淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2307201014254500
中文論文名稱 流動型態對直接接觸式薄膜蒸餾滲透通量之影響
英文論文名稱 Effects of Flow Patterns on the Permeate Flux of Direct Membrane Distillation
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 陳威州
研究生英文姓名 Wei-Chou Chen
電子信箱 william73032@hotmail.com
學號 697400637
學位類別 碩士
語文別 中文
口試日期 2010-07-16
論文頁數 116頁
口試委員 指導教授-鄭東文
委員-李篤中
委員-童國倫
委員-何啟東
委員-鄭東文
委員-莊清榮
中文關鍵字 直接接觸式薄膜蒸餾  流動型態  海水  Dusty-Gas model  極化 
英文關鍵字 Direct Contact Membrane Distillation  Flow patterns  Seawater  Dusty-Gas model  Polarization 
學科別分類
中文摘要 本研究以聚四氟乙烯薄膜(PTFE)利用平板型直接接觸薄膜蒸餾系統蒸餾海水,主要探討系統內流體流動型態對薄膜蒸餾之滲透通量的影響情形,並預測蒸餾海水之理論滲透通量。實驗將以溫度差、進料流量、模組傾斜、曝氣量、改良模組及超音波等六種操作方式影響進料側流體流動型態。
在單一液相薄膜蒸餾系統中,隨著溫度差上升則滲透通量有明顯增加,但極化現象也最嚴重。進料流量提高僅增加對流熱傳係數,因此滲透通量提昇很有限。而若將模組傾斜45°時,會由於不穩定自然對流關係促進滲透通量提昇最多。然而在改良模組實驗中,進側側模組之小範圍凹孔會造成流體亂流使得滲透通量明顯提高。至於超音波則在單一液相系統且適當操作時間下較能發揮其效果,但滲透通量提昇有限。
在氣液兩相系統中,隨著進料側曝氣量越大則滲透通量提昇越多。而隨著曝氣量的增加,若改變模組傾斜角會使滲透通量變化幅度越大。又因曝氣已能有效減緩極化現象,因此若再增加其它操作條件,如改良模組、超音波,則滲透通量增加的會很有限。
藉由Dusty-Gas model並假設海水相當NaCl溶液濃度所預測薄膜蒸餾海水之理論滲透通量,其理論計算的結果與實驗相當符合。結果顯示出溫度極化係數介於0.4~0.6之間;濃度極化係數隨著溫度差或進料流速減少而有明顯的增加,故濃度極化現象為影響滲透通量的主要影響因素。因此為預測海水於薄膜蒸餾的行為所做之假設是為合理的,並可了解極化現象對滲透通量的影響情形,以便為提昇滲透通量而優先預防。
英文摘要 The effects of flow patterns on the permeate flux of direct contact membrane distillation (DCMD) was studied in this work. The operating parameters included temperature difference, feed flow rate, module inclination angle, gas flow rate, module modification and ultrasonic irradiation. The DCMD experiment was conducted in a flat sheet module with using 0.2 µm pore size polytetrafluoroethylene (PTFE) membrane. The pre-filtrated seawater from Tamsui coast area was used as feed. Permeate fluxes were measured under various operating parameters. Theoretical flux prediction model was also presented for single-liquid phase and two phase in DCMD.
In the operation of single-liquid phase membrane distillation, the results showed that the permeate flux increased significantly with increasing the temperature difference, but increased slightly with the feed flow rate in presented laminar flow region. As the angle of inclination from the horizontal (flow below membrane) increased, the permeate flux increased, and reached a maximum at 45°, and then decreased. A small area of concave hole on the feed module side which caused turbulence to feed stream allowed flux enhancement significantly. The effect of ultrasonic irradiation enhance on the permeate flux was finite.
In the operation of two phase membrane distillation, the permeate flux increased apparently with increasing the air sparging in the feed side. With changing the membrane inclination, the flux enhancement also increased with increasing the gas velocity. However air sparging could already effectively reduce the polarization phenomena, the flux enhancement by other operational parameters was slight.
The flux prediction model was derived from the Dusty-Gas model combined with assuming the seawater to the equivalent NaCl solution. The prediction fluxes agreed very well with the experimental results. The theoretical calculations showed that the temperature polarization coefficients were in the range of 0.4 to 0.6 that was reasonable for DCMD operation; and the concentration polarization coefficients increased significantly as the temperature difference increased or the flow rate decreased. The presented flux model can be applied to forecast the effect of polarization on the flux and then prevent it in advance.
論文目次 目錄
誌謝 I
中文摘要 II
英文摘要 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 薄膜分離程序 2
1.3 薄膜蒸餾 5
1.4 本研究之目標 7
第二章 文獻回顧 10
2.1 薄膜蒸餾相關研究 10
2.2 薄膜蒸餾法之種類 15
2.2.1 直接接觸式薄膜蒸餾 15
2.2.2 空氣間隙式薄膜蒸餾 15
2.2.3 空氣掃掠式薄膜蒸餾 16
2.2.4 真空式薄膜蒸餾 16
2.3 薄膜之性質 17
2.4 影響滲透通量的因素 18
2.5 提高滲透通量的方法 20
第三章 理論計算 34
3.1 直接接觸式薄膜蒸餾理論分析之假設 34
3.2 質量傳送 35
3.3 熱量傳送 39
3.4 極化現象之影響 41
3.4.1 溫度極化 41
3.4.2 濃度極化 42
3.5 熱質傳經驗方程式 45
第四章 實驗裝置與方法 50
4.1 實驗裝置 50
4.2 實驗設備 51
4.3 實驗藥品與薄膜材料 52
4.3.1 實驗藥品 52
4.3.2 薄膜材料 52
4.4 實驗步驟 52
4.5 操作條件 53
4.5.1 系統操作條件 53
4.5.2 流量計校正與雷諾數計算 54
4.6 分析方法 54
4.6.1 分析儀器 54
4.6.2 NaCl含量的分析方法與條件 55
4.6.3 陽離子的分析方法與條件 55
4.6.4 陰離子的分析方法與條件 55
4.6.5 濁度的分析方法與條件 56
第五章 結果與討論 65
5.1 海水定性與定量分析結果 65
5.2 薄膜純水滲透通量 67
5.3 單一液相流態系統 68
5.3.1 無傾斜模組下流速與溫度對滲透通量之影響 68
5.3.2 傾斜模組下進料流量對滲透通量之影響 68
5.3.3 改良進料側模板凹孔對滲透通量之影響 70
5.3.4 外加超音波對滲透通量之影響 71
5.4 氣液兩相流態系統 73
5.4.1 無傾斜模組下曝氣量對滲透通量之影響 73
5.4.2 傾斜模組下通氣量對滲透通量之影響 73
5.4.3 改良進料側模板凹孔下曝氣量對滲透通量之影響 75
5.4.4 外加超音波下曝氣量對滲透通量之影響 75
5.5 阻隔鹽類之效能與實驗前後純水滲透通量變化 77
5.6 理論計算 78
5.6.1 滲透通量之估算 78
5.6.2 DCMD系統中溫度極化之現象 81
5.6.3 DCMD系統中濃度極化之現象 82
第六章 結論 100
符號說明 102
參考文獻 105
附錄A 111
附錄B 112
附錄C 114
附錄D 116

圖目錄
圖1.1 薄膜分離程序之分類 8
圖1.2 薄膜蒸餾物流流動示意圖 9
圖2.1 DCMD 示意圖 28
圖2.2 AGMD 示意圖 28
圖2.3 SGMD 示意圖 29
圖2.4 VMD 示意圖 29
圖2.5 提高濾速之方法 30
圖2.6 逆洗程序示意圖 31
圖2.7 流體亂流產生器 32
圖2.8 氣液兩相的流動型態 33
圖3.1 DCMD系統熱質傳示意圖 46
圖3.2 DCMD質傳阻力示意圖 47
圖3.3 Multipore size model之電路阻力類比示意圖 47
圖3.4 DCMD熱傳阻力示意圖 48
圖3.5 大氣壓下NaCl溶液的密度變化圖 49
圖4.1 DCMD 模組示意圖 57
圖4.2 DCMD 模組設計示意圖(進料側) 58
圖4.3 DCMD 模組設計示意圖(冷卻水側) 59
圖4.4 直接接觸薄膜蒸餾實驗裝置圖 60
圖4.5 進料流體流量計校正曲線 61
圖4.6 冷卻水流體流量計校正曲線 61
圖4.7 進料流體流量與掃流速度(uL)之關係圖 62
圖4.8 冷卻水流體流量與掃流速度(up)之關係圖 62
圖4.9 進料流體流量與Reynold number之關係圖 63
圖4.10 冷卻水流體流量與Reynold number之關係圖 63
圖5.1 海水樣品層析圖譜 84
圖5.2 不同溫度差下改變進料流量之實驗前純水滲透通量 84
圖5.3 不同溫度差下改變進料流量之滲透通量 85
圖5.4 不同進料流量下改變模組傾斜角度之滲透通量 85
圖5.5 模板凹孔於不同進料流量下對滲透通量的影響 86
圖5.6 凹孔於進料側模板之不同位置下對滲透通量的影響 86
圖5.7 不同進料流量下輸入150 W超音波對滲透通量的影響 87
圖5.8 輸入150 W超音波於進料側不同位置下對滲透通量的影響 87
圖5.9 不同進料流量下輸入150 W超音波於進料側之不同位置對滲透通量的影響 88
圖5.10 不同曝氣量下之滲透通量 88
圖5.11 不同曝氣量下改變模組傾斜角度之滲透通量 89
圖5.12 不同通氣量下模板凹孔對滲透通量的影響 89
圖5.13 不同曝氣量下輸入150 W超音波對滲透通量的影響 90
圖5.14 不同輸入150 W超音波之型式下對滲透通量的影響 90
圖5.15 滲透通量大小排序 91
圖5.16 不同溫度差下改變進料流量之滲透液導電度與濃度 92
圖5.17 不同曝氣量下改變模組傾斜角之滲透液導電度與濃度 92
圖5.18 改良模組下改變進料流量之滲透液導電度與濃度 93

圖5.19 輸入150 W超音波於進料側的不同位置下之滲透液導電度與濃度 93
圖5.20 不同操作條件下實驗前後純水滲透通量之變化圖 94
圖5.21 直接接觸式薄膜蒸餾理論計算流程圖 95
圖5.22 不同溫度差下改變進料流量之理論與實驗滲透通量比較圖 96
圖5.23 不同曝氣量下改變模組傾斜角之理論與實驗滲通量比較圖 96
圖5.24 不同進料流量下理論溫度極化係數之變化圖 97
圖5.25 不同進料流量下理論濃度極化係數之變化圖 97
圖5.26 凹孔於進料側模組之相對位置 98
圖5.27 超音波Probe於進料側模組之相對位置 98
圖A-1 NaCl檢量線 111
圖C-1 Cl- 檢量線 115
圖C-2 SO42- 檢量線 115

表目錄
表1.1 不同操作程序之驅動力分類 8
表3.1 NaCl溶液的物性參數 48
表4.1 平板薄膜性質說明 64
表5.1 標準海水組成之比較 99

參考文獻 參考文獻
Abdel-Ghani, M. S., “Cross-flow ultrafiltration of an aqueous polymer foam solution produced by gas sparging”, Journal of Membrane Science, 171, 105-117, (2000).
Al-Anezi, K. and Hilal, N., “Scale formation in desalination plants: effect of carbon dioxide solubility”, Desalination, 204, 385-402, (2007).
Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H. and Drioli, E., “Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation”, Journal of Membrane Science, 323, 85-98, (2008).
Baird, M. H. I., Duncan, G. J., Smith, J. I. and Taylor, J., “Heat transfer in pulsed turbulent flow”, Chemical Engineering Science, 21, 197-199, (1966).
Bauser, H., Chmiel, H., Stroh, N. and Walitza, E., “Control of concentration polarization and fouling of membranes in medical, food and biotechnical applications”, Journal of Membrane Science, 27, 195-202, (1986).
Belfort, G., “Membrane modules: comparison of different configurations using fluid mechanics”, Journal of Membrane Science, 35, 245-270, (1988).
Belfort, G., “Fluid mechanics in membrane filtration: Recent developments”, Journal of Membrane Science, 40, 123-147, (1989).
Bellara, S. R., Cui, Z. F. and Pepper, D. S., “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes”, Journal of Membrane Science, 121, 175-184, (1996).
Bendiksen, K. H., “An experimental investigation of the motion of long bubbles in inclined tubes”, International Journal of Multiphase Flow, 10, 467-483, (1984).
Bird, R. B., Stewart, W. E. and Lightfoot, E. N., “Transport phenomena”, 2nd ed., Wiley, (2002).
Cabassud, C., Laborie, S. and Lainé, J. M., “How slug flow can improve ultrafiltration flux in organic hollow fibres”, Journal of Membrane Science, 128, 93-101, (1997).
Cath, T. Y., Adams, V. D. and Childress, A. E., “Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement”, Journal of Membrane Science, 228, 5-16, (2004).
Cheng, T.-W., “Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane”, Journal of Membrane Science, 196, 103-110, (2002).
Cheng, T. W., Yeh, H. M. and Gau, C. T., “Resistance analyses for ultrafiltration in tubular membrane module”, Separation Science and Technology, 32, 2623, (1997).
Cheryan, M., “Ultrafiltration and Microfiltration Handbook”, 2nd ed., Technomic Publishing Inc., Pennsylvania, (1998).
Chong, R., Jelen, P. and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Separation Science and Technology, 20, 393-402, (1985).
Criscuoli, A., Carnevale, M. C. and Drioli, E., “Evaluation of energy requirements in membrane distillation”, Chemical Engineering and Processing: Process Intensification, 47, 1098-1105, (2008).
Cui, Z. F. and Wright, K. I. T., “Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions”, Journal of Membrane Science, 90, 183-189, (1994).
Cui, Z. F. and Wright, K. I. T., “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, Journal of Membrane Science, 117, 109-116, (1996).
Delgrange-Vincent, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L. and Laîné, J. M., “Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production”, Desalination, 131, 353-362, (2000).
Essemiani, K., Ducom, G., Cabassud, C. and Liné, A., “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chemical Engineering Science, 56, 6321-6327, (2001).
Fane, A. G., Fell, C. J. D. and Suki, A., “The effect of ph and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, Journal of Membrane Science, 16, 195-210, (1983).
Findley, M. E., “Vaporization through porous membranes”, I&EC Process Design and Development, 6, 226-230, (1967).
Findley, M. E., Tanna, V. V., Rao, Y. B. and Yeh, C. L., “Mass and heat transfer relations in evaporation through porous membranes”, AIChE Journal, 15, 483-489, (1969).
Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E. and Larbot, A., “Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes”, Desalination, 217, 260-266, (2007).
Geankoplis, C. J., “Transport Process and Unit Operation”, 4th ed., Pearson Education, (2003).
Ghosh, R. and Cui, Z. F., “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, Journal of Membrane Science, 162, 91-102, (1999).
Gryta, M., “Influence of polypropylene membrane surface porosity on the performance of membrane distillation process”, Journal of Membrane Science, 287, 67-78, (2007).
Gryta, M., “Alkaline scaling in the membrane distillation process”, Desalination, 228, 128-134, (2008a).
Gryta, M., “Fouling in direct contact membrane distillation process”, Journal of Membrane Science, 325, 383-394, (2008b).
Gryta, M., Tomaszewska, M., Grzechulska, J. and Morawski, A. W., “Membrane distillation of NaCl solution containing natural organic matter”, Journal of Membrane Science, 181, 279-287, (2001).
Gryta, M., Tomaszewska, M. and Morawski, A. W., “Membrane distillation with laminar flow”, Separation and Purification Technology, 11, 93-101, (1997).
Gupta, B. B., Blanpain, P. and Jaffrin, M. Y., “Permeate flux enhancement by pressure and flow pulsations in microfiltration with mineral membranes”, Journal of Membrane Science, 70, 257-266, (1992).
Gupta, B. B., Howell, J. A., Wu, D. and Field, R. W., “A helical baffle for cross-flow microfiltration”, Journal of Membrane Science, 102, 31-42, (1995).
Hall Taylor, N., Hewitt, G. F. and Lacey, P. M. C., “The motion and frequency of large disturbance waves in annular two-phase flow of air-water mixtures”, Chemical Engineering Science, 18, 537-552, (1963).
He, F., Gilron, J., Lee, H., Song, L. and Sirkar, K. K., “Potential for scaling by sparingly soluble salts in crossflow DCMD”, Journal of Membrane Science, 311, 68-80, (2008).
He, F., Sirkar, K. K. and Gilron, J., “Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation”, Journal of Membrane Science, 345, 53-58, (2009).
Hsu, S. T., Cheng, K. T. and Chiou, J. S., “Seawater desalination by direct contact membrane distillation”, Desalination, 143, 279-287, (2002).
Incropera, F. P. and Dewitt, D. P., “Fundamentals of heat and mass transfer”, 5th ed., Wiley, (2002).
Iversen, S. B., Bhatia, V. K., Dam-Johansen, K. and Jonsson, G., “Characterization of microporous membranes for use in membrane contactors”, Journal of Membrane Science, 130, 205-217, (1997).
Jiao, B., Cassano, A. and Drioli, E., “Recent advances on membrane processes for the concentration of fruit juices: a review”, Journal of Food Engineering, 63, 303-324, (2004).
Khayet, M., Velázquez, A. and Mengual, J. I., “Direct contact membrane distillation of humic acid solutions”, Journal of Membrane Science, 240, 123-128, (2004).
Kim, B. S. and Chang, H. N., “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation, 2, 9-23, (1991).
Kroner, K. H. and Nissinen, V., “Dynamic filtration of microbial suspensions using an axially rotating filter”, Journal of Membrane Science, 36, 85-100, (1988).
Lawson, K. W. and Lloyd, D. R., “Review Membrane distillation”, Journal of Membrane Science, 124, 1-25, (1997).
Lee, C. K., Chang, W. G. and Ju, Y. H., “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotechnology Bioengineering, 41, 525-530, (1993).
Martínez-Díez, L., Florido-Díaz, F. J. and Vázquez-González, M. I., “Study of evaporation efficiency in membrane distillation”, Desalination, 126, 193-198, (1999).
Martínez-Díez, L. and Vázquez-González, M. I., “Temperature and concentration polarization in membrane distillation of aqueous salt solutions”, Journal of Membrane Science, 156, 265-273, (1999).
Martínez, L., M., J. and Rodríguez-Maroto, “Membrane thickness reduction effects on direct contact membrane distillation performance”, Journal of Membrane Science, 312, 143-156, (2008).
Martínez, L. and Rodríguez-Maroto, J. M., “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers”, Journal of Membrane Science, 274, 123-137, (2006).
Mercier-Bonin, M., Lagane, C. and Fonade, C., “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, Journal of Membrane Science, 180, 93-102, (2000).
Mercier, M., Fonade, C. and Lafforgue-Delorme, C., “How slug flow can enhance the ultrafiltration flux in mineral tubular membranes”, Journal of Membrane Science, 128, 103-113, (1997).
Michaels, A. S., “New separation technique for the CPI”, Chemical Engineering and Processing: Process Intensification, 64, 31-35, (1968).
Millward, H. R., Bellhouse, B. J. and Walker, G., “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, Journal of Membrane Science, 106, 269-279, (1995).
Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition paint composition”, U. S. Patent., 4, 412, (1983).
Mulder, M., “Basic principles of membrane technology”, Trans.): Springer, (1996).
Perry, R. H., “Perry's chemical engineers' handbook”, 8th ed., McGraw-Hill, New York, (2008).
Phattaranawik, J., Jiraratananon, R. and Fane, A. G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation”, Journal of Membrane Science, 215, 75-85, (2003a).
Phattaranawik, J., Jiraratananon, R. and Fane, A. G., “Heat transport and membrane distillation coefficients in direct contact membrane distillation”, Journal of Membrane Science, 212, 177-193, (2003b).
Schofield, R. W., Membrane distillation, Doctor of PHilosophy Thesis, The University of New South Wales, (1989).
Schofield, R. W., Fane, A. G. and Fell, C. J. D., “Heat and mass transfer in membrane distillation”, Journal of Membrane Science, 33, 299-313, (1987).
Schofield, R. W., Fane, A. G., Fell, C. J. D. and Macoun, R., “Factors affecting flux in membrane distillation”, Desalination, 77, 279-294, (1990).
Smith, J. M., Van Ness, H. C. and Abbott, M. M., “Introduction to chemical engineering thermodynamics”, 4th ed., McGraw-Hill, (2001).
Smith, S. R. and Cui, Z. F., “Gas-slug enhanced hollow fibre ultrafiltration--an experimental study”, Journal of Membrane Science, 242, 117-128, (2004).
Smolders, K. and Franken, A. C. M., “Terminology of Membrane Distillation”, Desalination, 72, 249-262, (1989).
Srisurichan, S., Jiraratananon, R. and Fane, A. G., “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process”, Journal of Membrane Science, 277, 186-194, (2006).
Taha, T. and Cui, Z. F., “CFD modelling of gas-sparged ultrafiltration in tubular membranes”, Journal of Membrane Science, 210, 13-27, (2002).
Taylor, G. I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil.Trans. Roy. Soc., 233, 298, (1923).
Tomaszewska, M., Gryta, M. and Morawski, A. W., “A study of separation by the direct-contact membrane distillation process”, Separations Technology, 4, 244-248, (1994).
Tun, C. M., Fane, A. G., Matheickal, J. T. and Sheikholeslami, R., “Membrane distillation crystallization of concentrated salts--flux and crystal formation”, Journal of Membrane Science, 257, 144-155, (2005).
Van der Waal, M. J. and Racz, I. G., “Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments”, Journal of Membrane Science, 40, 243-260, (1989).
Winzeler, H. B. and Belfort, G., “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, Journal of Membrane Science, 80, 35-47, (1993).
Youm, K. H., Fane, A. G. and Wiley, D. E., “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, Journal of Membrane Science, 116, 229-241, (1996).
Yun, Y., Ma, R., Zhang, W., Fane, A. G. and Li, J., “Direct contact membrane distillation mechanism for high concentration NaCl solutions”, Desalination, 188, 251-262, (2006).
韓知融, “鹽水濃度與組成對直接接觸式薄膜蒸餾膜結垢之影響”, 淡江大學化學工程與材料工程研究所碩士論文, (2009).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信