淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2307200703225900
中文論文名稱 反射式半導體光放大器於光纖網路之應用
英文論文名稱 Applications of Reflective Semiconductor Optical Amplifiers in optical networks
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 王榆淙
研究生英文姓名 Yu-Tsung Wang
學號 694350249
學位類別 碩士
語文別 中文
口試日期 2007-06-26
論文頁數 91頁
口試委員 指導教授-楊淳良
委員-李三良
委員-李揚漢
中文關鍵字 半導體光放大器  波分多工  被動光網路  輔助光  接取網路  用戶端  中央局端  明滅比 
英文關鍵字 Reflective Semiconductor Optical Amplifier (RSOA)  Wavelength Division Multiplexing (WDM)  Passive Optical Networks (PONs)  Holding Light  Access Networks  Optical Network Unit  Optical Line Terminal  Extinction Ratio 
學科別分類 學科別應用科學電機及電子
中文摘要 本篇論文主要在探討反射式半導體光放大器(Reflective Semiconductor Optical Amplifier, RSOA)於光纖網路之相關應用。在先前的WDM-PON (Wavelength Division Multiplexed Passive Optical Network)網路技術中,ONU (Optical Network Unit)所使用的光源元件有入射鎖模型Fabry-Perot雷射與RSOA兩種,其中以RSOA元件最具潛力,此光電元件可作為光放大器、檢光器、調變器等功能元件。
當已調變的光訊號經過RSOA放大後,會產生嚴重的波形失真,在本論文我們探討以輔助光入射RSOA,減輕放大光訊號之波形失真,例如:我們已在國內會議論文提出以連續波輔助光改善反射式半導體光放大器作為放大器之效能。藉由RSOA的特性分析提出新型的WDM-PON架構,利用自我種子(Self-Seeding)的架構,產生輔助光並作為上傳光源。
最後我們提出一套創新的光信號明滅比(Extinction Ratio, ER)監測方法,此監測方式可以在OLT (Optical Line Terminal)端遠端監測ONU端所上傳光訊號的ER值。在實驗上,我們使用直調式DFB (Distributed Feedback)雷射加以驗證其可行性。
英文摘要 This thesis mainly discusses the applications of reflective optical amplifiers (RSOAs) in optical networks. In the prior WDM-PON (Wavelength Division Multiplexed Passive Optical Network) techniques, there are two kinds of light sources at the remote ONU (Optical Network Unit), i.e., injection locked Fabry-Perot laser and RSOA. The RSOA possesses greatest potential while it can be an optical amplifier, an optical detector, or an optical modulator.
After the modulated optical signal is amplified by the RSOA, the optical signal will suffer from a serious waveform distortion. In this paper, we study the improvement of waveform distortion by injecting the holding light into the RSOA.
For example, we proposed a paper whose title is “Improving the Waveform Distortion of RSOAs Using a CW Holding Light” in the domestic conference. By analyzing the characteristics of an RSOA, we designed a novel WDM-PON configuration which uses the self-seeding structure to produce a light as a holding light or an upstream light source.
Finally, we proposed a novel method for monitoring optical signal extinction ratio. This technique in the ER monitoring is able to monitor all the remote upstream signals at the central office OLT (Optical Line Terminal). In the experiment, we used a directly modulated DFB (Distributed Feedback) laser to test and verify this method.
論文目次 目 錄
第一章 簡介 1
1.1 前言 1
1.2 研究動機與目的 9
1.3 論文架構 10
第二章 半導體光放大器 11
2.1 光放大器簡介 11
2.2 基本特性與工作原理 12
2.2.1 增益特性 15
2.2.2 放大自發性放射 16
2.2.3 雜訊指數 18
2.2.4 啁啾效應 19
第三章 反射式半導體光放大器的應用 23
3.1 RSOA應用於光放大 23
3.2 RSOA應用於半導體雷射 24
3.3 RSOA應用於檢光與調變 27
3.4 RSOA應用於波長轉換 30
第四章 WDM-PON與ER監測先前技術介紹 34
4.1 WDM-PON先前技術介紹 34
4.2 ER監測先前技術介紹 39
第五章 模擬分析與實驗結果 43
5.1 RSOA特性分析 43
5.1.1 RSOA輸出光功率與增益曲線 47
5.1.2 利用輔助光改善RSOA波形失真現象 49
5.2 RSOA應用於PON中的架構模擬 58
5.2.1 下載架構模擬 61
5.2.2 上傳架構模擬 65
5.3 ER監測技術 68
5.3.1 理論分析與模擬結果 68
5.3.2 實驗結果 74
5.3.3 ER峰值位置估測方法 80
第六章 結論 84
6.1 成果與討論 84
6.2 未來研究方向 85
參考文獻 87
圖目錄
圖1.1 一般PON的架構圖 2
圖1.2 TDMA上傳架構圖 5
圖1.3 CDMA上傳架構圖 6
圖1.4 SCMA上傳架構圖 7
圖1.5 單向結構WDM傳輸系統 8
圖1.6 雙向結構WDM傳輸系統 8
圖2.1 SOA的結構示意圖 13
圖2.2 RSOA 的結構示意圖 14
圖2.3 放大自發性放射(ASE)表示圖 17
圖2.4 不同波長增益曲線示意圖 21
圖2.5 SOA增益曲線 22
圖3.1 光放大器在主幹線傳輸系統的應用 23
圖3.2 光放大器在光分配系統當作輔助光放大器的應用 24
圖3.3 RSOA (a)利用迴圈架構(b)利用光纖光柵(FBG)產生自我種子架構圖 26
圖3.4 RSOA半雙工系統ONU 29
圖3.5 RSOA全雙工系統ONU 30
圖3.6 波長轉換示意圖 30
圖3.7 SOA交叉增益調變(XGM) 32
圖3.8 RSOA交叉增益調變(XGM) 33
圖4.1 被動光網路架構圖 34
圖4.2 簡單型的雙向WDM-PON架構圖 35
圖4.3 混合型PON 36
圖4.4 反饋型WDM-PON的架構圖 37
圖4.5 入射鎖模型WDM-PON架構圖 38
圖4.6 訊號脈波圖 40
圖4.7 DCA上以眼圖量測ER值 41
圖4.8 ER量測系統架構圖 42
圖5.1 RSOA 的ASE 頻譜 45
圖5.2 (a) 隨著溫度的不同RSOA L-I Curve (b)加入自我種子架構的RSOA L-I Curve 46
圖5.3 (a)實測RSOA 輸出功率曲線與增益曲線(b) 模擬RSOA 輸出功率曲線與增益曲線(0.001:0.9999) (c) 模擬RSOA 輸出功率曲線與增益曲線(0:0.9999) 49
圖5.4 RSOA加入輔助光改善波型失真系統架構方塊圖 50
圖5.5 光信號源(Tx)之眼圖 51
圖5.6 無連續波輔助光下,1mW光信號源(Tx)經RSOA放大後眼圖 52
圖5.7 在連續波輔助光(193.4THz)下,1mW光信號源(Tx)經RSOA放大後眼圖 53
圖5.8 在不同光頻率連續波輔助光及RSOA在80mA操作電流下,1mW光信號源(Tx)經RSOA放大後眼圖 54
圖5.9 光信號源(Tx)在背對背(Back-to-Back)及經RSOA放大後之效能 55
圖5.10 實測訊號經RSOA放大後,訊號波長1552 nm,傳輸速率2.5 Gbps時的光訊號眼圖比較(a)沒有輔助光時的光訊號眼圖(b)加入輔助光後的光訊號眼圖 57
圖5.11 實測訊號經RSOA放大後,訊號波長1552 nm,傳輸速率10 Gbps時的光訊號眼圖比較(a)沒有輔助光時的光訊號眼圖(b)加入輔助光後的光訊號眼圖 57
圖5.12 實測訊號直接調變在RSOA上,光訊號波長1552 nm,傳輸速率1.25 Gbps時的光訊號眼圖比較(a)沒有輔助光時的光訊號眼圖(b)加入輔助光後的光訊號眼圖 58
圖5.13 Feedback WDM-PON架構圖 59
圖5.14 使用自我種子迴路之WDM-PON架構圖 60
圖5.15 下載架構之模擬架構圖示 61
圖5.16 下載架構之眼圖模擬結果(freq:193.1 THz) 63
圖5.17下載架構之BER模擬結果 64
圖5.18上傳架構之模擬架構圖示 65
圖5.19速率1.25Gbps訊號直接調變RSOA自我種子光源之模擬結果 67
圖5.20 傳輸速率1.25Gbps時,直接調變RSOA自我種子光源的BER曲線 67
圖5.21 直調下自我種子光源之光頻率與啁啾波形 69
圖5.22 H參數的分析與統計值 70
圖5.23 各項參數定義 71
圖5.24在不同的驅動電流振幅及不同的I-bias下,Peak △λp 與 Chirp△νc的對應關係 72
圖5.25 Peak ER v.s. Signal ER 73
圖5.26 實驗系統設置圖 75
圖5.27 DFB Laser直調(10 Gbps),估測ER與訊號ER值比較 75
圖5.28 DFB Laser直調(2.5 Gbps),估測ER與訊號ER值比較 76
圖5.29 DFB Laser直調 (10 Gbps)光頻譜圖 77
圖5.30 DFB Laser直調 ( 2.5 Gbps)光頻譜圖 77
圖5.31 DFB Laser 直調 (10 Gbps, I-bias=70mA, Im=40mA) 78
圖5.32 DFB Laser 直調 (10 Gbps, I-bias=42mA, Im=40mA) 79
圖5.33 DFB Laser 直調 (10 Gbps, I-bias=35mA, Im=40mA) 80
圖5.34 估測ER值與訊號ER值關係圖;取△λ固定值 (ER > 7 dB) (DFB Laser 10 Gbps) 81
圖5.35 估測ER值與訊號ER值線性關係圖;取ER最佳值,觀察Dl變化(DFB Laser 10 Gbps) 82
圖5.36 估測ER值與訊號ER值線性關係圖;取ER最佳值,觀察Dl變化 (DFB Laser 2.5 Gbps) 82
圖5.37 估測ER值與訊號ER值關係圖;取△λ固定值(ER > 7 dB) (DFB Laser 2.5 Gbps) 83

表目錄
表4.1 WDM-PON的技術比較 38
表5.1 RSOA的模擬參數 44
參考文獻 參考文獻
[1] Amitabha Banerjee, Youngil Park, Frederick Clarke, Huan Song, Sunhee Yang,Glen Kramer, Kwangjoon Kim, and Biswanath Mukherjee, “Wavelength-division-multiplexed passive optical network(WDM-PON) technologies for broadband access: a review [Invited],” Journal of Optical Networking, Vol. 4, No. 11, PP. 737-758, Nov. 2005.
[2] Chang-Hee Lee, Wayne V. Sorin, and Byoung Yoon Kim, “Fiber to the home using a PON infrastructure [Invited],” IEEE Journal of Lightwave Technology, Vol. 24, No. 12, Dec. 2006.
[3] 賴耿陽, “光放大器與其應用”,台灣復文興業股份有限公司。
[4] M. J. O’mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” IEEE Journal of Lightwave Technology, Vol. 6, No. 4, PP. 531-544, Apr. 1988.
[5] Tien-Pei Lee, “Recent advances in long- wavelength semiconductor lasers for optical fiber communication,” Proceedings of the IEEE, Vol.79, No.3, Mar. 1991.
[6] D. Wolfson, “Detailed theoretical investigation and comparison of the cascadability of conventional and gain-clamped SOA gates in multi-wavelength optical networks,” IEEE Photonics Technology Letters, Vol. 11, No. 11, PP. 1494-1496, 1999.
[7] M. Yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Letters, Vol. 8, No. 1, PP. 58-59, Jan. 1996.
[8] J. M. Wiesenfeld, A. H. Gnauck, G. Raybon, and U.Koren, “High-speed multiple-quantum-well optical power amplifier,” IEEE Photonics Technology Letters, Vol. 4, No. 7, PP. 708-711, 1992.
[9] F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A.Burrus, “Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power application,” IEEE Photonics Technology Letters, Vol. 5, No.8, PP. 916-919, 1993.
[10] E. Wong, K. L. Lee, and T. Anderson, “ Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA,” Electronics Letters 2nd, Vol. 42, No. 5, Mar. 2006.
[11] Jeung-Mo Kang, Sang-Hoon Lee, Yong-Yuk Won, Jeong-Seok Lee, Yun-Kyung Oh, Dong-Hoon Jang, and Sang-Kook Han, “ A novel hybrid WDM/SCM-PON using reflective semiconductor optical amplifier,” Microwave Photonics, 2005. International Topical Meeting on 12-14 Oct. 2005 Page(s): 181 – 184.
[12] Hyuk-Choon Kwon, Yong-Yuk Won, and Sang-Kook Han, “A self-seeded reflective SOA-based optical network unit for optical beat interference robust WDM/SCM-PON link,” IEEE Photonics Technology Letters, Vol. 18, No. 17, Sep. 2006.
[13] Cristina Arellano, and Josep Prat, “Semiconductor optical amplifiers in access networks,” Vol. 2, PP. 13 -16, Jul. 2005.
[14] Josep Prat, Cristina Arellano, Victor Polo, and Carlos Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-to-the-home networks,” IEEE Photonics Technology Letters, Vol. 17, No. 1, Jan. 2005.
[15] Yoshinobu Maeda and Lorenzo Occhi, “All-optical triode based on a tandem wavelength converter using reflective semiconductor optical amplifiers,” IEEE Photonics Technology Letters, Vol. 15, No. 2, Feb. 2003.
[16] Amitabha Banerjee, Youngil Park, Frederick Clarke, Huan Song, Sunhee Yang, Glen Kramer, Kwangjoon Kim, and Biswanath Mukherjee, “Wavelength-division-multiplexed passive optical network(WDM-PON) technologies for broadband access: a review [Invited], ” Journal of Optical Networking, Vol. 4, No. 11, PP. 737-758, Nov. 2005.
[17] D. J. Shin, Y. C. Keh, J. W. Kwon, E. H. Lee, and J. K. Lee, “C/S-band WDM-PON employing colorless bidirectional transceivers and SOA-based broadband light sources,” Optical Fiber Communication Conference Technical Digest, Vol. 6, PP. 6-11, Mar. 2005.
[18] Hyum Deok Kim, Seung-Goo Kang, and Chang-Hee Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technology Letters, Vol. 12, No. 8, PP. 1067-1069, Aug. 2000.
[19] Sang-Mook Lee, Ki-Man Choi, Sil-Gu Mun, Jung-Hyung Moon, and Chang-Hee Lee, “Dense WDM-PON based on wavelength-locked Fabry-Perot laser diodes,” IEEE Photonics Technology Letters, Vol. 17, No. 7, PP. 1579-1581, Jul. 2005.
[20] Ki-Man Choi, Jin-Serk Baik, and Chang-Hee Lee, “Broad-band light source using mutually injected Fabry-Perot laser diodes for WDM-PON,” IEEE Photonics Technology Letters, Vol. 17, No. 12, PP. 2529-2531, Dec. 2005.
[21] P. Healey, P. Townsend, C. Ford, and L.Johnston, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electronics Letters, Vol. 13, No. 19, PP. 1181-1182, Sep. 2001.
[22] H. C. Shin, J. S. Lee, I. K. Yun, and S. W. Kim et al, “Reflective SOAs optimized for 1.25Gbit/s WDM-PONs,” Optical Fiber Communication Conference Technical Digest, PP. 352-353, Mar. 2002.
[23] Per O. Anderson and Kurt Akermark, “Accurate optical extinction ratio measurements,” IEEE Photonics Technology Letters, Vol. 6, No. 11, Nov. 1994.
[24] Young-Hun Oh, Sang-Gug Lee, Quan Le, Ho-Yong Kang, and Tae-Whan Yoo, “A CMOS burst-mode optical transmitter for 1.25Gb/s Ethernet PON applications,” IEEE Transactions on Circuits and Systems-II:Express Briefs, Vol. 52, No. 11, PP. 780-783, Nov. 2005.
[25] Christophe peucheret, “Direct current modulation of semiconductor lasers,” Electronics Letters, Vol. 30, No. 4, PP. 345 -346, Feb. 1994.
[26] T. L. Koch and P. J. Corvini, “Semiconductor laser chirping-induced dispersive distortion in high-bit-rate optical fiber communications systems,” Communications, 1988. ICC 88. Digital Technology - Spanning the Universe. Conference Record. IEEE International Conference, Vol. 2, PP. 584-587, Jun. 1988.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信