§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201015311800
DOI 10.6846/TKU.2010.00797
論文名稱(中文) Bacillus cereus TKU022所生產幾丁聚醣酶及蛋白酶之特性分析與應用
論文名稱(英文) Characterization of a chitosanase and a protease from Bacillus cereus TKU022 and their applications
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 生命科學研究所碩士班
系所名稱(英文) Graduate Institute of Life Sciences
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 謝佳霖
研究生(英文) Jia-Lin Hsieh
學號 697180064
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-07
論文頁數 81頁
口試委員 指導教授 - 王三郎
委員 - 王一雄
委員 - 劉嚞睿
關鍵字(中) 臘狀芽孢桿菌
幾丁聚醣酶
蛋白酶
蝦頭粉
關鍵字(英) Bacillus cereus
chitosanase
protease
shrimp head powder
第三語言關鍵字
學科別分類
中文摘要
Bacillus cereus TKU022係以蝦頭粉為主要碳/氮源,篩選自台灣北部土壤之幾丁聚醣酶生產菌,發酵蝦頭粉所得離心上清液具有幾丁聚醣酶及蛋白酶活性。幾丁聚醣酶較適生產條件為 1.5% 蝦頭粉、0.1% K2HPO4、0.05% MgSO4.7H2O 之50mL液態培養基(pH5)於 37℃振盪培養 2天。發酵所得離心上清液經硫酸銨沉澱、DEAE-Sepharose、Phenyl Sepharose 、Macro-Prep DEAE及Sephacryl S-100等層析步驟後,可純化出一種幾丁聚醣酶及一種蛋白酶,經 SDS-PAGE測定分子量分別為 44 kDa及45kDa。其幾丁聚醣酶及蛋白酶之最適反應pH、最適反應溫度、pH 安定性、熱安定性分別為 pH 7, 60 ℃, pH 7-10, <40 ℃及pH 10, 50-60℃, pH 6-10, <50 ℃;幾丁聚醣酶活性會受Cu2+及Mn2+所抑制,而非離子型界面活性劑 Triton X-100、Tween 20及離子型界面活性劑SDS 則不具抑制效果;蛋白酶則會受到Mn2+、EDTA及SDS所抑制,在2 mM之存在下Triton X-100、Tween 20、Tween 40還維持其原活性97 %、105 %及94 %。
TKU022以較適生產幾丁聚醣酶培養基(1.5 % SHP, 37 ℃, pH 5)培養8天,所得發酵上清液於第5天有最高之還原醣(649 &micro;g/mL)產量;並0.05 %之還原醣添加至MRS broth中可提升Lactobacillus paracasei TKU010之生長速率。
英文摘要
The chitosanase -producing bacterium, Bacillus cereus TKU022, was isolated from soil in the north Taiwan by using shrimp head powder as the sole carbon/nitrogen source. The supernatant of the culture medium contains the chitosanase and the protease the activity. The optimized condition for chitosanase production was found when the culture was shaken at 37°C for two days in 50mL of medium containing 1.5% SHP, 0.1% K2HPO4, 0.05 % MgSO4.7H2O ( pH 5). The chitosanase and protease were purified from the culture supernatant by ammonium sulfate precipitation, DEAE-Sepharose, Phenyl Sepharose, Macro-Prep DEAE and Sephacryl S-100. The molecular masses of the chitosanase and protease determined by SDS-PAGE were approximately 44 and 45 kDa, respectively. The optimum pH, optimum temperature, pH stability and thermal stability of TKU022 chitosanase and protease were pH 7, 60 ℃, pH 7-10, <40 ℃and pH 10, 50-60 ℃, pH 6-10, <50 ℃, respectively. The chitosanase activity was inhibited by Cu2+ and Mn2+, but not by Tween 20, Triton X-100 (nonionic surfactant) and SDS (anionic surfactant).The protease activity was inhibited by Mn2+, EDTA and SDS, but retained 97 %, 105 % and 94% of its original activity in the presence of 2 % Triton X-100, 2 % Tween 20 and 2 % Tween 40, respectively.
B. cereus TKU022 was incubated for 8 days under the optimized culture conditions(1.5 % SHP, 37 ℃, pH 5)and analyzed the reducing sugar. TKU022 culture supernatant incubated for 5 days had the highest reducing sugar(649 &micro;g/mL)and enhanced the growth rate of Lactobacillu paracasei TKU010 in MRS broth.
第三語言摘要
論文目次
中文摘要........................................Ⅰ
英文摘要........................................Ⅲ
目錄............................................Ⅴ
圖目錄..........................................ⅩI
表目錄..........................................ⅩⅢ

第一章 緒論......................................1
第二章 文獻回顧..................................2
2.1 Bacillus cereus之簡介........................2
2.2 幾丁質與幾丁聚醣.............................4
2.3 幾丁質及幾丁聚醣水解酵素.....................7
2.4 N-乙醯幾丁寡醣及幾丁寡醣.....................8
2.5 蛋白酶.......................................9
2.5.1 蛋白酶的分類與命名.........................9
2.5.2蛋白酶在工業上之應用........................11
2.6 抗氧化.......................................13
第三章 材料與方法................................14
3.1 實驗菌株.....................................14
3.2 實驗材料.....................................14
3.3 實驗儀器.....................................16
3.4幾丁聚醣酶生產菌之篩選........................17
3.5幾丁聚醣酶之活性測定..........................17
3.6 蛋白酶活性之測定.............................18
3.7 幾丁聚醣酶較適生產條件探討...................18
3.7.1碳/氮源濃度.................................18
3.7.2培養溫度....................................19
3.7.3 培養體積...................................19
3.7.4培養基pH值..................................19
3.7.5培養時間....................................19
3.8幾丁聚醣酶及蛋白酶之分離純化..................20
3.8.1粗酵素液之製備..............................20
3.8.2陰離子交換樹酯..............................20
3.8.3疏水性層析法................................21
3.8.4膠體過濾層析................................21
3.9酵素之分子量測定..............................22
3.9.1 蛋白質電泳分析.............................22
3.9.2  膠體過濾層析..............................22
3.10幾丁聚醣酶及蛋白酶之特性分析.................23
3.10.1酵素最適反應溫度...........................23
3.10.2 酵素熱安定性..............................23
3.10.3 酵素最適反應 pH...........................23
3.10.4 酵素 pH 安定性............................24
3.10.5 金屬離子及化學藥品對酵素活性之影響........24
3.10.6 界面活性劑對幾丁聚醣酶活性之影響..........25
3.10.7 酵素之基質特異性..........................25
3.10.7.1幾丁聚醣酶	...............................25
3.10.7.2 蛋白酶..................................25
3.11 粗酵素液之蛋白酶及幾丁聚醣酶活性關係........26
3.12 還原醣量之測定..............................26
3.13 抗氧化分析..................................27
3.13.1 DPPH 自由基清除能力之測定.................27
3.14 N-乙醯幾丁寡醣製備..........................27
3.15 促進乳酸菌生長..............................28
第四章 結果與討論................................29
4.1 幾丁聚醣酶生產菌之篩選.......................29
4.1.1幾丁聚醣酶與蛋白質酶生產菌株之鑑定..........29
4.2 較適生產條件探討.............................30
4.2.1 碳/氮源濃度................................31
4.2.2 培養溫度...................................31
4.2.3培養體積....................................31
4.2.4 培養基pH值.................................32
4.2.5較適培養條件探討結果........................32
4.2.6 TKU022發酵SHP之產物分析....................33
4.3 幾丁聚醣酶及蛋白質酶之分離純化...............41
4.3.1 粗酵素液之製備.............................41
4.3.2 離子交換樹脂/疏水性層析....................41
4.3.3 膠體過濾層析...............................42
4.3.4 綜合結果...................................43
4.4 幾丁聚醣酶與蛋白質酶之分子量測定.............43
4.4.1 SDS-PAGE...................................43
4.4.2膠體過濾層析................................43
4.4.3 綜合結果...................................44
4.4.4 幾丁聚醣酶胜肽質譜鑑定(peptide mass mapping).45
4.5 幾丁聚醣酶與蛋白酶之特性分析.................45
4.5.1  幾丁聚醣酶與蛋白酶之最適反應pH及pH安定性........45
4.5.2  幾丁聚醣酶與蛋白酶之最適反應溫度及熱安定性......46
4.5.3  金屬離子及化學藥品對幾丁聚醣酶與蛋白酶之影響....46
4.5.4  界面活性劑對幾丁聚醣酶與蛋白酶活性之影響........47
4.5.5 幾丁聚醣酶與蛋白酶之基質特異性	..............48
4.5.5.1 幾丁聚醣酶之基質特異性....................48
4.5.5.2 蛋白酶之基質特異性........................48
4.6還原醣與抗氧化分析.............................49
4.7促進乳酸菌生長.................................49
第五章 結論.......................................69
參考文獻..........................................70

圖目錄
                                                  
圖2.1 幾丁質、幾丁聚醣及纖維素之結構...............4
圖2.2  幾丁質水解酵素水解途徑......................7
圖4.1 16S rDNA部分鹼基序列分析及API試驗............30
圖4.2 SHP濃度對TKU022幾丁聚醣酶生產之影響..........35
圖4.3 培養溫度對TKU022幾丁聚醣酶生產之影響.........35
圖4.4 培養液體積對TKU022幾丁聚醣酶及蛋白酶生產之影響....36
圖4.5培養液pH對第2天TKU022幾丁聚醣酶與蛋白酶生產之影響..37
圖4.6 B. cereus TKU022培養於SHP培養基所生產幾丁聚醣酶與蛋白酶之生長曲線圖.....................................38
圖4.7 B. subtilis TKU007於SHP培養基所產蛋白酶及幾丁聚醣酶之生長曲線圖.........................................38
圖 4.8 TKU022 幾丁聚醣酶與蛋白酶活性關係...........40
圖4.9 B. cereus TKU022所生產幾丁聚醣酶與蛋白酶之純化分離流程圖.................................................51
圖4.10 TKU022幾丁聚醣酶與蛋白酶之DEAE-Sepharose CL-6B層析圖譜.................................................52
圖4.11 TKU022幾丁聚醣酶之Macro-Prep DEAE Cartridge層析圖譜.................................................52
圖4.12 TKU022蛋白酶之Phenyl Sepharose層析圖譜......53
圖4.13 TKU022幾丁聚醣酶之Sephacryl S-100層析圖譜...53
圖4.14 TKU022蛋白酶之Sephacryl S-100層析圖譜.......54
圖4.15 TKU022幾丁聚醣酶SDS-PAGE之分子量分析........56
圖 4.16 分子量標準品和蛋白酶於Sephacryl S-100之層析圖譜.................................................57
圖4.17 幾丁聚醣酶與蛋白酶之(A)最適反應pH (B)pH安定性...59
圖4.18 幾丁聚醣酶與蛋白酶之(A)最適反應溫度(B)熱安定性..60
圖4.19發酵上清液還原醣量、DPPH 自由基清除能力之影響與微生物生長之變化情形.........................................68
圖4.20 TKU022所生產幾丁寡醣對於L. paracasei TKU010生長影響.....................................................68

表目錄
                                         
表 2.1 Bacillus spp.酵素於工業上的應用..................3
表2.2 幾丁質與幾丁聚醣之應用............................6
表2.3 蛋白酶的分類......................................11
表2.4 蛋白酶的應用......................................12
表 4.1 B. cereus TKU022 生產幾丁聚醣酶之較適條件........33
表 4.2 B. cereus TKU022、B. subtilis TKU007、Bacillus sp. TKU004幾丁聚醣酶較適生產條件之比較......................39
表4.3 Bacillus sp. TKU022 幾丁聚醣酶之純化總表..........55
表4.4 Bacillus sp. TKU022 蛋白酶之純化總表..............55
表4.5 TKU022 幾丁聚醣酶胜肽質譜鑑定結果.................58
表4.6 金屬離子及化學藥品對幾丁聚醣酶及蛋白酶之影響......61
表4.7界面活性劑對幾丁聚醣酶及蛋白酶之影響...............62
表4.8 TKU022幾丁聚醣酶之基質特異性......................63
表4.9 TKU022蛋白酶之基質特異性..........................63
表4.10 Bacillus spp.幾丁聚醣酶特性比較..................64
表4.11 Bacillus spp.蛋白酶特性比較......................66
參考文獻
Adedapo AA, Jimoh FO, Koduru S, Masika PJ, Afolayan AJ. 2008. Evaluation of the medicinal potentials of the methanol extracts of the leaves and stems of Halleria lucida. Bioresource Technology 99: 4158-4163.
Aiba S. 1992. Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. International Journal of Biological Macromolecules 14: 225-228.
Aiba SI. 1994. Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydrate Research 265: 323-328.
Aktuganov GE, Shirokov AV, Melent'ev AI. 2003. Isolation and characterization of chitosanase from the strain Bacillus sp. 739. Applied Biochemistry and Microbiology 39: 469-474.
Al-Duais M, Hohbein J, Werner S, Böhm V, Jetschke G. 2009. Contents of vitamin C, carotenoids, tocopherols, and tocotrienols in the subtropical plant species Cyphostemma digitatum as affected by processing. Journal of Agricultural and Food Chemistry 57: 5420-5427.
Anwar A, Saleemuddin M. 1998. Alkaline proteases: a review. Bioresource Technology 64: 175-183.
Banik RM, Prakash M. 2004. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiological Research 159: 135-140.
Beg QK, Gupta R. 2003. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme and Microbial Technology 32: 294-304.
Benito MJ, Rodriguez M, Nunez F, Asensio MA, Bermudez ME, Cordoba JJ. 2002. Purification and characterization of an extracellular protease from Penicillium chrysogenum pg222 active against meat proteins. Applied and Environmental Microbiology 68: 3532-3536.
Bersanetti PA, Park HY, Bae KS, Son KH, Shin DH, Hirata IY. 2005. Characterization of arazyme, an exocellular metalloprotease isolated from Serratia proteamaculans culture medium. Enzyme and Microbial Technology 37: 574-581.
Bhaskar N, Sudeepa ES, Rashmi HN, Tamil Selvi A. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresource Technology 98: 2758-2764.
Chang WT, Chen YC, Jao CL. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology 98: 1224-1230.
Chen H, Liu LJ, Zhu JJ, Xu B, Li R. 2010. Effect of soybean oligosaccharides on blood lipid, glucose levels and antioxidant enzymes activity in high fat rats. Food Chemistry 119: 1633-1636.
Chen WC, Tseng WN, Hsieh JL, Wang YS, Wang SL. 2010. Biodegradation and microbial community changes upon shrimp shell wastes amended in mangrove river sediment. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes 45: 473 - 477.
Chiang CL, Chang CT, Sung HY. 2003. Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme and Microbial Technology 32: 260-267.
Chien PJ, Sheu F, Lin HR. 2007. Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life. Food Chemistry 100: 1160-1164.
Choi YJ, Kim EJ, Piao Z, Yun YC, Shin YC. 2004. Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Applied and Environmental Microbiology 70: 4522-4531.
Contini M, Baccelloni S, Massantini R, Anelli G. 2008. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chemistry 110: 659-669.
Denizci AA, Kazan D, Abeln ECA, Erarslan A. 2004. Newly isolated Bacillus clausii GMBAE 42: an alkaline protease producer capable to grow under higly alkaline conditions. Journal of Applied Microbiology 96: 320-327.
Erkan N, Ayranci G, Ayranci E. 2008. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chemistry 110: 76-82.
Fajardo-Lira C, Oria M, Hayes KD, Nielsen SS. 2000. Effect of Psychrotrophic bacteria and of an isolated protease from Pseudomonas fluorescens M3/6 on the plasmin system of fresh milk. Journal of Dairy Science 83: 2190-2199.
Gao XA, Ju WT, Jung WJ, Park RD. 2008. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers 72: 513-520.
Gardner PT, White TAC, McPhail DB, Duthie GG. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chemistry 68: 471-474.
Ghaouth AE, Arul J, Grenier J, Asselin A. 1992. Effect of chitosan and other polyions on chitin deacetylase in Rhizopus stolonifer. Experimental Mycology 16: 173-177.
Ghorbel-Frikha B, Sellami-Kamoun A, Fakhfakh N, Haddar A, Manni L, Nasri M. 2005. Production and purification of a calcium-dependent protease from Bacillus cereus BG1. Journal of Industrial Microbiology and Biotechnology 32: 186-194.
Grazziotin A, Pimentel FA, de Jong EV, Brandelli A. 2006. Nutritional improvement of feather protein by treatment with microbial keratinase. Animal Feed Science and Technology 126: 135-144.
G&uuml;l&ccedil;in I, K&uuml;frevioglu &Ouml;I, Oktay M, B&uuml;y&uuml;kokuroglu ME. 2004. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology 90: 205-215.
Harish Prashanth KV, Tharanathan RN. 2007. Chitin/chitosan: modifications and their unlimited application potential--an overview. Trends in Food Science & Technology 18: 117-131.
Hartmann R, Meisel H. 2007. Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology 18: 163-169.
He H, Chen X, Sun C, Zhang Y, Gao P. 2006. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Bioresource Technology 97: 385-390.
He H, Silo-Suh LA, Handelsman J, Clardy J. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Letters 35: 2499-2502.
Hyun CK, Shin HK. 2000. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochemistry 36: 65-71.
Ignatova T, Iliev I, Kirilov N, Vassileva T, Dalgalarrondo Ml, Haertlé T. 2009. Effect of oligosaccharides on the growth of Lactobacillus delbrueckii subsp. bulgaricus strains isolated from dairy products. Journal of Agricultural and Food Chemistry 57: 9496-9502.
Imoto T, Yagishita K. 1971. A simple activity measurement by lysozyme. Agricultural and Biological Chemistry 35:1154-1156.
Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V. 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: 87-91.
Izume M, Nagae S, Kawagishi H, Mitsutomi M, Ohtakara A. 1992. Action pattern of Bacillus sp. No. 7-M chitosanase on partially N-acetylated chitosan. Bioscience, Biotechnology, and Biochemistry 56: 448-453.
James J, Simpson BK. 1996. Application of enzymes in food processing. Critical Reviews in Food Science and Nutrition 36: 437-463.
Jeon YJ, Park PJ, Kim SK. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers 44: 71-76.
Jo YY, Jo KJ, Jin YL, Kim KY, Shim JH, Kim YW. 2003. Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16. Bioscience, Biotechnology and Biochemistry 67: 1875-1882.
Jones BL, Fontanini D, Jarvinen M, Pekkarinen A. 1998. Simplified endoproteinase assays using gelatin or azogelatin. Analytical Biochemistry 263: 214-220.
Joo HS, Kumar CG, Park GC, Kim KT, Paik SR, Chang CS. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochemistry 38: 155-159.
Kim PI, Kang TH, Chung KJ, Kim IS, Chung KC. 2004. Purification of a constitutive chitosanase produced by Bacillus sp. MET 1299 with cloning and expression of the gene. FEMS Microbiology Letters 240: 31-39.
Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Applied and Environmental Microbiology 62: 2482-2488.
Kimoto H, Kusaoke H, Yamamoto I, Fujii Y, Onodera T, Taketo A. 2002. Biochemical and genetic properties of Paenibacillus glycosyl hydrolase having chitosanase activity and discoidin domain. Journal of Biological Chemistry 277: 14695-14702.
Knorr D. 1984. Use of chitinous polymers in food - a challenge for food research and development. Food Technology 38: 85-97.
Kumar CG. 2002. Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Letters in Applied Microbiology 34: 13-17.
Kumar CG, Takagi H. 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances 17: 561-594.
Kumar, M. N. V. R., 2000. A review of chitin and chitosan applications. 
   Reactive and Functional Polymers 46, 1-27.
Kumar S, Sharma NS, Saharan MR, Singh R. 2005. Extracellular acid protease from Rhizopus oryzae: purification and characterization. Process Biochemistry 40: 1701-1705.
Kurakake M, Yo-U, S., Nakagawa, K., Sugihara, M., Komaki, T. 2000. Properties of chitosanase from Bacillus cereus S1. Current Microbiology 40: 6-9.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Lahl WJ, Braun SD. 1994. Enzymatic production of protein hydrolysates for food use. Food Technology 48: 68-71.
Larson NK, Ismail B, Nielsen SS, Hayes KD. 2006. Activity of Bacillus polymyxa protease on components of the plasmin system in milk. International Dairy Journal 16: 586-592.
Lee YS, Yoo JS, Chung SY, Lee YC, Cho YS, Choi YL. 2006. Cloning, purification, and characterization of chitosanase from Bacillus sp. DAU101. Applied Microbiology and Biotechnology 73: 113–121.
Liang TW, Chen YJ, Yen YH, Wang SL. 2007. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochemistry 42: 527-534.
Lin HY, Chou CC. 2004. Antioxidative activities of water-soluble disaccharide chitosan derivatives. Food Research International 37: 883-889.
Lo SS, Liang SM, Liu TY. 1984. Intracellular form of streptococcal proteinase: A clue to a novel mechanism of secretion. Analytical Biochemistry 136: 89-92.
Loffler A. 1986. Proteolytic enzymes:sources and applications. Food Technology 40: 63-70.
Ma C, Ni X, Chi Z, Ma L, Gao L. 2007. Purification and characterization of an alkaline protease from the marine yeast Aureobasidium pullulans for bioactive peptide production from different sources. Marine Biotechnology 9: 343–351.
Masaki A, Fukamizo T, Otakara A, Torikata T, Hayashi K, Imoto T. 1981. Lyzome-catalyzed reaction of chitooligosaccharides. The Journal of Biochemistry 90: 5-27.
Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J. 1996. Production of kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology 62: 3061-3065.
Mohamed SA, Fahmy AS, Mohamed TM, Hamdy SM. 2005. Proteases in egg, miracidium and adult of Fasciola gigantica. Characterization of serine and cysteine proteases from adult. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 142: 192-200.
Muraki E, Yuka F, Kojima H. 1993. Preparation and crystallization of D-glucosamine oligosaccharides with dp 6-8. Carbohydrate Research 239: 227-237.
Nduwimana J, Guenet L, Dorval I, Blayau M, Le Gall JY, Le Treut A. 1995. Proteases [LES PROTEASES]. Annales de Biologie Clinique 53: 251-264.
Neri DFM, Balc&atilde;o VM, Costa RS, Rocha ICAP, Ferreira EMFC, Torres DPM. 2009. Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chemistry 115: 92-99.
Oh YS, Shih IL, Tzeng YM, Wang SL. 2000. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme and Microbial Technology 27: 3-10.
Omumasaba CA, Yoshida N, Sekiguchi Y, Kariya K, Ogawa K. 2000. Purification and some properties of a novel chitosanase from Bacillus subtilis KH1. Journal of General and Applied Microbiology 46: 19-27.
Pan Y, Wang K, Huang S, Wang H, Mu X, He C. 2008. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chemistry 106: 1264-1270.
Qi H, Zhang Q, Zhao T, Chen R, Zhang H, Niu X. 2005. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules 37: 195-199.
Qiang X, YongLie C, QianBing W. 2009. Health benefit application of functional oligosaccharides. Carbohydrate Polymers 77: 435-441.
Qihe C, Guoqing H, Yingchun J, Hui N. 2006. Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chemistry 98: 624-629.
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62: 597-635.
Rawlings ND, Barrett AJ. 1993. Evolutionary families of peptidases. Biochemical Journal 290: 205-218.
Sachindra NM, Mahendrakar NS. 2005. Extractability of carotenoids from shrimp waste in vegetable oils and process optimization. Bioresource Technology 96: 1195 - 1200.
Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology 50: 1-17.
Shahidi F, Arachchi JKV, Jeon YJ. 1999. Food applications of chitin and chitosans. Trends in Food Science & Technology 10: 37-51.
Shikha, Sharan A, Darmwal NS. 2007. Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresource Technology 98: 881-885.
Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40: 945-948.
Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J. 1998. Target range of zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Current Microbiology 37: 6-11.
Simkhada JR, Mander P, Cho SS, Yoo JC. 2010. A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochemistry 45: 88-93.
Su C, Wang D, Yao L, Yu Z. 2006. Purification, characterization, and gene cloning of a chitosanase from Bacillus species strain S65. Journal of Agricultural and Food Chemistry 54: 4208-4214.
Suetsuna K. 2000. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Marine Biotechnology 2: 5-10.
Tang XM, Lakay FM, Shen W, Shao WL, Fang HY, Prior BA. 2004. Purification and characterisation of an alkaline protease used in tannery industry from Bacillus licheniformis. Biotechnology Letters 26: 1421-1424.
Tanskul S, Hiraga K, Takada K, Rungratchote S, Suntinanalert P, Oda K. 2009. An alkaline serine-proteinase from a bacterium isolated from bat feces: purification and characterization. Bioscience, Biotechnology and Biochemistry 73: 2393-2398.
Todd EW. 1949. Quantitative studies on the total plasmin and trypsin inhibitor of human blood serum. Journal of Experimental Medicine 39: 295-308.
Toyokawa Y, Takahara H, Reungsang A, Fukuta M, Hachimine Y, Tachibana S. 2010. Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Applied Microbiology and Biotechnology 86: 1867 - 1875.
Vilca-Quispe A, Ponce-Soto LA, Winck FV, Marangoni S. 2010. Isolation and characterization of a new serine protease with thrombin-like activity (TLBm) from the venom of the snake Bothrops marajoensis. Toxicon 55: 745-753.
Wang SL, Chao CH, Liang TW, Chen CC. 2009a. Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology 11: 334-344.
Wang SL, Chen HJ, Liang TW, Lin YD. 2009b. A novel nattokinase produced by Pseudomonas sp. TKU015 using shrimp shells as substrate. Process Biochemistry 44: 70-76.
Wang SL, Chen SJ, Wang CL. 2008a. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydrate Research 343: 1171-1179.
Wang SL, Chen TR, Liang TW, Wu PC. 2009c. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochemical Engineering Journal 48: 111-117. 
Wang SL, Chio SH. 1998. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme and Microbial Technology 22: 629-633. 
Wang SL, Hsu WT, Liang TW, Yen YH, Wang CL. 2008c. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresource Technology 99: 5679-5686.
Wang SL, Huang TY, Wang CY, Liang TW, Yen YH, Sakata Y. 2008b. Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Bioresource Technology 99: 5436-5443.
Wang SL, Kao TY, Wang CL, Yen YH, Chern MK, Chen YH. 2006a. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology 39: 724-731. 
Wang SL, Lin HT, Liang TW, Chen YJ, Yen YH, Guo SP. 2008d. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresource Technology 99: 4386-4393.
Wang SL, Lin TY, Yen YH, Liao HF, Chen YJ. 2006b. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Research 341: 2507-2515.
Wang SL, Liou JY, Liang TW, Liu KC. 2009d. Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochemistry 44: 854-861.
Wang SL, Liu KC, Liang TW, Kuo YH, Wang CY. 2010. In vitro antioxidant activity of liquor and semi-purified fractions from fermented squid pen biowaste by Serratia ureilytica TKU013. Food Chemistry 119: 1380-1385. 
Wang SL, Peng JH, Liang TW, Liu KC. 2008e. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydrate Research 343: 1316-1323. 
Wang SL, Wang CY, Huang TY. 2008f. Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012. Bioresource Technology 99: 3411-3417.
Wang SL, Wu PC, Liang TW. 2009e. Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydrate Research 344: 979-984.
Wang SL, Yang CW, Liang TW, Peng JH, Wang CL. 2009f. Degradation of chitin and production of bioactive materials by bioconversion of squid pens. Carbohydrate Polymers 78: 205-212.
Wang SL, Yeh PY. 2006. Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry 41: 1545-1552.
Wang SL, Yeh PY. 2008. Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007. Process Biochemistry 43: 132-138.
Wiwat C, Siwayaprahm P, Bhumiratana A. 1999. Purification and characterization of chitinase from Bacillus circulans No.4.1. Current Microbiology 39: 134-140.
Yen MT, Yang JH, Mau JL. 2009. Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers 75: 15-21.
Yoo JI, Lee YS, Song CY, Kim BS. 2004. Purification and characterization of a 43-kilodalton extracellular serine proteinase from Cryptococcus neoformans. Journal of Clinical Microbiology 42: 722-726.
Yoon HG, Kim HY, Kim HK, Hong BS, Shin DH, Cho HY. 2001. Thermostable chitosanase from Bacillus sp. strain CK4: its purification, characterization, and reaction patterns. Bioscience, Biotechnology, and Biochemistry 65: 802-809.
Zhou W, Yuan H, Wang J, Yao J. 2008. Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Letters in Applied Microbiology 46: 49-54.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信