
圖4- 8 Chlorella sp.異營培養中C/N 為4 之硝酸鹽氮和總有機碳變化
情形 ....................................................................................................... 61
圖4- 9 Chlorella sp.異營培養中C/N 為8 之硝酸鹽氮和總有機碳變化
情形 ....................................................................................................... 62
圖4- 10 Chlorella sp.異營培養中C/N 為10 之硝酸鹽氮和總有機碳變
化情形 ................................................................................................... 62
圖4- 11 Chlorella sp.異營培養中C/N 為20 之硝酸鹽氮和總有機碳變
化情形 ................................................................................................... 63
圖4- 12 Chlorella sp.異營培養中不同C/N 之單位藻體去除量情形63
圖4- 13 固定化培養和空白顆粒培養 ............................................... 67
圖4- 14 Chlorella sp.自營培養中懸浮式和固定化之比生長速率。 67
圖4- 15 固定化顆粒與空白顆粒和懸浮培養於自營培養中硝酸鹽氮變
化情形 ................................................................................................... 68
圖4- 16 固定化顆粒與空白顆粒和懸浮培養於自營培養中總有機碳變
化情形 ................................................................................................... 68
圖4- 17 固定化顆粒培養和懸浮培養之但為藻體去除總有機碳和硝酸
鹽氮的量 ............................................................................................... 69
圖4- 18 Chlorella sp.固定化培養中食微比為0.4 時硝酸鹽氮變化情形 75
圖4- 19 Chlorella sp.固定化培養中食微比為0.2 時硝酸鹽氮變化情形 75
圖4- 20 Chlorella sp.固定化培養中食微比為0.1 時硝酸鹽氮變化情形 76
圖4- 21 Chlorella sp.固定化培養中食微比為0.4 時總有機碳變化情形 76
圖4- 22 Chlorella sp.固定化培養中食微比為0.2 時總有機碳變化情形 77
圖4- 23 Chlorella sp.固定化培養中食微比為0.1 時總有機碳變化情形 77
圖4- 24 Chlorella sp.固定化培養中食微比為0.4 之不同顆粒數比藻體
生物量變化情形 ................................................................................... 78
圖4- 25 Chlorella sp.固定化培養中食微比為0.2 之不同顆粒數比藻體
生物量變化情形 ................................................................................... 78
圖4- 26 Chlorella sp.固定化培養中食微比為0.1 之不同顆粒數比藻體
生物量變化情形 ................................................................................... 79
圖4- 27 Chlorella sp.固定化培養中顆粒比為6:1 之不同食微比藻體生物增加量 ............................................................................................... 79
圖4- 28 食微比為0.4 時,膠體顆粒內Chlorella sp.細胞SEM 圖 . 80
圖4- 29 食微比為0.2 時,膠體顆粒內Chlorella sp.細胞SEM 圖 . 81
圖4- 30 食微比為0.1 時,膠體顆粒內Chlorella sp.細胞SEM 圖 . 82
圖4- 31 固定化顆粒崩解造成微藻液流出來,造成所謂洩漏之SEM 圖
............................................................................................................... 83
圖4- 32 Chlorella sp.固定化培養中食微比為0.4 時單位藻體去除量變
化情形 ................................................................................................... 84
圖4- 33 Chlorella sp.固定化培養中食微比為0.2 時單位藻體去除量變
化情形 ................................................................................................... 84
圖4- 34 Chlorella sp.固定化培養中食微比為0.1 時單位藻體去除量變
化情形 ................................................................................................... 85
圖4- 35 Chlorella sp.固定化培養中顆粒比為6:1 v/v 與不同食微比之單
位藻體去除硝酸鹽氮和總有機碳量變化情形 ................................... 85
圖4- 36 Chlorella sp.固定化培養中食微比為0.4 與不同顆粒數比之小
球藻(不包含顆粒)以及空白顆粒對硝酸鹽氮去除情形............... 89
圖4- 37 Chlorella sp.固定化培養中食微比為0.2 與不同顆粒數比之小
球藻(不包含顆粒)以及空白顆粒對硝酸鹽氮去除情形............... 89
圖4- 38 Chlorella sp.固定化培養中食微比為0.1 與不同顆粒比之小球
藻(不包含顆粒)以及空白顆粒對硝酸鹽氮去除情形 ................... 90
圖4- 39 Chlorella sp.固定化培養中食微比為0.4 與不同顆粒數比之小
球藻(不包含顆粒)以及空白顆粒對總有機碳去除情形............... 90
圖4- 40 Chlorella sp.固定化培養中食微比為0.2 與不同顆粒數比之小
球藻(不包含顆粒)以及空白顆粒對總有機碳去除情形............... 91
圖4- 41 Chlorella sp.固定化培養中食微比為0.1 與不同顆粒數比之小
球藻(不包含顆粒)以及空白顆粒對總有機碳去除情形 .............. 91

表目錄
表2- 1 光合作用反應簡表 ..................................................................... 11
表2- 2 各種固定化方法之優缺點比較 ................................................. 24
表2- 3 不同世代固定化之優缺點比較 ................................................. 25
表2- 4 固定化常使用的擔體基質 ......................................................... 28
表2- 5 固定化藻類之相關文獻 ............................................................. 29
表3- 1 培養基成分 ................................................................................. 35
表3- 2 實驗儀器設備表 ......................................................................... 52
表4- 1 Chlorella sp.異營培養中不同C/N 之單位藻體去除量 ........... 64
表4- 2 Chlorella sp.固定化培養中顆粒比為6:1 v/v 與不同食微比之不
同階段單位藻體去除量之消耗比例 ..................................................... 86
表4- 3 Chlorella sp.固定化培養中食微比為0.4 與不同顆粒的藻體生物
量和脂質增加量 .................................................................................... 93
表4- 4 Chlorella sp.固定化培養中食微比為0.2 與不同顆粒的藻體生物
量和脂質增加量 .................................................................................... 93
表4- 5 Chlorella sp.固定化培養中食微比為0.1 與不同顆粒的藻體生物
量和脂質增加量 .................................................................................... 94
參考文獻
Abdel Hameed, M.S. (2002). "Effect of Immobilization on growth and photosynthesis of the green alga Chlorella vulgaris and its efficiency in heavy metals removal. "Bull. Fac. Sci., 31(1-D): 233-240. 
Abdel Hameed, M. S. (2007)."Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal." African Journal of Biotechnology 6, no. 10: 1185-1191. 
Abe, K., E. Takahashi, and M. Hirano. (2008). "Development of laboratory-scale photobioreactor for water purification by use of a biofilter composed of the aerial microalga Trentepohlia aurea (Chlorophyta)." Journal of Applied Phycology no. 20 (3):283-288. 
Alder, A.C., H. Siegrist, W. Gujer, and W. Giger. (1990). "Behaviour of NTA and EDTA in biological wastewater treatment." Water Research no. 24 (6):733-742. 
Araujo, M. L. G. C., R. P. Oliveira, R. C. Giordano, and C. O. Hokka.(1996). "Comparative studies on cephalosporin C production process with free and immobilized cells of Cephalosporium acremonium ATCC 48272." Chemical Engineering Science no.51 (11):2835-2840. 
Bailliez, C., C. Largeau and E. Casadevall.(1985). "Growth and hydrogen production of Botryococcus braunii immobilized in calcium alginate gel. " Appl. Microbiol. Biotechnol., 23: 99–105. 
Bailliez, C., C. Largeau, C. Berkaloff, and E. Casadevall. (1986). "Imunbilization of Botryococcus braunii in alginate: Influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures." Applied Microbiology and Biotechnology no. 23 (5):361-366. 
Bajpai, SK, and S. Sharma. (2004). "Investigation of 
swelling/degradation behaviour of alginate beads crosslinked 
with Ca  2+ and Ba  2+  ions." Reactive and Functional Polymers no. 
59 (2):129-140. 
Becker, E.W. (1994). "Microalgae: biotechnology and microbiology. " Vol. 
10: Cambridge Univ Pr. 
Bouterfas, R., M. Belkoura, and A. Dauta. (2002). "Light and temperature 
effects on the growth rate of three freshwater algae isolated from 
a eutrophic lake." Hydrobiologia no. 489:207-217. 
Benemann, J.R., (2008). " Oppotunities and Challenges in Algae Biofuels Production " Algae World 2008, November 17–18, p. 15. 
Boney, A.D. (1989). "Phytoplankton. " Edward Arnold, pp. 118. 
Brennan, L., Owende, P., (2010). " Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. "Renewable and Sustainable Energy Reviews 14, 557–577. 
Chen, F., Johns, M.R.(1991) “Effect of C:N ratio and aeration on fatty acid composition of heterotrophic Chlorella sorokiniana.”Journal of Applied Phycology, 3, 203–209. 
Chen, Y.C. (2001). "Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture." Aquaculture no. 195 (1-2):71-80. 
Chevalier, P., and J. De la Noue. (1985). "Wastewater nutrient removal with microalgae immobilized in carrageenam." Enzyme and Microbial Technology no. 7 (12):621-624. Chisti, Y. (2008). "Biodiesel from microalgae beats bioethanol." Trends in Biotechnology no. 26 (3):126-131. 
Cooksey, K.E., J.B. Guckert, S.A. Williams, and P.R. Callis. (1987). "Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red." Journal of microbiological methods no. 6 (6):333-345. 
De-Bashan, L.E., and Y. Bashan. (2010). "Immobilized microalgae for removing pollutants: review of practical aspects." Bioresource Technology no. 101 (6):1611-1627. 
De la Noue, J., and D. Proulx. (1988). "Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium." Applied Microbiology and Biotechnology no. 29 (2):292-297. 
De la Noue J, Laliberte G, Proulx D (1992). "Algae and wastewater. " J. Appl. Phycol. 4: 247-254. 
Dieter Hess (1984) “植物生理學”三明書局印行。
Dote, Y., S. Sawayama, S. Inoue, T. Minowa, and S. y Yokoyama. (1994). "Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction." Fuel no. 73 (12):1855-1857.
Egli, T., H.U. Weilenmann, T. El-Banna, and G. Auling. (1988)."Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil." Systematic and applied microbiology no. 10 (3):297-305.
Endo, H., K. Nakajima, R. Chino, and M. Shirota. (1974). "Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain." Agricultural and Biological Chemistry no. 38 (1):9-18
Endo, H., Hosoya, H., and Koibuchi, T. (1977). "Growth Yields of Chlorella regularis in Dark-heterotrophic Continuous Cultures Using Acetate : Studies on Chlorella regularis, Heterotrophic Fast-Growing Strain (III)." Journal of fermentation technology, 55(4),369-379.
Eppley, R.W., E.H. Renger, E.L. Venrick, and M.M. Mullin. (1973). "A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean." Limnology and Oceanography:534-551. 
Faafeng, B.A., Van Donk, E., Ka‥llqvist, S.T., (1994). " In situ measurement of algal growth potential in aquatic ecosystems by 
immobilized algae. " J. Appl. Phycol. 6, 301–308. 
Feng, F.-Y., Yang, W., Jiang, G.-Z., Xu, Y.-N., and Kuang, T.-Y. (2005). "Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium." Process Biochemistry, 40, 1315-1318.
Garbisu, C., Hall, D. O., and Serra, J. L. (1992). "Nitrate and nitrite uptake by free-living and immobilized N-started cells of Phormidium laminosum." Journal of Applied Phycology, 4(2), 139-148. 
Garbisu, C., Hall, D. O., and Serra, J. L. (1993). "Removal of phosphate by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors." Journal of Chemical Technology & Biotechnology, 57(2), 181-189.
Griffiths, D. J., C. L. Thresher, and H. E. Street.( 1960). "The heterotrophic nutrition of Chlorella vulgaris (brannon no. 1 strain): With two figures in the text." Annals of Botany no. 24 (1):1-11. 
Griffiths, M.J., and S.T.L. Harrison. (2009). "Lipid productivity as a key characteristic for choosing algal species for biodiesel production." Journal of Applied Phycology no. 21 (5):493-507. 
Gonzalez, L.E., and Y. Bashan. (2000). "Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and 
Cocultured in Alginate Beads with the Plant-Growth-Promoting 
Bacterium Azospirillum brasilense." Applied and environmental microbiology no. 66 (4):1527-1531. 
Guillard R.R.L.(1973). " Division rates. In: Stein (Ed.), Handbook of Phycological Methods, vol. 1. " Cambridge University Press,289–312. 
Hertzberg, S., and A. Jensen. (1989). "Studies of Alginate-immobilized Marine Microalgae." In Botanica marina. 
Hertzberg, S., and A. Jensen. (2009). "Studies of alginate-immobilized marine microalgae." Botanica marina no.32(4) :267-274. 
Hu, Q. (2004). "Environmental effects on cell composition." Handbook of microalgal culture:83-94. 
Jeanfils, J., and F. Collard. (1983). "Effect of immobilizing Scenedesmus obliquus cells in a matrix on oxygen evolution and fluorescence properties." European Journal of Applied Microbiology and Biotechnology no. 17 (4):254-257. 
Jeanfils, J., and D. Thomas. (1986). "Culture and nitrite uptake in immobilized Scenedesmus obliquus." Applied Microbiology and Biotechnology no. 24 (5):417-422. 
Jimenez-Perez, MV, P. Sanchez-Castillo, O. Romera, D. 
Fernandez-Moreno, and C. Perez-Martı́nez. (2004). "Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure." Enzyme and Microbial Technologyno. 34 (5):392-398. 
Johansen, A., and J.M. Flink. (1986). "Influence of alginate properties and gel reinforcement on fermentation characteristics of immobilized yeast cells." Enzyme and Microbial Technology no. 8 (12):737-748. 
Johnston, R. (1963). "Sea Water, The Natural Medium of Phytoplankton I. General Features." Journal of the Marine Biological Association of the United Kingdom no. 43 (02):427-456. 
Johnston, R. (1964). "Sea water, the natural medium of phytoplankton." J. Mar. Biol. Assoc. UK no. 44:87-109. 
Kaplan, D., Z. Cohen, and A. Abeliovich. (1986). "Optimal growth conditions for Isochrysis galbana." Biomass no. 9 (1):37-48. 
Kaya, V.M., J. Goulet, J. de la Noue, and G. Picard.(1996). "Effect of intermittent CO 2  enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis." Enzyme and Microbial Technologyno. 18 (8):550-554. 
Khan, M., and N. Yoshida. (2008). "Effect of l-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06." Bioresource Technology no. 99 (3):575-582.
Kong, Q., L. Li, B. Martinez, P. Chen, and R. Ruan. (2010). "Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production." Applied biochemistry and Biotechnology no. 160 (1):9-18. 
Kuhl, A. Zur.(1962). "Physiologie der Speicherung Kondersierter  anorganischer Phosphate in Chlorella. "Vortr. Botan. hrsg. Deut.   Botan. Ges.(N. F.), 1, 157–166. 
Lau, P. S., N. F. Y. Tam, and Y. S. Wong. (1995). "Effect of algal density on nutrient removal from primary settled wastewater." Environmental Pollution no. 89 (1):59-66. 
Lau, P. S., Tam, N. F. Y., and Wong, Y. S. (1997). "Wastewater Nutrients (N and P) Removal by Carrageenan and Alginate Immobilized Chlorella Vulgaris." Environmental Technology, 18(9), 945-951. 
Lau, P. S., N. F. Y. Tam, and Y. S. Wong. (1998). "Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris." Bioresource Technology no.63(2) :115-121. 
Lee, K., and C.G. Lee. (2001). "Effect of light/dark cycles on wastewater treatments by microalgae." Biotechnology and Bioprocess Engineering no. 6 (3):194-199. 
Li, SW, H. Bolton, DJ Workman, and DC Girvin. (1993). 
"Biodegradation of synthetic chelates in subsurface sediments from the southeast coastal plain." Journal of environmental quality no. 22 (1):125-132. 
Liu, W., D.W.T. Au, D.M. Anderson, P.K.S. Lam, and R.S.S. Wu. (2007)."Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chlorella marina." Journal of experimental marine biology and ecology no. 346 (1):76-86. 
Macedo, M.F., P. Duarte, and J.G. Ferreira. (2002). "The influence of incubation periods on photosynthesis–irradiance curves." Journal of experimental marine biology and ecology no. 274 (2):101-120.
Mallick, N., Rai, L.C.(1993). "Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. " World J. Microb. 9, 196–201.
Martinez, F., C. Ascaso, and M. I. Orus. (1991). "Morphometric and stereologic analysis of Chlorella vulgaris under heterotrophic growth conditions." Annals of Botany no. 67 (3):239-245. 
Masojidek, J., Koblizek, M., Torzillo, G. (2004) ”Photosynthesis Richmond A, editor.” Handbook of Microalgal Culture:Phycology. Blackwell Science.20-33.
Means, J.L., T. Kucak, and D.A. Crerar. (1980). "Relative degradation rates of NTA, EDTA and DTPA and environmental implications." Environmental Pollution Series B, Chemical and Physical no. 1 (1):45-60. 
Merrett, M. J. (1991). "Inorganic carbon transport in some marine microalgal species." Canadian Journal of Botany no. 69(5):1032-1039. 
Miao, Xiaoling, and Qingyu Wu. (2006). "Biodiesel production from heterotrophic microalgal oil." Bioresource Technology no. 97 (6):841-846. doi: 10.1016/j.biortech.2005.04.008. 
Minowa, T., S. y Yokoyama, M. Kishimoto, and T. Okakura. (1995). "Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction." Fuel no. 74 (12):1735-1738. 
Morel, F.M.M., R.J.M. Hudson, and N.M. Price. (1991). "Limitation of productivity by trace metals in the sea." Limnology and Oceanography:1742-1755. 
Murphy, P.P., and M.F. Lamb. (1995). "The role of pH measurements in modern oceanic CO2-system characterizations: precision and thermodynamic consistency. "Deep Sea Research 42:403-411. 
Orive,Gorka, Rose Maria Hernandez, Alicia Rodrı́guez Gascon, Riccardo Calafiore, Thomas Ming Swi Chang, Paul de Vos, Gonzalo Hortelano, David Hunkeler, Igor Lacı́k, and Jose Luis Pedraz. (2004). "History, challenges and perspectives of cell microencapsulation." Trends in Biotechnology no. 22 (2):87-92. doi: 10.1016/j.tibtech.2003.11.004. 
Oswald, W.J.(1988). "Micro-algae and waste-water treatment. " In: Boro-witzka, M.A., Borowitzka, L.J. (Eds.), Micro-algal Biotechnology.Cambridge University Press, pp. 305–328. 
Palmer, C.M. (1962). "Algae in water supplies." 
Park, J. B. K., R. J. Craggs, and A. N. Shilton. (2011). "Wastewater treatment high rate algal ponds for biofuel production." Bioresource Technology no. 102 (1):35-42.
Philips, S. (1997). "A biology of the algae. Second edition. " Cambridge University Press, pp. 259. 
Proulx, D. and J. de la Noue, (1988). "Removal of macronutrients from wastewaters by immobilized microalgae. " In: Moo-Young, M.(ed.), Bioreactor Immobilized Enzymes and Cells: Fundamentals and Applications, Pp: 301–10.   
Rai, L. C., and N. Mallick. (1992). "Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells." World Journal of Microbiology & Biotechnology no. 8 (2):110-114. 
Richmond, A.( 2004). "Principles for attaining maximal microalgal productivity in photobioreactors: An overview."Hydrobiologia no. 512:33-37. 
Robinson, P. K., A. L. Dainty, and K. H. Goulding.( 1985). "Physiology of alginate-immobilized Chlorella." Enzyme and Microbial Technology no. 7 (5):212-216. 
Robinson, PK, AL Mak, and MD Trevan. (1986). "Immobilized algae: a review." Process biochemistry no. 21 (8):122-127. 
Rodriguez–Lopez, M., Villarroya, M., Munoz–Calvo, M.L.(1980)   
“Influence of ammonium and nitrate on protein content, amino 
acid pattern, storage materials and fine structure of Chlorella 8H recovering from Nstarvation.” In: Shelef G, C. J. Soeder, editors. Algae Biomas. Elsevier Amsterdam. 723–731. 
Romo, S. and C. Perez-Martinez, C. (1997). "The use of immobilization in alginate beads for long-term storage of Pseudanabaena galeata (Cyanobacteria) in the laboratory." Journal of Phycology no. 33(6): 1073-1076. 
Shi, X. M., F. Chen, J. P. Yuan, and H. Chen. (1997). "Heterotrophic production of lutein by selected Chlorella strains." Journal of Applied Phycology no. 9 (5):445-450. 
Shi, X. M., X. W. Zhang, and F. Chen. (2000). "Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources." Enzyme and Microbial Technology no. 27 (3-5):312-318. 
Sorokin, C., and R.W. Krauss. (1958). "The Effects of Light Intensity on the Growth Rates of Green Algae." Plant physiology no. 33 (2):109. 
Siegrist, H., A., Alder, W. Gujer, and W, Giger, (1988). "Behaviour of the organic complexing agents NTA and EDTA in activated sludge treatment", gwf Wasser Abwasser,68:101-109. 
Sukenik, A., Carmeli, Y., Berner, T.(1989) "Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochlopsis sp. " J. Phycol., 25, 686-692. 
Talbot, P., and J. De La Noue. 1993. "Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions." Water Research no. 27 (1):153-159. 
Tam, N. F. Y., P. S. Lau, and Y. S. Wong. (1994). "Wastewater inorganic N and P removal by immobilized Chlorella vulgaris." Water Science and Technology no. 30 (6 pt 6):369-374. 
Tam, N. F. Y., and Y. S. Wong. (2000). "Effect of immobilized microalgal bead concentrations on wastewater nutrient removal." Environmental Pollution no. 107 (1):145-151. 
Tiedje, J.M..(1975). "Microbial degradation of ethylenediaminetertra-acetate in soils and sediments. "Appl. Environ. Microbiol., 30:327-329.
Tiedje, J.M.,1977. " Influence of environmental parameters on EDTA bio-degradation in soils and sediments. "J. Environ. Qual., 6:21-26.
Tillett, D.M., 1988. Ph.D. "Thesis: Lipid productivity and species competition inlaboratory models of algae mass cultures. " The School of Chemical Engineering, Georgia Institute of Technology.
Torzillo, G., B. Pushparaj, J. Masojidek, and A. Vonshak. (2003)."Biological constraints in algal biotechnology." Biotechnology and Bioprocess Engineering no. 8 (6):338-348. 
Travieso, L., F. Benitez, and R. Dupeiron. (1992). "Sewage treatment using immobilized microalgae." Bioresource Technology no. 40 (2):183-187. 
Turpin, D.H. (1991). "Effects of inorganic N availability on algal photosynthesis and carbon metabolism." Journal of phycology no. 27 (1):14-20. 
Vilchez, C., I. Garbayo, E. Markvicheva, F. Galvan, and R. Leon. (2001)."Studies on the suitability of alginate-entrapped Chlamydomonas reinhardtii cells for sustaining nitrate consumption processes." Bioresource Technology no. 78 (1):55-61. 
Woodward, J.( 1985). "Immobilised cells and enzymes: a practical approach." Vol. 13: Oxford University Press, USA.  
Wu, Q. Y., S. Yin, G. Y. Sheng, and J. M. Fu. (1994). "New discoveries in study on hydrocarbons from thermal degradation of heterotrophically yellowing algae." Science in China (Scientia Sinica) Series B no. 37 (3):326-335.  
Yan, G., J. Yu, and Y. Wang. (1996). "The effects of pH and temperature on orthophosphate removal by immobilized: Chlorella vulgaris." Biotechnology Letters no. 18 (8):893-896.
王藝蓉(2003) "以光生化反應器培養微藻生產脂肪酸"大葉大學食品工學系碩士論文。
吳欣慧(2008) "以二階段培養模式培養小球藻(Chlorella sp.)生產油脂之研究" 淡江大學水資源及環境工程學系碩士論文。
沈建宇(2006) "探討以固定化三仙膠對水溶液中重金屬之生物吸附程序"私立中原大學化學工程學系碩士論文。
周廷耀(2003)"碳源的添加對等鞭金藻增殖的影響"國立中山大學海洋生物學系碩士論文。
林祺能(2006)"矽膠固定化細胞暗醱酵產氫技術"逢甲大學化學工程學系博士論文。
紀越錦(1990)"水及空氣處理用化學品市場調查"工業技術研究院化學工業研究所,p45-47。
徐明光(1999) "台灣的淡水浮游藻(I)-通論及綠藻(1)"國立台灣博物館印行。
張曉婷(2002)"包埋具酚類分解性的惡臭假單胞菌於多孔性幾丁聚醣顆粒之研究"國立成功大學化學工程學系碩士論文。
陳世卿(2004)" EDTA 分解微生物之培養與應用"國立雲林科技大學工程科技研究所博士論文。
陳怡如(2010) "利用小球藻處理高氮廢水探討最佳參數及生長特性之研究"環工學會廢水處理技術研討會論文(碩士論文)。
陳國誠(2000)"生物固定化技術與產業應用".茂昌圖書有限公司,p.45.。
陳盛樂(2004)"真菌 Aspergillus terreus 固定化技術之探討---包埋法"朝
陽科技大學應用化學系碩士論文。
葉俊良(2006) "在光生化反應器中以二階段策略培養微藻生產油脂之研究"國立成功大學化學工程學系碩士論文。
鄭恆琪、陳祐誠、林良平(1999) "以鹽度與溫度控制 Chlorella minutissima  淡水與海水株綠藻之長鏈不飽和脂肪酸量及成分" 中國農業化學誌,37(3),319-327。
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信