淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2307200817354100
中文論文名稱 進料成分與薄膜性質對平板掃流超過濾之影響
英文論文名稱 Effects of Feed Component and Membrane Property on Cross-flow Ultrafiltration in Flat-Sheet Module
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 周欣霈
研究生英文姓名 Hsin-Pei Chou
學號 695400100
學位類別 碩士
語文別 中文
口試日期 2008-06-25
論文頁數 101頁
口試委員 指導教授-鄭東文
委員-葉和明
委員-蔡少偉
中文關鍵字 掃流超過濾  薄膜性質  蛋白質 
英文關鍵字 Cross-flow Ultrafiltration  Membrane Property  Protein 
學科別分類
中文摘要 以平板掃流式超過濾系統,探討不同溶質(BSA、Dextran T70、β-cyclodextrin) 溶液於不同親疏水性薄膜(PES膜、RCA膜),及在不同操作參數(液體速度、pH值、透膜壓差)下,濾速、阻隔率、過濾阻力以及雙溶質溶液分離效率之變化。
實驗結果顯示,溶質溶液與過濾薄膜之親疏水性質相異時,粒子與膜面有一排斥作用力存在,如RCA膜過濾BSA溶液時,溶質不易在膜面上形成結垢,因此濾速較高。此時增加掃流速度,對濾速的提升較為有限。當溶液之pH值遠離等電點,除粒子與膜面有排斥力外,粒子與粒子間也有排斥力,導致結垢層較薄較鬆散,濾速較高。在BSA與β-cyclodextrin雙溶質溶液中,其濾速較純BSA溶液來得低,此因部分β-cyclodextrin進入薄膜孔道形成內部結垢所致。使用PES膜時,BSA溶質之親疏水性與薄膜一致時,則有一吸引力導致結垢嚴重,小分子β-cyclodextrin的穿透率較低,且隨著壓力增加結垢越緊密,造成分離效率越低。
英文摘要 In this study, polymer membranes were employed in a cross-flow ultrafiltration system to investigate the effects of solution compositions and membrane properties on filtration. The solution fluxes, solute rejections and filtration resistances were discussed under various operating parameters such as liquid velocity, pH value and transmembrane pressure.
Experimental results indicate that the difference in the hydrophobicity between the feed solution and membrane generates an exclusion force to retard the formation of fouling layer on the membrane surface. Such as the case of filtration of BSA solution by the RCA membrane, a high permeate flux is achieved due to the low fouling propensity. When the pH value is far away the BSA isoelectric point, the porosity of BSA deposited layer is high due to exclusion between the BSA molecules and results in high flux. In the binary solutes system, cause by the internal fouling of β-cyclodextrin, the flux of solution containing β-cyclodextrin is lower than that of pure BSA solution. On the other, BSA molecules have strong fouling propensity to PES membrane, the transmission of β-cyclodextrin is lowered due to the compact BSA deposited layer and becomes lower as the applied pressure increases that will reduce the separation selectivity.
論文目次 目錄
圖目錄V
表目錄XIII


第一章 緒論1
1.1 前言1
1.2 薄膜分離及特性2
1.3 結垢現象與濃度極化5
1.3.1 結垢5
1.3.2 濃度極化6
1.4 本文之研究目的8
第二章 文獻回顧11
2.1 超過濾之相關研究11
2.2 薄膜過濾機制12
2.3 蛋白質簡介13
2.3.1 蛋白質之酸鹼性質13
2.3.2 蛋白質之等電點14
2.3.3 蛋白質之相關研究15
2.4 影響濾速之因素16
2.5 提高濾速之方法18
2.6 掃流超過濾濾速分析模式20
2.6.1 阻力串聯模式20
2.6.2 膠層極化模式21
2.6.3 滲透壓模式23
2.6.4 改良邊界層阻力模式25
第三章 實驗裝置與方法29
3.1 實驗設備與裝置29
3.2.1 實驗裝置29
3.2.2 實驗設備29
3.2 實驗藥與薄膜品30
3.3 實驗步驟31
3.4 操作條件32
3.4.1 系統操作條件32
3.4.2 流量計校正與雷諾數計算32
3.5 分析方法33
3.5.1 分析儀器33
3.5.2 BSA的分析方法與條件33
3.5.3 β-cyclodextrin的分析方法與條件33
3.5.4 阻隔率之計算34
3.6 薄膜之清洗34
第四章 結果與討論40
4.1 薄膜純水濾速40
4.2 單溶質溶液41
4.2.1 液相溶質之影響41
4.2.2 液體速度之影響41
4.2.3 溶液pH值之影響42
4.2.4 薄膜材質之影響43
4.2.5 阻力分析44
4.3 雙溶質溶液46
4.3.1 液體速度之影響47
4.3.2 溶液pH值之影響47
4.3.3 薄膜材質之影響48
4.3.4 阻力分析48
4.4 滲透壓模式49
4.4.1 物性參數51
4.4.2 濾速估計52
第五章 結論85
5.1 單溶質溶液85
5.2 雙溶質溶液86
5.3 滲透壓模式87
5.4 總結87
符號說明89
參考文獻92
附錄A98
附錄B99


圖目錄
圖1.1 濾餅過濾及掃流過濾示意圖9
圖1.2 薄膜分離程序之分類9
圖2.1 蛋白質(胺基酸)的雙極結構圖14
圖2.2 蛋白質(胺基酸)的帶電性與環境性質之關係圖15
圖2.3 提高濾速方法之流程圖26
圖2.4 膠層極化之濃度層分佈圖27
圖2.5 濃度極化造成之滲透壓阻力圖27
圖2.6 壓力對濾速之關係圖28
圖3.1 掃流過濾系統實驗裝置圖36
圖3.2 液體流量計校正圖37
圖3.3 液體流量與液體速度(uL)之關係圖37
圖3.4 平板型掃流過濾系統流體流量與雷諾數之關係圖38
圖4.1 PES 10k Da 薄膜純水濾速圖54
圖4.2 RCA 10k Da 薄膜純水濾速圖54
圖4.3 PES膜過濾BSA及Dextran T70溶液之濾速變化圖55
圖4.4 RCA膜過濾BSA及Dextran T70溶液之濾速變化圖55
圖4.5 PES膜在不同掃流速度下BSA溶液之濾速變化圖56
(PES , 1000 ppm BSA)
圖4.6 RCA膜在不同掃流速度下BSA溶液之濾速變化圖56
(RCA , 1000 ppm BSA)
圖4.7 PES膜在不同掃流速度下Dextran T70溶液之濾速變化圖57
(PES , 1000 ppm Dextran T70)
圖4.8 RCA膜在不同掃流速度下Dextran T70溶液之濾速變化圖57
(RCA , 1000 ppm Dextran T70)
圖4.9 PES膜在不同掃流速度下β-cyclodextrin溶液之濾速變化圖58
(PES , 2000 ppm β-cyclodextrin)
圖4.10 RCA膜在不同掃流速度下β-cyclodextrin溶液之濾速變化圖58
(RCA , 2000 ppm β-cyclodextrin)
圖4.11 PES膜在不同pH值下BSA溶液之濾速變化圖59
(PES , 1000 ppm BSA , UL=0.05 m/s)
圖4.12 PES膜在不同pH值下BSA溶液之濾速變化圖59
(PES , 1000 ppm BSA , UL=0.15 m/s)
圖4.13 RCA膜在不同pH值下BSA溶液之濾速變化圖60
(RCA , 1000 ppm BSA , UL=0.05 m/s)
圖4.14 RCA膜在不同pH值下BSA溶液之濾速變化圖60
(RCA , 1000 ppm BSA , UL=0.15 m/s)
圖4.15 在不同膜材下BSA溶液之濾速變化圖61
(1000 ppm BSA , UL=0.05 m/s)
圖4.16 在不同膜材下BSA溶液之阻隔率變化圖61
(1000 ppm BSA , UL=0.05 m/s)
圖4.17 在不同膜材下BSA溶液之濾速變化圖62
(1000 ppm BSA , UL=0.15 m/s)
圖4.18 在不同膜材下BSA溶液之阻隔率變化圖62
(1000 ppm BSA , UL=0.15 m/s)
圖4.19 在不同膜材下Dextran T70溶液之濾速變化圖63
(1000 ppm Dextran T70 , UL=0.05 m/s)
圖4.20 在不同膜材下Dextran T70溶液之阻隔率變化圖63
(1000 ppm Dextran T70 , UL=0.05 m/s)
圖4.21 在不同膜材下Dextran T70溶液之濾速變化圖64
(1000 ppm Dextran T70 , UL=0.15 m/s)
圖4.22 在不同膜材下Dextran T70溶液之阻隔率變化圖64
(1000 ppm Dextran T70 , UL=0.15 m/s)
圖4.23 在不同膜材下β-cyclodextrin溶液之濾速變化圖65
(2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.24 在不同膜材下β-cyclodextrin溶液之阻隔率變化圖65
(2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.25 在不同膜材下β-cyclodextrin溶液之濾速變化圖66
(2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.26 在不同膜材下β-cyclodextrin溶液之阻隔率變化圖66
(2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.27 PES膜過濾BSA及Dextran T70溶液之阻力變化圖67
圖4.28 RCA膜過濾BSA及Dextran T70溶液之阻力變化圖67
圖4.29 PES膜在不同掃流速度下BSA溶液之阻力變化圖68
(PES , 1000 ppm BSA)
圖4.30 RCA膜在不同掃流速度下BSA溶液之阻力變化圖68
(RCA , 1000 ppm BSA)
圖4.31 PES膜在不同掃流速度下Dextran T70溶液之阻力變化圖69
(PES , 1000 ppm Dextran T70)
圖4.32 RCA膜在不同掃流速度下Dextran T70溶液之阻力變化圖69
(RCA , 1000 ppm Dextran T70)
圖4.33 PES膜在不同掃流速度下β-cyclodextrin溶液之阻力變化圖70
(PES , 2000 ppm β-cyclodextrin)
圖4.34 RCA膜在不同掃流速度下β-cyclodextrin溶液之阻力變化圖70
(RCA , 2000 ppm β-cyclodextrin)
圖4.35 PES膜在不同pH值下之阻力變化圖71
(PES , 1000 ppm BSA , UL=0.05 m/s)
圖4.36 PES膜在不同pH值下之阻力變化圖71
(PES , 1000 ppm BSA , UL=0.15 m/s)
圖4.37 RCA膜在不同pH值下之阻力變化圖72
(RCA , 1000 ppm BSA , UL=0.05 m/s)
圖4.38 RCA膜在不同pH值下之阻力變化圖72
(RCA , 1000 ppm BSA , UL=0.15 m/s)
圖4.39 PES膜在不同掃流速度下雙溶質溶液之濾速變化圖73
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin)
圖4.40 RCA膜在不同掃流速度下雙溶質溶液之濾速變化圖73
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin)
圖4.41 PES膜在不同pH值下雙溶質溶液之濾速變化圖74
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.42 PES膜在不同pH值下雙溶質溶液之阻隔率變化圖74
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.43 PES膜在不同pH值下雙溶質溶液之濾速變化圖75
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.44 PES膜在不同pH值下雙溶質溶液之阻隔率變化圖75
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.45 RCA膜在不同pH值下雙溶質溶液之濾速變化圖76
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.46 RCA膜在不同pH值下雙溶質溶液之阻隔率變化圖76
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.47 RCA膜在不同pH值下雙溶質溶液之濾速變化圖77
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.48 RCA膜在不同pH值下雙溶質溶液之濾速變化圖77
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.49 在不同材質薄膜下雙溶質溶液之濾速及穿透率變化圖78
(1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.50 在不同材質薄膜下雙溶質溶液之濾速及穿透率變化圖78
(1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.51 PES膜在不同掃流速度下雙溶質溶液之阻力變化圖79
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin)
圖4.52 RCA膜在不同掃流速度下雙溶質溶液之阻力變化圖79
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin)
圖4.53 PES膜在不同pH值下雙溶質溶液之阻力變化圖80
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.54 PES膜在不同pH值下雙溶質溶液之阻力變化圖80
(PES , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.55 RCA膜在不同pH值下雙溶質溶液之阻力變化圖81
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.05 m/s)
圖4.56 RCA膜在不同pH值下雙溶質溶液之阻力變化圖81
(RCA , 1000 ppm BSA + 2000 ppm β-cyclodextrin , UL=0.15 m/s)
圖4.57 滲透壓模式之理論與實驗濾速比較圖82
(PES , Lp=1.680×10-11 , 1000 ppm BSA , UL=0.05 m/s)
圖4.58 滲透壓模式之理論與實驗濾速比較圖82
(PES , Lp=1.680×10-11 , 1000 ppm BSA , UL=0.15 m/s)
圖4.59 滲透壓模式之理論與實驗濾速比較圖83
(RCA , Lp=1.559×10-10 , 1000 ppm BSA , UL=0.05 m/s)
圖4.60 滲透壓模式之理論與實驗濾速比較圖83
(RCA , Lp=1.559×10-10 , 1000 ppm BSA , UL=0.15 m/s)
圖4.61 純滲透壓理論之不同濃度下濾速關係圖84
(PES , Lp=1.680×10-11)
圖4.62 純滲透壓理論之不同濃度下濾速關係圖84
(RCA , Lp=1.559×10-10)
圖A.1 BSA校正曲線98
圖B.1 T70校正曲線101
圖B.2 β-cyclodextrin校正曲線101


表目錄
表1.1 不同操作程序之驅動力分類10
表2.1 薄膜程序對於分離溶質之區分表28
表3.1 BSA特性說明38
表3.2 薄膜性質表39
表3.3 液體流量計刻度與實際流量、掃流速度、雷諾數之關係39
表4.1 各薄膜之純水透過率及薄膜阻力40
參考文獻 Aimar, P., J. A. Howell, M. J. Clifton, and V. Sanchez, "Concentration polarization build-up in hollow fibers: A method of measurement and its modelling in ultrafiltration," J. Membr. Sci., 59 (1991) 81-99.
Amar, R. B., Gupta, B. B. and Jaffrin, M. Y., "Apple juice clarification using mineral membrane: gouling controled by backwashing and puslatile flow", J. Chem. Eng. Sci. 21 (1966) 197.
Bauser, H., H. Chmiel, N. Stroh, E. Walitza, "Control of concentration polarization and fouling of membranes in medica, food and biotechnical application", J. Membr. Sci., 27 (1986) 195-202.
Belfort, G., "Fluid mechanics in membrane filtration: recent deve -lopments", J. Membr. Sci. 40 (1989) 123-147
Belfort, G., "Membrane modules: comparison of different configurations using fluid mechanics", J. Membr. Sci., 35, (1988) 245-270.
Blanpain,P., J. Hermia, M. Lenoel, "Mechanisms governing permeate flux and protein rejection in the microfiltration of beer with a Cyclopore membrane", J. Membr. Sci., 84 (1993), 37-51.
Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, "Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques", in: J.E. Filnn, ed., Membrane Science and Technology, Plenum Press, New York (1970) 47-91.
Cabassud, C., S. Laborie, J.M. Laine, "How slug flow can improve ultra -filtration flux in organic hollow fibers", J. Membr. Sci., 128 (1997)93-101.
Chan, R., V. Chen, "The effects of electrolyte concentration and pH on protein aggregation and deposition: critical flux and constant flux membrane filtration," J. Membr. Sci., 185 (2001) 177-192
Cheryan, M., "Ultrafiltration and microfiltration hand book", 2nd ed., Technomic Publishing Company, Inc., Pennsylvania (1988)
Chong, R., P. Jelen, W. Wang, "The effect of cleaning agents on a noncellulosic ultrafiltration membrane", Sep. Sci. Technol., 20 (1985) 393-402.
Derzansky, L.J., W.N. Gill, "Mechanisms of brane-side mass transfer in a horizontal reverse osmosis tubular membrane", AIChE J., 20 (1974) 751-761.
Dharmesh M. Kanani, Raja Ghosh, Carlos D.M. Filipe, "A novel approach for high-resolution protein-protein separation by ultrafiltration using a dual-facilitating agent.", J. Membr. Sci. 243 (2004) 223-228
Fane, A. G., C. J. D. Fell, A. Suki, "Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes," J. Membr. Sci., 16 (1982) 195-210.
Fell, C.J.D., K.J. Kim, V. Chem, D.E. Wiley, A.G. Fane, "Factors determining flux and rejection of ultrafiltration membranes", Chem. Eng. Process. 27 (1990) 165-173.
Geankoplis, C. J., "Transport processes and unit operations", Prentice -Hall International, London (1995).
Gill, W. N., D. E. Wiley, C. J. D. Fell, and A. G. Fane, "Effect of Viscosity on Concentration Polarization in Ultrafiltration," AIChE J., 34, 1563 (1988)
Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, "A helical baffle for cross -flow microfiltration", J. Membr. Sci., 99 (1995) 31-42.
Gupta, B.B., P. Blanpain, M.Y. Jaffrin, "Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane", J. Membr. Sci., 70 (1992) 257-266.
Kedem, O., A. Katchalsky, "A physical interpretation of the phenolmeno -logical coefficients of membrane permeability", J. Gen. Physiol., 45 (1961) 143-179.
Kelly, S.T., A.L. Zydney, "Mechanisms for BSA fouling during micro-filtration", J. Membr. Sci., 107 (1995) 115-127.
Kim, B.S., H.N. Chang, "Effects of periodic backflushing on ultra -filtration Performance", Bioseparation, 2 (1991) 9-23.
Kimura, S., S. Sourirajan, "Analysis of data in reverse osmosis with porous celluloses acetate membranes used", AIChE J., 13 (1967) 497-503.
Kroner, K.H., V. Nissinen, "Dynamic filtration of microbial suspensions using an axially rotating filter", J. Membr. Sci., 36 (1988) 85-100.
Matthiasson. E., and B. Sivik, "Concentration Polarization and Fouling," Desalination, 35, 59 (1980)
Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, "How slug flow can enhance the ultrafiltration flux in mineral tubular membrane", J. Membr. Sci., 128 (1997) 103-113.
Michaels, A. S., "New Separation Technology for the CPI," Chemical Engineering Progress, 64, 31-42 (1968)
Millward, H.R., B.J. Bellhouse, G. Walker, "Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance", J. Membr. Sci., 106 (1995) 269-279.
Mir, L., "Positive-charged Ultrafiltration membrane for the separation of cathodic/electrodeposition paint cimposition," U. S. Patent, 4 (1983) 412.
Morel, G., A. Gracina, J. Lachise, "Enhanced nitrate ultrafiltration by cationic surfactant", J. Membr. Sci., 56 (1991) 1-12.
Murkes, J., C.G. Carlsson, "Crossflow Filtration-Theory and Practice " John Wiley & Sons, New York (1988).
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, "Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin", AIChE J., 36 (1990) 907-915.
Nakao, S., T. Nomura, and S. Kimura, "Characteristics of Macromolecular Gel Layer Formed on Ultrafiltration Tubular Membrane," AIChE J., 25, 615 (1979)
Nel, R.G., S.F. Oppenheim, V.G.J. Rodgers, "Effect of solution properties on solute permeate flux in bovine serum albumin-IgG ultrafiltration", Biotechnol. Prog., 10 (1994) 539-542.
Palecek, S.P., A.L. Zydney, "Hydraulic permeability of protein deposits formed during microfiltration: Effect of solution pH and ionic strength", J. Mem. Sci., 95 (1994) 71-81.
Rabiller-Baudry, M., B. Chaufer, D. Lucas, B. Bariou, P. Aimar, "Model of convection-diffusion-electrophoretic migration application to UF of lysozyme versus pH and ionic strength", in: proceedings of the international congress on international congress on membranes and membrane processes, Toronto, Canada, June (1999).
Sherwood T. K., P. L. T. Brian, R. E. Fisher, and L. Dresner, "Salt Concentration at Phase Boundaries in Desalination by Reverse Osmosis," I & EC Fundam., 4, 113 (1965)
Taylor, G.I., "Stability of a viscous liquid contained between two rotating cylinders", Phil. Trans. Roy. Soc., A233 (1923) 298-343.
Van Der Weal, M. J., I.G. Racz, "Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments", J. Membr. Sci., 40 (1989) 243-260.
Wang, S. S., "Effect of Solution Viscosity on Ultrafiltration," J. Membr Sci., 39, 187 (1988)
Winzeler, H.B., G. Belfort, "Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities", J. Membr. Sci., 80 (1993) 35-47.
Yeh, H.M., "Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules", Sep. Sci. Technol. 31 (1996) 201-211.
Youm, K.H., A.G. Fane, D.E. Wiley, "Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration", J. Membr. Sci., 116 (1996) 229-241.
呂維明,呂文芳, "過濾技術," 高立圖書有限公司 (1994).
林凱蔚, "無機管式薄膜過濾蛋白質溶液之探討", 淡江大學化學工程與材料工程研究所碩士論文 (2007)
高啟綜, "氣-液兩相掃流薄膜超過濾之研究", 淡江大學化學工程與材料工程研究所碩士論文 (1996)
潘玉敏, "微粒子懸浮液掃流薄膜過濾之探討", 淡江大學化學工程與材料工程研究所碩士論文 (2007).
蔡焙土复, "沉浸式薄膜過濾系統中蛋白質結垢之探討", 淡江大學化學工程與材料工程研究所碩士論文 (2006)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信