§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307201014132100
DOI 10.6846/TKU.2010.00795
論文名稱(中文) 非對稱固定壁濃度二行程平板型質量交換器效率改善之研究
論文名稱(英文) Performance Improvement on Double-pass Parallel-Plate Laminar Counterflow Mass Exchangers under Asymmetric Uniform Wall Concentrations
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 郭奇縉
研究生(英文) Chi-Jin Kuo
學號 697400975
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-06
論文頁數 146頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 蔡少偉
委員 - 葉和明
委員 - 何啟東
關鍵字(中) 共軛格拉茲問題
質量交換器
分離變數法
非對稱壁濃度
關鍵字(英) conjugated Graetz problem
external recycle
mass exchanger
separation of variables
asymmetric wall concentrations
第三語言關鍵字
學科別分類
中文摘要
本研究的目的為探討在非固定管壁濃度的狀態下,改變上下板壁濃度之比例對二行程平板型質量交換器的質傳之影響。本研究的二行程數學模型所推導的偏微分方程組屬於共軛格拉茲系統,利用分離變數法(separation of variables)、層疊法(superposition method)和正交展開方法(orthogonal expansion technique),可求得通道內之濃度分佈及平均謝塢數(sherwood number),並探討上下板壁濃度的不同比例對質傳效率提昇百分比之影響。
結果顯示,上下壁濃度的比例不同,其質傳效率也隨之改變,且隨著質傳格拉茲數的增加,平均謝塢數也會提升而導致質傳效率增加,此外,中間薄膜位置的不同及薄膜的孔隙度也會對質傳效率造成一定的影響。同時因為迴流裝置的不同所造成的預混效應、流體滯留時間及能源消耗也會有所改變。將以上條件所得結果與單行程質量交換系統相互比較,以獲得最佳操作條件與設計參數。
英文摘要
A new device of double-pass mass exchanger under asymmetric wall concentrations is to divide a parallel-plate channel by inserting a permeable barrier into two subchannels.  The adjustment of the ratio of wall concentrations and the recycle effect was introduced to analyze the improvement of mass transfer efficiency in double-pass devices under asymmetric wall concentrations.  The theoretical formulation of such conjugated Graetz problems were developed and the analytical solutions were obtained by using the separation of variables and superposition method.  The theoretical predictions of the double-pass mass exchanger with external recycle were compared with those in single-pass devices under the same working dimensions.  The average outlet concentration distribution and mass-transfer efficiency improvement were represented graphically with mass-transfer Graetz number and permeable membrane location as parameters.  The effects of the membrane parameter and recycle ratio are also discussed in this study.
第三語言摘要
論文目次
中文摘要	  					I
英文摘要						II
目錄						III
圖目錄						VI
表目錄                                                 XIII
符號說明                                               XV

第一章	緒論………………………………………………………1
1.1	前言………………………………………………………1
1.2	迴流效應對系統的影響…………………………………3
1.3	研究動機與目的…………………………………………5
第二章	文獻回顧…………………………………………………6
2.1	文獻回顧…………………………………………………6
2.2	格拉茲問題………………………………………………8
第三章	基本理論…………………………………………………11
3.1	齊性解……………………………………………………19
3.1.1	二行程無迴流模型………………………………………19
3.1.2	管末端出口迴流模型……………………………………22
3.1.3	出口迴流至管末端模型…………………………………25
3.1.4	管末端迴流至入口模型…………………………………28
3.1.5	出口迴流至入口模型……………………………………31
3.2	完全解……………………………………………………34
3.2.1	二行程無迴流模型………………………………………36
3.2.2	管末端出口迴流模型……………………………………37
3.2.3	出口迴流至管末端模型…………………………………39
3.2.4	管末端迴流至入口模型…………………………………40
3.2.5	出口迴流至入口模型……………………………………42
3.3	平均謝塢數………………………………………………44
3.4	能源消耗之增加率問題…………………………………46
3.4.1	二行程無迴流模型………………………………………47
3.4.2	管末端出口迴流模型……………………………………47
3.4.3	出口迴流至管末端模型…………………………………48
3.4.4	管末端迴流至入口模型…………………………………48
3.4.5	出口迴流至入口模型……………………………………48
第四章	結果與討論………………………………………………49
4.1	二行程無迴流模型之結果與討論………………………49
4.2	管末端出口模型之結果與討論…………………………57
4.3	出口迴流至管末端模型之結果與討論…………………69
4.4	管末端迴流至入口模型之結果與討論…………………80
4.5	出口迴流至入口模型之結果與討論……………………94
4.6	增加的能源消耗問題……………………………………104
4.7	數值例……………………………………………………107
第五章	結論與建議………………………………………………116
5.1	二行程無迴流模型………………………………………116
5.2	管末端出口迴流模型……………………………………117
5.3	出口迴流至管末端模型…………………………………118
5.4	管末端迴流至入口模型…………………………………119
5.5	出口迴流至入口模型……………………………………120
5.6	五種模型之比較…………………………………………121
5.7	未來研究方向……………………………………………123
參考文獻												124
附錄(一)速度分佈											133
附錄(二)正交性質											135
附錄(三)積分公式											139
附錄(四)單行程無迴流模型				142
圖目錄
圖3.1 	二行程無迴流之平板式質量交換系統………………...20
圖3.2	管末端出口迴流迴流之平板式質量交換系統………...23
圖3.3	出口迴流至管末端之平板式質量交換系統…………26
圖3.4	管末端迴流至入口之平板式質量交換系統…………29
圖3.5	出口迴流至入口之平板式質量交換系統……………...32
圖4.1.1     二行程無迴流裝置,在 , 時,改變薄膜位置之無因次出口濃度對質傳格拉茲數 的關係………51
圖4.1.2     二行程無迴流裝置,在 0.5時,以不同 來對比,改變薄膜參數來看無因次出口濃度對質傳格拉茲數 的關係……………………………………………………...52
圖4.1.3	二行程無迴流裝置, 時,不同 間作對比,改變薄膜位置之平均謝塢數 對質傳格拉茲數 的關係
	…………………………………………………………...53
圖4.1.4	二行程無迴流裝置,在 0.5時,以不同 來對比,改變薄膜參數來看平均謝塢數 對質傳格拉茲數 的關係……………………………………………………...54
圖4.1.5	二行程無迴流裝置, 時,不同 間作對比,改變薄膜位置之質量傳送效率 對質傳格拉茲數 的關係
	…………………………………………………………...55
圖4.1.6	二行程無迴流裝置, 時,不同 間作對比,改變薄膜位置之 對質傳格拉茲數 的關係………..56

圖4.2.1	管末端出口迴流裝置, , , ,改變薄膜位置之無因次出口濃度對質傳格拉茲數 的關係…59
圖4.2.2	管末端出口迴流裝置, , ,以不同 對比,改變薄膜位置之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………...60
圖4.2.3	管末端出口迴流裝置, 0.5, ,以不同 對比,改變薄膜參數之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………..61
圖4.2.4	管末端出口迴流裝置, 0.5, ,以不同 對比,改變薄膜參數之無因次平均入口濃度對質傳格拉茲數 的關係………………………………………………62
圖4.2.5	管末端出口迴流裝置, , ,以不同 對比,改變薄膜位置之無因次平均入口濃度對質傳格拉茲數 的關係………………………………………………63
圖4.2.6	管末端出口迴流裝置, , , ,改變薄膜位置之平均謝塢數對質傳格拉茲數 的關係………64
圖4.2.7	管末端出口迴流裝置, , ,以不同 對比,改變薄膜位置之平均謝塢數對質傳格拉茲數 的關係
	…………………………………………………………..65
圖4.2.8	管末端出口迴流裝置, 0.5, ,以不同 對比,改變薄膜參數之平均謝塢數對質傳格拉茲數 的關係
	…………………………………………………………...66
圖4.2.9	管末端出口迴流裝置, , ,以不同 對比,改變薄膜位置之質傳效率 對質傳格拉茲數 的關係
	…………………………………………………………...67
圖4.2.10	管末端出口迴流裝置, , ,以不同 對比,改變薄膜位置之 對質傳格拉茲數 的關係…..68
圖4.3.1	出口迴流至管末端裝置, , ,改變薄膜位置及迴流數之無因次出口濃度對質傳格拉茲數 的關係
	…………………………………………………………...71
圖4.3.2	出口迴流至管末端裝置, , ,以不同 對比,改變薄膜位置之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………...72
圖4.3.3	出口迴流至管末端裝置, 0.5, ,以不同 對比,改變薄膜參數之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………..73
圖4.3.4	出口迴流至管末端裝置, , ,改變薄膜位置及迴流數之平均謝塢數對質傳格拉茲數 的關係…74
圖4.3.5	出口迴流至管末端裝置, , ,以不同 對比,改變薄膜位置之平均謝塢數對質傳格拉茲數 的關係
	…………………………………………………………..75
圖4.3.6	出口迴流至管末端裝置, 0.5, ,以不同 對比,改變薄膜參數之平均謝塢數對質傳格拉茲數 的關係
	…………………………………………………………...76
圖4.3.7	出口迴流至管末端裝置, , ,以不同 對比,改變薄膜位置之質傳效率 對質傳格拉茲數 的關係
	…………………………………………………………...77
圖4.3.8	出口迴流至管末端裝置, , , 0.5,改變迴流比之質傳效率 對質傳格拉茲數 的關係……78
圖4.3.9	出口迴流至管末端裝置, , ,以不同 對比,改變薄膜位置之 對質傳格拉茲數 的關係…..79
圖4.4.1	管末端迴流至入口裝置, , ,改變薄膜位置及迴流數之無因次出口濃度對質傳格拉茲數 的關係
	…………………………………………………………...82
圖4.4.2	管末端迴流至入口裝置, , ,以不同 對比,改變薄膜位置之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………...83
圖4.4.3	管末端迴流至入口裝置, 0.5, ,以不同 對比,改變薄膜參數之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………...84
圖4.4.4	管末端迴流至入口裝置, , ,改變薄膜位置及迴流數之平均謝塢數對質傳格拉茲數 的關係…85
圖4.4.5	管末端迴流至入口裝置, , ,以不同 對比,改變薄膜位置之平均謝塢數對質傳格拉茲數 的關係
	…………………………………………………………...86
圖4.4.6	管末端迴流至入口裝置, 0.5, ,以不同 對比,改變薄膜參數之平均謝塢數對質傳格拉茲數 的關係
	…………………………………………………………...87
圖4.4.7	管末端迴流至入口裝置, , ,以不同 對比,改變薄膜位置之質傳效率 對質傳格拉茲數 的關係
	…………………………………………………………...88
圖4.4.8	管末端迴流至入口裝置, , , 0.5,改變迴流比之質傳效率 對質傳格拉茲數 的關係……89
圖4.4.9	管末端迴流至入口裝置, , ,以不同 對比,改變薄膜位置之 對質傳格拉茲數 的關係…..90
圖4.5.1	出口迴流至入口裝置, , ,改變迴流比及薄膜位置之無因次出口濃度對質傳格拉茲數 的關係
	…………………………………………………………...93
圖4.5.2	出口迴流至入口裝置, , ,以不同 對比,改變薄膜位置之無因次出口濃度對質傳格拉茲數 的關係……………………………………………………..94
圖4.5.3	出口迴流至入口裝置, 0.5, ,以不同 對比,改變薄膜參數之無因次出口濃度對質傳格拉茲數 的關係…………………………………………………….95
圖4.5.4	出口迴流至入口裝置, , ,以不同 對比,改變薄膜位置之無因次平均入口濃度對質傳格拉茲數 的關係……………………………………………..96
圖4.5.5	出口迴流至入口裝置, 0.5, ,以不同 對比,改變薄膜參數之無因次平均入口濃度對質傳格拉茲數 的關係……………………………………………..97
圖4.5.6	出口迴流至入口裝置, , ,改變迴流比及薄膜位置之平均謝塢數對質傳格拉茲數 的關係
	………………………………………………………….98
圖4.5.7	出口迴流至入口裝置, , ,以不同 對比,改變薄膜位置之平均謝塢數對質傳格拉茲數 的關係
	………………………………………………………….99
圖4.5.8	出口迴流至入口裝置, 0.5, ,以不同 對比,改變薄膜參數之平均謝塢數對質傳格拉茲數 的關係
	………………………………………………………….100
圖4.5.9	出口迴流至入口裝置, , ,以不同 對比,改變薄膜位置之質傳效率 對質傳格拉茲數 的關係
	………………………………………………………….101
圖4.5.10	出口迴流至入口裝置, , , 0.5,改變迴流比之質傳效率 對質傳格拉茲數 的關係…..102
圖4.5.11	出口迴流至入口裝置, , ,以不同 對比,改變薄膜位置之 對質傳格拉茲數 的關係…103





























表目錄
表4.6.1	二行程無迴流模型不同薄膜位置的能源消耗增加率
	………………………………………………………….105
表4.6.2	管末端出口模型不同薄膜位置的能源消耗增加率…105
表4.6.3	出口迴流至管末端模型不同薄膜位置的能源消耗增加率……………………………………………………….105
表4.6.4	管末端迴流至入口模型不同薄膜位置的能源消耗增加率……………………………………………………….106
表4.6.5	出口迴流至入口模型不同薄膜位置的能源消耗增加率
	………………………………………………………….106
表4.7.1	二行程無迴流模型Case 1的case study………………108
表4.7.2	二行程無迴流模型Case 2的case study………………108
表4.7.3	管末端出口迴流模型Case 1的case study……………109
表4.7.4	管末端出口迴流模型Case 2的case study……………109
表4.7.5	出口迴流至管末端模型Case 1的case study…………110
表4.7.6	出口迴流至管末端模型Case 2的case study…………110
表4.7.7	管末端迴流至入口模型Case 1的case study…………111
表4.7.8	管末端迴流至入口模型Case 2的case study…………111
表4.7.9	出口迴流至入口模型Case 1的case study……………112
表4.7.10	出口迴流至入口模型Case 2的case study……………112
表4.7.11	二行程無迴流模型,級數解收斂情形於 、 及 …………………………………………………..113
表4.7.12	管末端出口迴流模型,級數解收斂情形於 、 、 及 …………………………………113
表4.7.13	出口迴流至管末端模型,級數解收斂情形於 、 、 及 …………………………………114
表4.7.14	管末端迴流至入口模型,級數解收斂情形於 、 、 及 ………………………………….114
表4.7.15	出口迴流至入口模型,級數解收斂情形於 、 、 及 ………………………………115
參考文獻
1.	R.K. Shah, A.L. London, Laminar flow forced convection in ducts, Academic Press, New York, 1978, 196-207.
2.	V-D. Dang, M. Steinberg, Convective diffusion with homogeneous and heterogeneous reaction in a tube, The Journal of Physical Chemistry 84 (2) (1980) 214-219.
3.	A.K. Cousins, Bounds on heat transfer in a periodic Graetz problem, Journal of Heat Transfer 113 (43) (1991) 43-47.
4.	B. Sefik, Numerical solution of Graetz problem with axial conduction, Numerical Heat Transfer. Part A, Applications 21 (4) (1992) 493-500.
5.	G.E. Cossali, Analytical solution of Graetz problem in pipe flow with periodic inlet temperature variation, International Journal of Heat Transfer 52 (2009) 3396-3401.
6.	T.L. Perelman, On conjugated problems of heat transfer, International Journal of Heat and Mass Transfer 3 (4) (1961) 293-303.
7.	R.J. Nunge, W.N. Gill, Analysis of heat or mass transfer in some countercurrent flows, International Journal of Heat and Mass Transfer 8 (6) (1965) 873-886.
8.	D. Murkerjee, E.J. Davis, Direct-contact heat transfer immiscible fluid layers in laminar flow, AICHE Journal 18 (1) (1972) 94-101.
9.	S.S. Kim, D.O. Cooney, An improved theoretical model for hollow-fiber enzyme reactor, Chemical Engineering Science 31 (4) (1976) 289-294.
10.	E.J. Davis, S. Venkatesh, The solution of conjugated multiphase heat and mass transfer problems, Chemical Engineering Science 34 (6) (1979) 775-787.
11.	E. Papoutsakis, D. Ramkrishna, Conjugated Graetz problems. I: General formalism and a class of solid-fluid problems, Chemical Engineering Science 36 (8) (1981) 1381-1391.
12.	E. Papoutsakis, D. Ramkrishna, Conjugated Graetz problems. II: Fluid-fluid problems, Chemical Engineering Science 36 (8) (1981) 1393-1399.
13.	B. Fourcher, K. Mansouri, An approximate analytical solution to the Graetz problem with periodic inlet temperature, The International Journal of Heat and Fluid Flow 18 (2) (1997) 229-235.
14.	M. Unsal, A solution for the complex eigenvalues and eigenfunction of the periodic Graetz problem, International Communications in Heat and Mass Transfer 25 (4) (1998) 585-592.
15.	C.D. Ho, An analytical study of laminar counterflow double-pass heat exchangers with external refluxes, International Journal of Heat and Mass Transfer 43 (18) (2000) 3263-3274.
16.	X. Yin, H.H. Bau, The conjugated Graetz problem with axial conduction, Transactions of the American Society of Mechanical Engineers 118 (2) (1996) 482-485.
17.	J.R. Sellars, M. Tribus, J.S. Klein, Heat transfer to laminar flow in a round tube or flat conduit-the Graetz problem extended, Transactions of the American Society of Mechanical Engineers 78 (1956) 441-448.
18.	B. Weigand, G. Gassner, The effect of wall conduction for the extended Graetz problem for laminar and turbulent channel flows, International Journal of Heat Transfer 50 (2007) 1097-1105.
19.	Barbaros Cetin, Almila Guvenc Yazicioglu, and Sadik Kakac, Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation – An extended Graetz problem, International Journal of Thermal Sciences 48 (2009) 1673-1678.
20.	L.M. Warren, C.S. Julian, H. Peter, Unit Operations of Chemical Engineering, fifth ed., McGraw-Hill, New York, 1993.
21.	S.W. Tsai, H.M. Yeh, A study of the separation efficiency in horizontal thermal diffusion columns with external refluxes, The Canadian Journal of Chemical Engineering 63 (1985) 406-410.
22.	Chii-Dong Ho, Ho-Ming Yeh, Jia-Jan Guo, Jr-Wei Tu, and Ching-Jung Chuang, Optimal configuration design for double-flow thermal-diffusion columns with external recycle, Progress in Nuclear Energy 52 (2010) 425-434.
23.	J. Korpijarvi, P. Oinas, J. Reunanen, Hydrodynamics and mass transfer in an airlift reactor, Chemical Engineering Science 54 (13-14) (1999) 2255-2262.
24.	J.M. Hornut, H. Dhaouadi, S. Poncin, N. Midoux, J.M. Hornut, G. Wild, Hydrodynamics and flow regimes in external loop airlift reactor, Chemical Engineering Science 54 (21) (1999) 5211-5221.
25.	E. Camarasa, E. Carvalho, L.A.C. Meleiro etc., A Hydrodynamic model air-lift reactors, Chemical Engineering and Processing 40 (2) (2001) 121-128.
26.	A. Couvert, D. Bastoul, M. Rouston, A. Line, P. Chatellier, Prediction of liquid velocity and gass hold-up in rectangular air-lift reactors of different scales, Chemical Engineering and Processing 40 (2) (2001) 113-119.
27.	C. Vial, S. Poncin, G. Wild, N. Midoux, A simple method for regime identification and flow characterization in bubble columns and airlift reactors, Chemical Engineering and Processing 40 (2) (2001) 135-151.
28.	R. Ruitenberg, E. Schultz Carl, J.N. Buisman Cees, Bio-oxidation of minerals in air-lift loop bioreactors, International Journal of Mineral Processing 62 (1-4) (2001) 271-278.
29.	X. Gu, S.H. Chiang, A novel flotation column for oily water cleanup, Separation and Purification Technology 16 (3) (1999) 193-203.
30.	K.P. Moller, W. Bohringer, A.E. Schnitzer, E.V. Steen, C.T. O’Connor, The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5, Microporous and Mesoporous Materials 29 (1-2) (1999) 127-144.
31.	A.H. Fakeeha, B.Y. Jibril, G. Ibrahim, A.E. Abasaeed, Medium effects on oxygen mass transfer in a plunging jet loop reactor with a downcomer, Chemical Engineering and Processing 38 (3) (1999) 259-265.
32.	A. Couvert, M. Roustan, P. Chatellier, Two-phase hydrodynamic study of a rectangular air-lift loop reactor with an internal baffle, Chemical Engineering Science 54 (21) (1999) 5245-5252.
33.	H. Dhaouai, S. Poncin, N. Midoux, G. Wild, Gas-liquid mass transfer in an airlift reactor-analytical solution and experimental confirmation, Chemical Engineering and Processing 40 (2) (2001) 129-133.
34.	J.J. Heiszwolf, L.B. Engelvaart, M.G. Eijnden, M.T. Kreutzer, F.K. Jacob, A. Moulijn, Hydrodynamic aspects of the monolith loop reactor, Chemical Engineering Science 56 (3) (2001) 805-812.
35.	P. Wasserscheid, M. Eichmann, Selective dimerisation of 1-butene in biphasic mode using buffered chloroaluminate ionic liquid solvents-design and application of a continuous loop reactor, Catalysis Today 66 (2-4) (2001) 309-316.
36.	H.M. Yeh, S.W. Tsai, C.L. Chiang, Effects of recycle on heat and mass transfer between parallel-plate wall with equal fluxes, International Journal of Heat and Mass Transfer 31 (9) (1988) 1853-1860.
37.	C.D. Ho, H.M. Yeh, W.S. Sheu, The influence of recycle on double-pass heat and mass transfer through a parallel-plate device, International Journal of Heat and Mass Transfer 42 (9) (1999) 1707-1722.
38.	C.D. Ho, S.U. Chiang, A Study of mass transfer efficiency in parallel-plate channel with external refluxes, The Chemical Engineering Journal 85 (2-3) (2002) 207-214.
39.	C.D. Ho, H.M. Yeh, J.W. Tu, An analytical study of parallel-plate mass exchangers with permeable barriers inserted for multi-pass operations, Journal of the Chinese Institute of Chemical Engineers 35 (5) (2004) 285-297.
40.	Chii-Dong Ho, Wen-Yi Yang, Heat transfer of conjugated Graetz problems with laminar counterflow in double-pass concentric circular heat exchangers, International Journal of Heat and Mass Transfer 48 (2005) 4474-4480.
41.	H.M. Yeh, T.W. Chang, S.W. Tsai, A study of the Graetz problems in concentric-tube continuous-constact countercurrent separation processes with recycles at both ends, Separation Science and Technology 21 (4) (1986) 403-419.
42.	G.M. Brown, Heat or mass transfer in a fluid in laminar flow in a circular or flat conduit, AICHE Journal 6 (2) (1960) 179-183.
43.	E. Papoutsakis, D. Rarmkrishna, H.C. Lim, The extended Greatz problem with Dirichlet wall boundary conditions, Applied Scientific Research 36 (1) (1980) 13-34.
44.	G.J. Hwang, H.C. Lai, Laminar convective heat transfer in a horizontal isothermal tube for high Rayleigh numbers, International Journal of Heat and Mass Transfer 37 (11) (1994) 1631-1640.
45.	R.F. Barron, X. Wang, R.O. Warrington, T. Ameel, Evaluation of eigenvalues for the Graetz problem in slip-flow, International Communications in Heat and Mass Transfer 23 (4) (1996) 563-574.
46.	R.F. Barron, X. Wang, T.A. Ameel, R.O. Warrington, The Graetz problem extended to slip-flow, International Journal of Heat and Mass Transfer 40 (8) (1997) 1817-1823.
47.	T. Min, J.Y. Yoo, H. Choi, Laminar convective heat transfer of a Bingham plastic in a circular pipe, International Journal of Heat and Mass Transfer 40 (13) (1997) 3025-3037.
48.	T.L. Perelman, On conjugated problems of heat transfer, International Journal of Heat and Mass Transfer 3 (4) (1961) 293-303.
49.	A.P. Hatoon, and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in An Annulus, International Journal of Heat and Mass Transfer 5 (1962) 973-980.
50.	R.J. Nunge, W.N. Gill, Analysis of heat or mass transfer in some countercurrent flows, International Journal of Heat and Mass Transfer 8 (6) (1965) 873-886.
51.	R.J. Nunge, W.N. Gill, An analytical study of laminar counterflow double-pipe heat exchangers, AICHE Journal 12 (2) (1966) 279-289.
52.	E.J. Davis, Exact solution for a class of heat and mass transfer problems, The Canadian Journal of Chemical Engineering 51 (1973) 562-572.
53.	E.J. Davis, and S. Venkatesh, The solution of conjugated multiphase heat and mass transfer problems, Chemical Engineering Science 34 (1979) 775-787.
54.	E. Papoutsakis, D. Ramkrishna, Conjugated Graetz problems. I: General formalism and a class of solid-fluid problems, Chemical Engineering Science 36 (8) (1981) 1381-1391.
55.	H.M. Yeh, S.W. Tsai, M.C. Hsiey, On the examination of recycle on heat (and mass) transfer in concentric tubes, The Canadian Journal of Chemical Engineering 66 (1987) 258-261.
56.	H.M. Yeh, S.W. Tsai, C.L. Chiang, Effects of recycle on heat and mass transfer between parallel-plate walls with equal fluxes, International Journal of Heat and Mass Transfer 31 (9) (1988) 1853-1860.
57.	B. Weigand, An extract analytical solution for the extended turbulent Graetz problem with Dirichlet wall boundary conditions for pipe and channel flows, International Journal of Heat and Mass Transfer 39 (8) (1996) 1625-1637
58.	C.D. Ho, H.M. Yeh, W.S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, International Journal of Heat and Mass Transfer 41 (17) (1998) 2589-2599.
59.	C.D. Ho, H.M. Yeh, W.S. Sheu, The influence of recycle on double-pass heat and mass transfer through a parallel-plate device, International Journal of Heat and Mass Transfer 42 (9) (1999) 1707-1722.
60.	M.M. Salah El-Din, Effect of thermal and mass buoyancy forces on the development of laminar mixed convection between vertical parallel plates with uniform wall heat and mass fluxes, International Journal of Thermal Sciences 42 (5) (2003) 447-453.
61.	C.D. Ho, C.L. Ho, Improvement in performance of double-pass concentric circular mass exchangers, Journal of Chemical Engineering of Japan 36 (1) (2003) 81-91.
62.	C.D. Ho, J.W. Tu, Multiple-pass flow mass transfer in a parallel-plate channel by inserting permeable barriers for improved device performance, Journal of Chemical Engineering of Japan 37 (1) (2004) 45-58.
63.	C.D. Ho, H.M. Yeh , J.W. Tu, An analytical study of parallel-plate mass exchangers with permeable barriers inserted for multi-pass operations, Journal of the Chinese Institute of Chemical Engineers 35(5) (2004) 509-521.
64.	D.A. Nield, Forced convection in a parallel plate channel with asymmetric heating, International Journal of Heat and Mass Transfer 47 (25) (2004) 5609-5612.
65.	Chii-Dong Ho, Gwo-Geng Lin, and Cheng-Lin Ho, The Effect of Recycle on Double-pass Laminar Counterflow Concentric Mass Exchangers, Journal of Chemical Engineering of Japan 38 (1) (2005) 12-17.
66.	J. Mitrović, B. Maletić, B.S. Bačlić, Some peculiarities of the asymmetric Graetz problem, International Journal of Engineering Science 44 (7) (2006) 436-455.
67.	Jr-Wei Tu, and Chii-Dong Ho, Mass Transfer Modeling of Conjugated Graetz Problem in Multi-Pass Mass Exchangers with External Recycle, Tamkang Journal of Science and Engineering 9 (4) (2006) 331-342.
68.	Chii-Dong Ho, Yu-Chuan Chuang, Jr-Wei Tu, Recycle Effect on Double-Pass Concentric Circular Mass Exchangers under Uniform Wall Fluxes, Chemical Engineering Technology 31 (11) (2008) 1638-1644.
69.	Chii-Dong Ho, Po-Chun Lee, and Jr-Wei Tu, Mass Transfer Enhancement in Double-Pass,Parallel-Plate Mass Exchangers under Asymmetric Wall Fluxes, Chemical Engineering Technology 32 (10) (2009) 1567-1577.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信