§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307200912195800
DOI 10.6846/TKU.2009.00864
論文名稱(中文) 利用X-ray吸收譜研究銪元素摻雜於氧化鋅奈米線
論文名稱(英文) X-ray absorption spectroscopic studies of Eu-doped ZnO nanowires
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 黃偉倫
研究生(英文) Wei-Lun Huang
學號 695210582
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-07-16
論文頁數 54頁
口試委員 指導教授 - 彭維鋒(wfpong@mail.tku.edu.tw)
委員 - 張經霖(clchang@mail.tku.edu.tw)
委員 - 邱昭文(jwchiou@nuk.edu.tw)
關鍵字(中) 銪元素摻雜於氧化鋅
氧化鋅

吸收譜
關鍵字(英) Eu-doped ZnO
ZnO
Eu
X-ray absorption
第三語言關鍵字
學科別分類
中文摘要
本論文主要以X光吸收光譜實驗研究銪元素摻雜於氧化鋅奈米線的電子與原子結構。實驗包含室溫時以法線夾角37°入射樣品之X光吸收近邊緣結構(X-ray absorption near edge structure,XANES)、延伸X光吸收精細結構(Extended x-ray absorption fine structure,EXAFS)及樣品橫切面的掃描式光電子顯微能譜(Scanning Photoemission Microscope, SPEM)。由O K-edge XANES的吸收峰減弱與變寬與對照Eu L3-edge XANES,可推論樣品O 2p與Eu 5d有鍵結產生。EXAFS結合非線性最小方陣模擬(Nonlinear least squares fitting)電腦程式FEFFIT分析,顯示Eu可能會取代Zn或者填入Zn的空缺(vacancy),但並沒有改變ZnO 之Wurtzite結構。SPEM可看到,靠近費米面的地方有Eu 4f 的貢獻。摻雜Eu使得ZnO表面的缺陷增加,因而增強了Eu-doped ZnO nanowire 的光激螢光的發光效率。
英文摘要
X-ray absorption near-edge structure (XANES), extended x-ray absorption fine structure (EXAFS), and Scanning photoemission microscope (SPEM) measurements were used to observe the influence of Eu-doped zinc oxide (ZnO) nanowires and to understand the unoccupied as well as occupied states of electronic structure and locally fine structure. 
The O K-edge XANES spectrum showed a broad and lower intensity compared to the undoped sample, which is interpreted as a rehybridization of the O2p derived state with the Eu5d state. This process lowers the energy of O2p states and enhances its occupancy by electrons from europium. 
EXAFS have revealed that Eu3+ ions maybe replaced Zn2+ in the Zn site, or filled-in in the Zn-site vacancies, but did not change the Wurtzite structure of host materials. The process thereby increases defects in the surface resulting to the enhanced PL of the Eu-doped ZnO nanowires.
第三語言摘要
論文目次
目錄
致謝 
中文摘要 
英文摘要
目錄 
圖表目錄 
第一章、緒論 …………………………………………………1
第二章、實驗技術…………………………………………… 3
(A) X光吸收光譜簡介…………………………………………3
(一)、吸收邊緣與 E0值     …………………………………5
(二)、X 光吸收近邊緣結構 ………………………………7
(三)、X 光延伸吸收精細結構 ……………………………11
(四)、實驗方法 ……………………………………………12
(五)、數據分析 ……………………………………………18
(B) X光光電子能譜簡介………………………………………20
(C)光電子顯微術簡介…………………………………………22
第三章 銪參雜於氧化鋅奈米線電子與原子結構之研究……24
(一)、氧化鋅晶體結構與發光機制介紹 …………………24
(二)、樣品製備與量測 ……………………………………27
(三)、實驗數據分析與討論 ………………………………34
第四章結論 ……………………………………………………50
參考文獻 ………………………………………………………51

圖表目錄
圖2-1 光子能量與典型物質吸收截面關係圖……………… 4
圖2-2  XANES與EXAFS分界圖 ………….……………… 8
圖2-3 光電子平均自由路徑與能量關係圖………………… 8
圖2-4 單一散射與多重散射之圖像 ………….…………… 9
圖2-5 吸收原子入射電子波與鄰近原子背向散射波
示意圖 …………….…….…….…….…….…………10
圖2-6 X光吸收光譜實驗示意圖 …………….……………13
圖2-7 三種電子訊號量測方法示意圖 ……….……………14
圖2-8 X 光吸收光譜之數據分析流程圖 …….……………17
圖2-9 選擇能量底限E0值的不同方法 ……….……………18
圖2-10 XPS與激發機制三步驟模型 ………….……………21
圖2-11 SPEM工作原理示意圖 …………….………………23
圖3-1  HCP 結構與ZnO Wurtzite 結構 ….………………26
圖3-2 Eu-doped ZnO NW與 Eu2O3的X光繞射光譜圖 …28
圖3-3 ZnO NW與 Eu-doped ZnO NW 的 PL ……………31
圖3-4 ZnO NW與Eu-doped ZnO NW的電子顯微鏡影像…32
圖3-5 歸一化後Eu doped ZnO NW 跟Eu2O3 powder 之
Eu L3-edge XANES ………….……………………… 35
圖3-6 歸一化後Eu2O3 powder、Eu doped ZnO NW跟
ZnO NW之O K-edge XANES ……….…………… 37
圖3-7 歸一化後Eu doped ZnO NW 跟ZnO NW 之Zn 
K-edge XANES ……….…………………………… 39
圖3-8 歸一化後Eu doped ZnO NW 跟ZnO NW 之Zn
L3-edge XANES ……….…………………………… 41
圖3-9  Zn K-edge EXAFS的傅利葉轉換 ……………… 43
圖3-10 Eu L3-edge EXAFS的傅利葉轉換 ……………… 46
圖3-11 Zn K-edge EXAFS與Eu L3-edge EXAFS的
傅利葉轉換比較 …….…………………………… 47
圖3-13 Eu-doped ZnO NW與ZnO NW的價電帶
光電子放射譜能圖 ….…………………………… 49
參考文獻
參考文獻
(1) D.C. Reynolds, D.C. Look and B. Jogai, Solid State Commun. 99, 873 (1996)
(2) D. C. Look and D. C. Reynolds, Appl. Phys. Lett., 81, 1830 (2002)
(3) H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee, Mater. Sci. Eng. B,  120, 313 (2003)
(4) B. Lin, Z. Fu, Y. Jia and G. Liao, J. Electrochem. Soc., 148, 110 (2003)
(5) Shu-Man Liu, Feng-Qi Liu, Zhan-Guo Wang, Chem. Phys. Lett. , 343, 489 (2001)
(6) Feng Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, and D.R. Yuan, Langmuir, 20 , 3528(2004)
(7) Z Pan, S H Morgan, A Ueda, R Aga Jr, A Steigerwald, A B Hmelo and R Mu, J. Phys.: Condens. Matter, 19, 266216 (2007)
(8) Yunong Yu, Yuansheng Wang, Daqin Chen, Ping Huang, En Ma and Feng Bao, Nanotechnology, 19, 055711 (2008)
(9) R. N. Bhargava, V. Chhabra, T. Som, A. Ekimov, and N. taskar, Phys. Status Solidi B, 229, 897 (2002)
(10) A. Ishizumi and Y Kanemitsu, App. Phys. Lett., 86 253106 (2005)
(11) “X-Ray Absorption : Principles, Application, Techniques of EXAFS,SEXAFS,and XANES ”edited by D. C. /koningsberger and R. Prins (Wiley-interscience, 1988)
(12) D. E. Sayers, E. A. Stern, and F. W. Lytle, Phys. Rev. Lett. 27, 1024 (1971).
(13) “NEXAFS Spectroscopy”, edited by Joachim Stöhr (Springer-Verlag, New York, 1992 )
(14) E. A. Stern, M. Newville, B. Ravel, Y. Yaceby, and D. Haskel, Phys. B. 208, 117 (1995)
(15) “EXAFS and Near edge structure”, edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay, Heidelberg, 1983 )
(16) C. S. Hwang, F. Y. Lin, C.H. Lee, K. L. Yu, P. K. Tseng, J. T. Lin, H. C. Tseng, W. C. Su, J. R. Chen, T. L. Lin, and W. F. Ping, Rev. Sci. Instrum. 69, 1230 (1998)
(17) 王其武編著, X 射線吸收精細結構及其應用, 科學出版社, (1994)
(18) “EXAFS, Basic Principle and Data Analysis”, edited by Boon K. Teo(Springer-Verlag Berlin 1986)
(19) 洪一弘,李德輝,殷廣鈐,魏德新,柯陸詩,陳建德,曾金榮,莊東榮,科學發展月刊29(1), 21 (2001)
(20) Photoelectron Spectroscopy, edit by Stefan Hüfner (Springer-Verlag)
(21) H. Ade, J. Kirz, S. Hulbert, E. D. Johnson, E. Anderson, and D. Kern, Nucl. Instum. Meth. 291, 126 (1990), and Appl. Phys. Lett. 56, 1841 (1990)
(22) I.-H. Hong, T.-H. Lee, G.-C. Yin, D.-H. Wei, J.-M. Juang, T.-E. Dann, R. Klauser, T. J. Chuang, C. T. Chen, and K.-L. Tsang, Nucl. Instrum. Meth. 467, 905 (2001)
(23) R. A. Powell, W. E. Spicer, J.c. McMenamin, Phys. Rev. B , 6, 3056 (1972)
(34) Y. C. Lee, “Effect of Biaxial Stress on ZnO Thin Films and in Plane Optical Gain”, unpublished master’s thesis, National Chiao Tung University, Hsinchu (2004)
(25) 劉毓凡,“不同尺寸之氧化鋅量子點電子結構與電子聲子交互作用”,私立淡江大學物理研究所碩士論文,(2008)。
(26 ) K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, J.Appl. Phys., 79, 7983 (1996)
(27) W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S Zou, Y. Zhu, Q. Li and J. Zu, Nucl. Instr. And Meth. B, 169, 59 (2000)
(28) S. H. Bea, S. Y. Lee, H. Y. Kim and S, Im, Appl. Surf. Sci., 168, 332 (2000)
(29) 陳重維,“銪元素摻雜於氧化鋅奈米線特性研究”,國立中央大學物理研究所碩士論文,(2008)。
(30) J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Pao, S. ,W.F. Fong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee,j. j. Wu and S. C. Liu, Appl. Phys. Let. 84, 18 (2004).
(31) H. F. McMurdie, M. C. Morris, E. H. Evans, B. Paretzkin, W. Wong-Ng, and C. R. Hubbard, Powder Diffraction 1, 76 (1986)
(32) 陳家浩,“從光電效應到光電子顯微術”,物理雙月刊 27(5), 667 (2005)
(33) J. W. Chiou, H. M. Tsai, C. W. Pao, K. P Krishna Kumar, S. C. Ray and W. F. Fong, Appl. Phys. Let. 89, 043121 (2006). 
(34) J. W. Chiou, K. P Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Pao, S. ,W.F. Fong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee,j. j. Wu and S. C. Liu, Appl. Phys. Let. 85, 3220 (2004).
(35) S. W. Han, H. J. Yoo, S. J. An, J. Yoo, and G. C. Yi, Appl. Phys. Lett. 86, 021917(2005)
(36) J. W. Chiou, S. C. Ray, H. M. Tsai, C. W. Pao, S. F. Z. Chein, W.F. Fong, M. H. Tsai, J. J. Wu, C. H. Cheng, C. H. Chen, J. F. Lee, and J. H. Guo, Appl. Phys. Let. 90, 192112 (2007).
(37) S. Krishnamurthy, C. McGuinness, L. S. Dorneles, M. Venkatesan, J., M. D. Coey, J. G. Lunney, C. H. Patterson, K. E. Smith, T. Learmonth, P. –A. Glans, and T. Schmitt, J. Appl. Phys. 99, 111 (2006).
(38) Y. Tao, G. Zhao, X. Ju, X. Shao, W. Zhang, S. Xia, Materials Lett., 28, 137 (1996).
(39) L. Diamandescu, F. Vasiliu, D. Tabarasanu-Mihaila, M. Feder, A. M. Vlaicu, C. M. Teodorescu, D. Macovei, I. Enculescu, V. Parvulescu, and E. Vasile, Materials Chemistry and Physics 112, 146 (2008).
(40) A. Kuzmin, J.Purans, G.Moreau,  J. Alloys Compounds 374, 89 (2004).
(41) L. Petit, A. Svane, Z. Szotek, and W. Temmerman, Electronic Structure of Rare Earth Oxides, in M. Fanciulli, G. Scarel (Eds.), Springer-Verlag Berlin Heideberg, 106, 331-343 (2007).
(42) T. Suzuki , S. Hishita , K. Oyoshi , R. Souda, Applied Surface Science 130, 534 (1998).
(43) K. Asokan, J.C. Jan, K.V.R. Rao, J.W. Chiou, H.M. Tsai, S. Mookerjee, W. F. Pong, M.-H. Tsai, R. Kumar, S. Husain, and J. P. Srivastava, J. Phys.: Condens. Matter 16, 3791 (2004)
(44) L. Armelao, F. Heigl, A. Jurgensen, R. Blyth, T. Regier, X.-T Zhou, and TK Sham, J. Phys. Chem. C 111, 10194 (2007).
(45) L. C. Porter, J.C. Wright, J. Chem. Phys. 77, 2322 (1982).
(46) J. Maier, Angewandte Chemie 32, 313 (1993).
(47) J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. Krishna Kumar, J. H. Chen, D. C. Ling,F. Z. Chien and W.F. Fong, Appl. Phys. Let. 90, 062103 (2007)
(48) W. Göpel, J. Pollmann, I. Ivanov, and B. Reihl, Phys. Rev. B 26, 3144 (1982)
(49) P. Schröer, P. Krüger, and J. Pollmann, Phys. Rev. B 47, 6971 (1993)
(50) A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguín, Phys. Rev. B 78, 035107 (2008)
(51) En-Jin Cho, Se-Jung Oh , S. Suga , T. Suzuki, T. Kasuya, Journal of Electron Spectroscopy and Related Phenomena 77, 173 (1996)
(52) S Goumri-Said and M B Kanoun, J. Appl. Phys. 41, 035004 (2008)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信