淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2307200817202200
中文論文名稱 攪拌透析過濾玻尿酸溶液濾速行為之研究
英文論文名稱 Flux Behavior of Hyaluronic Acid Solution in Stirred Diafiltration
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 許哲榮
研究生英文姓名 Che-Jung Hsu
學號 695400688
學位類別 碩士
語文別 中文
口試日期 2008-06-25
論文頁數 93頁
口試委員 指導教授-鄭東文
委員-葉和明
委員-蔡少偉
中文關鍵字 透析過濾  玻尿酸  攪拌槽  濃度極化 
英文關鍵字 Diafiltration  Hyaluronic acid  Stirred Cell  Concentration Polarization 
學科別分類
中文摘要 本研究以恆壓過濾系統,採透析過濾及濃縮程序兩種操作方法過濾玻尿酸溶液,探討在不同pH值(3、5、7、13)、攪拌速度(0、100、300、500 rpm)及進料濃度(0.25、0.5、1、2 kg/m3)下,對濾速、濃度極化、阻隔率及過濾阻力之變化。
在低進料濃度(0.25 kg/m3)及高攪拌速度(500 rpm)下,當操作壓力大於150 kPa時,已接近極限濾速區域。在溶液pH=3時,HA分子較接近為球狀粒子,堆積形態緊密,濾速相對較低。濃度高時,因溶液黏度較高會產生較大的過濾阻力使得濾速較低;由過濾阻力之分析,發現濃度極化阻力遠大於薄膜阻力及結垢阻力,加入攪拌可有效降低濃度極化阻力而提升濾速。濃縮程序中,在攪拌速度為500 rpm下,可將HA濃度從0.5 kg/m3濃縮至1.5 kg/m3,隨著槽內濃度及黏度上升濾速降低,於濃縮後期因薄膜表面膠層形成,濃度極化阻力急劇上升。
英文摘要 This study investigated the diafiltration and concentration of HA solution in a dead-end stirred cell. The flux behavior, HA rejection and filtration resistance were discussed under various operating parameters such as pH value (3, 5, 7 and 13), stirred rate (0, 100, 300 and 500 rpm) and feed concentration (0.25, 0.5, 1 and 2 kg/m3).
At low feed concentration (0.25 kg/m3) and high stirred rate (500 rpm), the limiting flux region was reached as the operation pressure exceeded 150 kPa. For pH = 3, the permeate was relatively low due to the fact that the HA molecule is close to a spheroid particle and results in a compact polarization layer. The filtration resistance increased with the increase of feed concentration due to the increment of feed viscosity; By measuring the filtration resistances, it is noted that the concentration polarization resistance is significantly larger than the membrane resistance or the fouling resistance. The addition of stirred rate can effectively disturb the concentration polarization layer and enhance the permeate flux. At 500 rpm, the 0.5 kg/m3 HA solution was concentrated to 1.5 kg/m3. The permeate flux decreased with the increases of solution concentration and viscosity in the stirred cell. Moreover, the filtration resistance increased hugely at the late stage of concentration due to the formation of gel layer on the membrane surface.
論文目次 圖目錄 IV
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 薄膜分離程序 2
1.3 薄膜型態與模組 5
1.4 濃度極化與結垢現象 6
1.5 研究目的 8

第二章 文獻回顧 12
2.1 玻尿酸簡介 12
2.1.1 玻尿酸之發現 13
2.1.2 玻尿酸之來源與方法 13
2.1.3 玻尿酸之純化 14
2.1.4 玻尿酸之應用 15
2.2 透析過濾相關研究 18
2.2.1 透析過濾應用領域 19
2.2.2 透析過濾理論分析之研究 20
2.2.3 提升純化效果之研究 21
2.3 濾速提升之方法 22
2.4 濾速分析模式 25
2.4.1 阻力串聯模式 25
2.4.2 膠層極化模式 26

第三章 實驗裝置與方法 32
3.1 實驗裝置 32
3.2 實驗藥品 33
3.3 實驗步驟 33
3.4 操作條件 34
3.5 分析方法 34
3.5.1 玻尿酸含量之測定 34
3.5.2 阻隔率之計算 36
3.6 實驗後薄膜之清洗 37

第四章 結果與討論 40
4.1 薄膜純水濾速 40
4.2 透析過濾 41
4.2.1 極限濾速 41
4.2.2 濾速行為 41
4.2.3 濃度極化與結垢 42
4.3 濃縮程序 44
4.3.1 濾速行為 44
4.3.2 濃縮比 45
4.3.3 濃度極化與結垢 45
4.4 阻隔率之結果 47
4.5 攪拌速度對質傳係數之影響 48

第五章 結論 70
5.1 透析過濾 70
5.2 濃縮程序 71
5.3 阻隔率之結果 72
5.4 攪拌速度對質傳係數之影響 72
5.5 總結 72
符號說明 74
參考文獻 77
附錄A 84
附錄B 85

圖目錄
圖1.1 薄膜分離程序之分類 9
圖1.2 顯示以壓力差作為驅動力的薄膜分離之特性分析 10
圖1.3 (a)濾餅過濾及(b)掃流過濾示意圖 11
圖2.1 透析過濾示意圖 29
圖2.2 提高濾速之方法 30
圖2.3 膠層極化之濃度層分佈圖 31
圖3.1 實驗裝置圖 38
圖4.1 OMEGA 100kDa薄膜純水濾速圖 50
圖4.2 MILLIPORE 100kDa薄膜純水濾速圖 50
圖4.3 HA極限濾速圖 51
圖4.4 透析過濾改變攪拌速度之濾速變化圖 51
圖4.5 透析過濾不同pH值下濾速變化圖(500rpm) 52
圖4.6 透析過濾不同pH值下濾速變化圖(300rpm) 52
圖4.7 透析過濾不同pH值下濾速變化圖(100rpm) 53
圖4.8 透析過濾不同pH值下濾速變化圖(0rpm) 53
圖4.9 透析過濾不同攪拌速度下濾速變化圖(pH=3) 54
圖4.10 透析過濾不同攪拌速度下濾速變化圖(pH=5) 54
圖4.11 透析過濾不同攪拌速度下濾速變化圖(pH=7) 55
圖4.12 透析過濾不同攪拌速度下濾速變化圖(pH=13) 55
圖4.13 透析過濾不同濃度下濾速變化圖(500rpm) 56
圖4.14 透析過濾不同濃度下濾速變化圖(300rpm) 56
圖4.15 透析過濾不同濃度下濾速變化圖(100rpm) 57
圖4.16 透析過濾不同濃度下濾速變化圖(0rpm) 57
圖4.17 透析過濾不同pH值下Rp變化圖(500rpm) 58
圖4.18 透析過濾不同pH值下Rp變化圖(300rpm) 58
圖4.19 透析過濾不同pH值下Rp變化圖(100rpm) 59
圖4.20 透析過濾不同pH值下Rp變化圖(0rpm) 59
圖4.21 透析過濾不同濃度下Rp變化圖(500rpm) 60
圖4.22 透析過濾不同濃度下Rp變化圖(300rpm) 60
圖4.23 透析過濾不同濃度下Rp變化圖(100rpm) 61
圖4.24 透析過濾不同濃度下Rp變化圖(0rpm) 61
圖4.25 透析過濾不同pH值下結垢阻力圖 62
圖4.26 濃縮程序不同攪拌速度下之濾速變化圖 62
圖4.27 濃縮比與VCR之關係圖 63
圖4.28 濃縮比與時間之關係圖 63
圖4.29 濃縮程序不同攪拌速度下Rp變化圖 64
圖4.30 透析過濾與濃縮程序Rp變化圖(500rpm) 64
圖4.31 透析過濾與濃縮程序Rp變化圖(300rpm) 65
圖4.32 透析過濾與濃縮程序Rp變化圖(100rpm) 65
圖4.33 透析過濾與濃縮程序Rp變化圖(0rpm) 66
圖4.34 透析過濾與濃縮程序下結垢阻力圖 66
圖4.35 透析過濾不同攪拌速度下阻隔率變化圖(pH=3) 67
圖4.36 透析過濾不同攪拌速度下阻隔率變化圖(pH=5) 67
圖4.37 透析過濾不同攪拌速度下阻隔率變化圖(pH=7) 68
圖4.38 透析過濾不同攪拌速度下阻隔率變化圖(pH=13) 68
圖4.39 透析過濾進料濃度對濾速之影響圖 69
圖A.1 HA溶液之檢量線 84
圖B.1 透析過濾阻塞模式n=2 (pH=3) 86
圖B.2 透析過濾阻塞模式n=1.5 (pH=3) 86
圖B.3 透析過濾阻塞模式n=1 (pH=3) 87
圖B.4 透析過濾阻塞模式n=0 (pH=3) 87
圖B.5 透析過濾阻塞模式n=2 (pH=5) 88
圖B.6 透析過濾阻塞模式n=1.5 (pH=5) 88
圖B.7 透析過濾阻塞模式n=1 (pH=5) 89
圖B.8 透析過濾阻塞模式n=0 (pH=5) 89
圖B.9 透析過濾阻塞模式n=2 (pH=7) 90
圖B.10 透析過濾阻塞模式n=1.5 (pH=7) 90
圖B.11 透析過濾阻塞模式n=1 (pH=7) 91
圖B.12 透析過濾阻塞模式n=0 (pH=7) 91
圖B.13 透析過濾阻塞模式n=2 (pH=13) 92
圖B.14 透析過濾阻塞模式n=1.5 (pH=13) 92
圖B.15 透析過濾阻塞模式n=1 (pH=13) 93
圖B.16 透析過濾阻塞模式n=0 (pH=13) 93

表目錄
表1.1 不同操作程序之驅動力分類 9
表3.1 圓盤式薄膜(Disc Membrane)規格 39
表3.2 玻尿酸(HA)規格 39
表4.1 薄膜純水透過率與薄膜阻力 40
表4.2 不同rpm下之質傳係數 49
參考文獻 Barba, D., F. Beolchini and F. Veglio, “Water saving in a two stage diafiltration for the production of whey protein concentrates,” Desalination, 119, 187-188 (1998).
Barba, D. and F. Beolchini, “Minimizing water use in diafiltration of whey protein concentrates,” Sep. Sci. Technol., 35, 951-965 (2000).
Belfort, G., ”Fluid mechanics in membrane filtration: recent developments”, J. Membr. Sci., 40, 123-147 (1989).
Bellara, S.R., Z.F. Cui, and D.S. Pepper, “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes,” J. Membr. Sci. , 121, 175-184 (1996).
Berot, S., Y. Popineau, J.-P. Compoint, C. Blassel and B. Chaufer, “Ultrafiltration to fractionate wheat polypeptides,” J. chromatogr. B, 753, 29-35 (2001).
Bhattacharjee, S., C. Bhattacharjee and S. Datta, “Studies on the fractionation of b–lactoglobin from casein whey using ultrafiltration and ion-exchange membrane chromatography,” J. Membr. Sci., 275, 141-150 (2006).
Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, "Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques", in: J.E. Filnn, ed., Membrane Science and Technology, Plenum Press, New York (1970) 47-91.
Bowen, W.R. and A.W. Mohammad, “A theoretical basis for specifying nanofiltration membranes-Dye/salt/water streams,” Desalination, 117, 257-264 (1998).
Bowen, W.R. and A.W. Mohammad, “Diafiltration by nanofiltration: Prediction and optimization,” AIChE J., 44, 1799-1812 (1998).
Britten, M. and Y. Pouliot, “Characterization of whey protein isolate obtained from milk microfiltration permeate,” Lait, 76, 255-265 (1996).
Calace, N., F.D. Paolis, F. Minniti and B.M. Petronio, “Purification of soluble fulvic acid low concentrations by a diafiltration technique,” Talanta, 47, 803-809 (1998).
Castino, F. and S.R. Wickramasinghe, “Washing frozen red blood cell concentrates using hollow fibres,” J. Membr. Sci., 110, 169-180 (1996).
Cheng, T. W. and S. Y. Pan “Recovery of Sizing Agent by Gas Sparging Ultrafiltration”, J. Chin. Inst. Chem. Engrs., 32, 431-436 (2001).
Cheng, T. W., H. M. Yeh, and C. T. Gau, “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol., 33, 2295-2309 (1998).
Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech-nomic Publishing Co. Inc. Pennsylvania (1998).
Cho, C.W., D.Y. Lee and C.W. Kim, “Concentration and purification of soluble pectin from mandarin peels using crossflow microfiltration system,” Carbohydrate Polymers, 54, 21-26 (2003).
Crum, R.H., E.M. Murphy and C.K. Keller, “A non-adsorptive method for the isolation and fractionation of natural dissolved organic carbon,” Water Resour., 30, 1304-1311 (1996).
Cui, Z.F. and K.I.T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism,” J. Membr. Sci. 117, 109-116 (1996).
Dutré, B. and G. Trägårdh, “Purification of gelation by ultrafiltration with a forced solvent stream along the membrane permeate side: An experimental approach,” Journal of Engineering, 25, 233-244(1995).
Fayed, A.E., Z.H. Zidan, A.A.K. Abou-Arab and M.N.I. Magdoub, “Ultrafiltration membrane permeability of some milk contaminants”, International Dairy Journal, 5, 569-576 (1995).
Fernández, S.O., J.A. Rodríguez and A.P. Padilla, “Removal concentration and desalination of bovine seroalbumin (BSA) with membrane technology,” Desalination, 126, 95-100 (1999).
Foley, G., “Minimisation of process time in ultrafiltration and continuous diafiltration: the effect of incomplete macrosolute rejection,” J. Membr. Sci., 163, 349-355 (1999).
Foley, G. and J. Garcia, “Ultrafiltration flux theory based on viscosity and osmotic effects: application to diafiltration optimization,” J. Membr. Sci., 176, 55-61 (2000).
Foley, G., “Ultrafiltration with variable volume diafiltration: a novel approach to water saving in diafiltration processes,” Desalination, 199, 220-221 (2006).
Foley, G., “Water usage in variable volume diafiltration: comparison with ultrafiltration and constant volume diafiltration,” Desalination, 196, 160-163 (2006).
Goulas, A.K., P. G. kapasakalidis, H. R. Sinclair, R.A. Rastall and A. S. Crandison, “Purification of oligosaccharides by nanofiltration,” J. Membr. Sci., 209, 321-335 (2002).
Hermia, J. “Constant pressure blocking filtration laws- Application to power-law non-newtonian fluids,” Trans. Inst. Chem. Eng., 60, 183(1982).
Jaffrin, M.Y. and J.Ph. Charrier, “Optimization of ultrafiltration and diafiltration processes for albumin production,” J. Membr. Sci., 97, 71-81 (1994).
Krstić, D.M., M. N, Tekić, Z. Z. Zavargo, M.S. Djurić and G.M. Ćirić, “Saving water in a volume-decreasing diafiltration process,” Desalination, 165, 283-288 (2004).
Laborie, S., C. Cabassud, L. Durand-Bourlier, and J.M. Lainé, “Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: effect of slug flow on cake structure”, presented at the 7th World Filtration Congress in Budapest, Hungary in May 1996.
Lipnizki, F., J. Boelsmad and R.F. Madsen, “Concepts of industrial-scale diafiltration systems,” Desalination, 144, 179-184 (2002).
Martinez-Ferez, A., A. Guadix and E.M. Guadix, “Recovery of caprine milk oligosaccharides with ceramic membranes,” J. Membr. Sci., 276, 23-30 (2006).
Meacle, F., A. Aunins, R. Thornton and A. Lee, “Optimization of the membrane purification of a polysaccharide-protein conjugate vaccine using backpulsing,” J. Membr. Sci., 161, 171-184 (1999).
Mercier-Bonin, M., C. Fonade, and C. Lafforgue-Delorme, “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci., 128, 103-113 (1997).
Moreno-Villoslada, I., V. Miranda, M. Jofré, P. Chandía, J.M. Villatoro, J. L. Bulnes, M. Cortés, S. Hess and B. L. Rivas,“Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration,” J. Membr. Sci., 272, 137-142 (2006).
Mulder, M., “Basic Principles of Membrane Technology”, Kluwer Academic Publishers, The Netherlands (1996).
Pouliot, M., Y. Pouliot and M. Britten, “On the conventional cross-flow microfiltration of skim milk for the production of native phosphocaseinate,” International Dairy Journal, 6, 105-111 (1996).
Reis, R.V. and S. Saksena, “Optimization diagram for membrane separations,” J. Membr. Sci., 129, 19-29 (1997).
Reis, R.V., E.M. Goodrich, C.L. Yson, L.N. Frautschy, R. Whiteley and A.L. Zydney, “Constant Cwall ultrafiltration process control,” J. Membr. Sci., 130, 123-140 (1997).
Rescigno, A, F. Sollai, E. Sanjust, A.C. Rinaldi, N. Curreli and A. Rinaldi, “Diafiltration in the presence of ascorbate in the purification of mushroom tyrosinase,” Phytochemistry, 46, 21-22 (1997).
Romero, J. and A.L. Zydney, “pH and salt effects on chiral separations using affinity ultrafiltration”, Desalination, 148, 159-164 (2002).
Romero, J. and A.L. Zydney, “Staging of affinity ultrafiltration processes for chiral separations,” J. Membr. Sci., 209, 107-119 (2002).
Saettone, M. P., Giannaccini, B., Teneggi, A., “Vehicles effects onophthalmic bioavailability:the influence of different polymers on theactivity of pilocarpine in rabbit and man,” J. Pharm. Pharmcol., 34:464-466(1982).
Wang, S. S. ”Effect of solution viscosity on ultrafiltration flux”, J. Membr. Sci., 39, 187-194 (1988).
Winzeler, H.B. and G. Belfort, “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci., 80, 35-47 (1993).
Yang, P. F, and C. K. Lee, “Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification, ”Biochemical Engineering Journal, 33, 284-289 (2007).
Yazdanshenas, M., A.R. Tabatabaeenezhad, R. Roostaazad and A.B. Khoshfetrat, “Full scale analysis of apple juice ultrafiltration and optimization of diafiltration,” Sep. Purif. Technol., 47, 52-57 (2005).
Yeh, H.M., "Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules", Sep. Sci. Technol., 31 (1996) 201-211.
Zhou, H. J. Ni, W. Huang, and J. Zhang, “Separation of Hyaluronic Acid from Fermentation Broth by Tangential Flow Microfiltration and Ultrafiltration,” Sep. Purif. Technol., 52, 29-38 (2006).
Zydney, A.L., “Protein separations using membrane filtration: New opportunities for whey fractionation,” International Dairy Journal, 8, 243-250 (1998).
呂維明編著,”固液過濾技術”, 高立圖書有限公司 (2004)
高啟綜,氣-液兩相掃流薄膜超過濾之研究,碩士論文,淡江大學化學工程研究所,台北縣,台灣 (1996).
高維毅,玻尿酸醱酵中均衡培養基之探討,碩士論文,成功大學,台南,台灣,(2006).
盛瑞堂、孫猛、譚天偉,過濾法分離純化透明質酸,過程工程學報,第6卷第二期(2006).
陳毓華、陳松青,透明質酸與其生醫應用,化工資訊與商情,第37期 (2006).
劉坤翰,不同氮源對於鏈球菌醱酵生產玻尿酸之影響 ,碩士論文,成功大學,台南,台灣,(2006).
謝慧冰,攪拌剪應力是玻尿酸醱酵放大設計之關鍵因素,碩士論文,成功大學,台南,台灣,(2005).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信