§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307200619463100
DOI 10.6846/TKU.2006.00740
論文名稱(中文) 無線感測網路中可靠傳輸協定之探討
論文名稱(英文) A reliable transport protocol in wireless sensor network
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 游曜丞
研究生(英文) Yao-Cheng Yu
學號 693390550
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-16
論文頁數 64頁
口試委員 指導教授 - 莊博任
委員 - 李維聰
委員 - 陳省隆
關鍵字(中) 可信賴傳輸
壅塞控制
無線感測器網路
關鍵字(英) reliable transport
congestion control
sensor network
第三語言關鍵字
學科別分類
中文摘要
無線感測器網路是由一些微小的感測器節點所架構而成的網路,每一個感測器節點具有感應、無線通訊及處理資訊的能力。感測器節點可以將收集到的資料用無線傳輸的方式,將資料傳回基地台做資料處理。因為此特性,無線感測器網路可以應用在各個不同的領域,例如:應用在醫療,安全監視,軍事方面。
無線感測器網路設計時所需要考慮的地方,像是節點能量消耗、網路壅塞控制、檔案傳輸可靠度、安全性等,而這些問題都有可能由上往下影響好幾層。對於無線感測器網路,傳輸協定所影響最大的部份即在於網路壅塞控制、檔案傳輸可靠度以及節省節點能量消耗的部份。
在此篇論文中,主要探討的對象是目前無線感測器網路的傳輸協定分類中的”保持高信賴度傳輸”和”網路壅塞控制” 兩類,這兩種類型的傳輸協定都有各自的問題而無法滿足每一種應用的要求。在注重高信賴的協定中,可以藉由修復機制使網路傳輸率保持在一定的可靠度,但是
因為沒有網路壅塞控制的機制,因此在網路壅塞而緩衝區空間不足
的情形下,會造成資源的無謂損耗和降低封包傳輸的成功率。注重網路壅塞的協定則是剛好相反的狀況,在網路發生壅塞情形的狀況下,可以順利的解決網路壅塞的問題,不會讓資源消耗在必然會發生傳輸失敗的情形,但是沒有修復封包機制的存在,使得這種類型的協定在環境不佳而傳輸成功率不高的時候,最後所表現出來的傳輸成功率不佳。於是在本篇論文中,我們設計了一個新協定,期望能滿足各種應用的需求,並且不需要為了配合不同的應用需求而一直的修改。
在此論文中,我們設計了一個新協定,包含了封包修復機制以修復因為傳輸環境不良而被遺失的封包,並藉由回報訊息來控制網路傳輸,避免網路發生壅塞而使得封包被遺棄。在這兩個主要機制的作用之下,使得我們的新協定可以不經過修改即可使用在傳輸環境不良或是容易發生壅塞的網路中。
英文摘要
Wireless sensor networks are composed of various micro sensor nodes. Each sensor node has the ability of sense, wireless communication and data processing. The sensor nodes can transfer the collected information to the base station. With the feature of sensor node, the wireless sensor networks can be used in different fields.
Many problems may influence many layers top-down from the application layer to the physical layer. The energy consumption, the network safety, the congestion control, and the data dissemination reliability etc. They should be considered when we design the wireless sensor network. The influence of the transport protocols are congestion control, the data dissemination reliability and the energy consumption
In this paper, the “high reliability transmission” type and the “congestion control” type are the research objective. They all have their own problems and they can’t supply the requirements of every application. The “high reliability transmission” type keeps the packet delivery having high reliability with the recovery scheme. But this type doesn’t have the congestion control scheme. When the congestion happens, the coming packets will be dropped because of the full cache. It decreases the delivery success ratio and increases the resource consumption. The “congestion control” type is on the contrary. This type can overcome the congestion to decrease the loss packets due to the congestion. But this type can’t recovery the loss packets due to the bad quality of transmission channel. Therefore, this type can’t have high transmission reliability when the environment has bad quality of transmission channel. And we design a new protocol. We wish the protocol can supply the requirements of every application and can be used in any environment without modification.
Our new protocol includes recovering the loss packets due to the bad transmission quality. And we use a report message to control the network transmission to avoid the packets being dropped due to the congestion. With the functions, our new protocol can be used in the bad transmission quality environment or the heavy traffic network.
第三語言摘要
論文目次
目錄
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅲ
目錄.....................................................Ⅵ
圖目錄...................................................Ⅸ
表目錄.................................................ⅩⅡ
第一章 序論...............................................1
第二章 相關研究...........................................5
2.1概論...................................................5
2.2 End-to-End傳輸機制的協定..............................7
2.2.1 ESRT................................................7
2.3 Hop-by-hop傳輸機制....................................9
2.3.1維持可信賴的傳輸.....................................9
2.3.1.1 RMST.............................................10
2.3.1.2 PSFQ.............................................10
2.3.1.3 GARUDA...........................................12
2.3.2網路壅塞情形的控制..................................13
2.3.2.1 CODA.............................................13
2.3.2.2 PORT.............................................14
第三章 新協定的動機......................................16
第四章 新協定的做法......................................22
4.1 新協定的封包格式.....................................22
4.2 新協定流程圖.........................................24
4.3傳送訊息的第一個封包階段..............................27
4.4傳送訊息的剩餘封包階段................................29
4.5修復階段..............................................32
4.6回報階段..............................................34
4.6維持網路傳輸的公平性..................................37
第五章 模擬結果..........................................39
5.1模擬環境..............................................39
5.2使用end-to-end的傳輸機制和hop-by-hop的傳輸機制比較....41
5.2.1目的地成功接收率對網路大小的比較....................42
5.2.2 Overhead對節點間傳輸成功率的比較...................43
5.3擁有修復機制的協定在發生網路壅塞的表現................45
5.3.1目的地成功接收率對網路大小的比較....................46
5.3.2 Overhead對網路大小的比較...........................48
5.4 在網路壅塞控制的比較.................................52
5.5 傳輸延遲時間的比較...................................58
第六章 結論..............................................60
參考文獻.................................................63

圖目錄
圖1.1無線感測網路系統基本架構.............................2
圖3.1 沒有修復功能的封包傳送在不同環境的目的地成功接收率.16
圖3.2使用end-to-end的傳輸方式,修復訊息次數和目的地成功接收
     率的關係............................................19
圖3.3使用hop-by-hop的傳輸方式,修復訊息次數和目的地成功接收
     率的關係............................................19
圖4.1新協定的傳送封包格式................................22
圖4.2新協定的回報封包格式................................23
圖4.3節點成為下游接收節點時的流程圖......................24
圖4.4節點成為上游傳送節點時的流程圖......................25
圖4.5網路連結簡單示意圖..................................37
圖5.1新協定和SRM目的地成功接收率的比較圖.................42
圖5.2新協定和SRM傳送成功一次封包平均需要多少次傳送.......43
圖5.3目的地成功接收率對傳送距離的比較(節點間傳送成功率為
     90%) ..............................................46
圖5.4目的地成功接收率對傳送距離的比較(節點間傳送成功率為
     70%)...............................................47
圖5.5目的地成功接收率對傳送距離的比較(節點間傳送
      成功率為50%)......................................48
圖5.6 overhead對傳送距離的比較(節點間傳送成功率
      為90%)............................................49
圖5.7 overhead對傳送距離的比較(節點間傳送成功率
      為70%)............................................50
圖5.8 overhead對傳送距離的比較(節點間傳送成功率
      為50%)............................................51
圖5.9上游節點數量對傳輸完成時間的比較圖(每個來源
      節點傳送50個封包).................................52
圖5.10上游節點數量對接收成功封包數量的比較圖(每
      個來源節點傳送50個封包)...........................53
圖5.11上游節點數量對傳輸完成時間的比較圖(每個
      來源節點傳送500個封包)............................54
圖5.12上游節點數量對接收成功封包數量的比較圖(每   
      個來源節點傳送500個封包)..........................55
圖5.13接收完所有封包所需時間.............................56
圖5.14目的地節點成功接收率...............................56
圖5.15三種協定在不同網路大小的延遲時間比較...............58

表目錄
表4.1傳送第一個封包的演算法..............................27
表4.2傳送階段的演算法....................................29
表4.3修復階段的演算法....................................32
表4.4回報階段的演算法....................................34
參考文獻
[1] CodeBlue: Wireless Sensor Networks for Medical Care, Division of Engineering and Applied Sciences, Harvard University, http://www.eecs.harvard.edu/~mdw/proj/codeblue/ 
[2] FIRE, “Fire Information and Rescue Equipment,” http://bmi.berkeley.edu/fire/
[3] Yogesh Sankarasubramaniam, Oezguer B. Akan, Ian F. Akyildiz. ” Sensor networks: ESRT: event-to-sink reliable transport in wireless sensor networks,” Proceedings of the 4 ACM international symposium on Mobile ad hoc networking & computing, Annapolis, Maryland, USA, June 1-3, 2003, pp.177-188 th
[4] C.Y. Wan, S.B. Eisenman, A.T. Campbell,” Congestion control: CODA: congestion detection and avoidance in sensor networks,” Proceedings of the 1 international conference on Embedded networked sensor systems, stLos Angeles, California, USA, Nov 5-7, 2003, pp.266-279.
[5] Y. Zhou, M.R.Lyu, “PORT: A Price-Oriented Reliable Transport Protocol for Wireless Sensor Networks,” Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering, pp.117-126.
[6] C.Y. Wan, A.T. Campbell, L. Krishnamurthy,” Pump-slowly, fetch-quickly (PSFQ): a reliable transport protocol for sensor networks,” Selected Areas in Communications, IEEE Journal on Volume 23, Issue 4, April 2005, pp:862 - 872
63
[7] Seung-Jong Park, Ramanuja Vedantham, Raghupathy Sivakumar, Ian F. Akyildiz ,“A scalable approach for reliable downstream data delivery in wireless sensor networks,” Proceedings of the 5 ACM international symposium on Mobile ad hoc networking and computing,th Roppongi Hills, Tokyo, Japan, May 24-26, 2004, pp.78-89.
[8] F. Stann, J. Heidemann. “RMST: reliable data transport in sensor networks” Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE, May 11, 2003 Page(s):102 – 112
[9] S. Floyd, V. Jacobson, C. Liu, S. Macanne and L. Zhang. “A Reliable Multicasting Framework for Lightweight Session and Application Layer Framing.” IEEE/ACM Transactions on Networking, vol.5, no.6, pp.784-803, dec.1997.
[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable coordination in sensor networks. Proc. of the 5th MobiCom, Seattle, Washington, August 1999.
[11] http://www.isi.edu/nsnam/ns/index.html
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信