§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2306201417395000
DOI 10.6846/TKU.2014.00921
論文名稱(中文) 改良型雙流程式薄膜萃取的修正因子分析
論文名稱(英文) Membrane extraction in cross-flow double-pass modules with modified correction-factor analysis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 李彥徵
研究生(英文) Yen-Cheng Lee
學號 601400095
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-05-29
論文頁數 83頁
口試委員 指導教授 - 葉和明
委員 - 鄭東文
委員 - 蔡少偉
關鍵字(中) 薄膜萃取
改良型修正因子分析
雙行程
交流式
關鍵字(英) Membrane extraction
Modified correction-factor analysis
Double-pass
Countercurrently cross flow
第三語言關鍵字
學科別分類
中文摘要
本文主要探討在雙行程交流式薄膜萃取系統中質量傳送速率之改良型修正因子分析。本研究對雙行程交流式薄膜萃取系統的質傳面積、體積流率、分配係數和整體質量傳送係數等參數,繪製出改良型修正因子圖表,如此無須經過繁雜的疊代步驟,即可直接由圖表查得修正因子,再配合本文中改良後的質傳速率公式,就能容易的求解出薄膜萃取速率。傳統的修正因子分析圖表,因含有未知出口濃度的因素,而在計算上必須使用繁雜的疊代法,故改良型修正因子分析改善了求解萃取速率的便利性。此改良型修正因子分析的概念也可應用於其他傳統的熱、質傳交換器中,本研究採以甲基異丁基酮(MIBK)薄膜萃取醋酸實驗結果來對改良型修正因子分析所得到的萃取速率理論值進行佐證。
英文摘要
The expressions of mass-transfer rate for membrane extraction through a countercurrently cross-flow double-pass membrane module have been derived based on the modified correction-factor analysis. These expressions, as well as the correction-factor charts modified, are explicit and the results can be readily calculated without using try-and-error method, which should be employed in the conventional correction-factor analysis for designing heat and mass exchangers. Experimental results confirm the predicted values for membrane extraction of acetic acid from aqueous solution by methyl isobutyl ketone in cross-flow double-pass device.
第三語言摘要
論文目次
目   錄
誌  謝I
中文摘要II
英文摘要III
目  錄IV
圖目錄VI
第一章 緒論1
1-1 前言1
1-2 液膜分離技術之發展與應用	4
1-3 薄膜萃取技術之介紹9
1-4 薄膜萃取系統於熱交換器中之原理應用	16
1-5 研究目的17
第二章 文獻回顧19
第三章 理論分析25
3-1 質量傳送係數25
3-2 總質量傳速率&改良型修正因子計算公式31
3-3 薄膜萃取系統之出口濃度35
3-3-1 雙行程順流型交流式薄膜萃取系統35
3-3-2 雙行程逆流型交流式薄膜萃取系統44
3-4雙行程平板薄膜系統之改良型修正因子圖表53
第四章 範例計算58
第五章 結果與討論62
5-1 雙行程交流式薄膜萃取之理論與實驗數據比較結果	62
5-2 雙行程交流式順、逆流系統的比較73
5-3 改良型修正因子分析的優點	74
第六章 結論75
符號說明76
參考文獻78

圖目錄
圖1乳化型液膜7
圖2支撐式液膜7
圖3分液漏斗13
圖4液液萃取塔14
圖5疏水性微孔薄膜系統15
圖6親水性微孔薄膜系統15
圖7疏水性平板多孔薄膜系統26
圖8平板多孔性薄膜系統濃度梯度示意圖26
圖9雙行程順流型交流式平板薄膜萃取系統示意圖42
圖10雙行程順流型交流式平板薄膜萃取系統座標俯視示意圖43
圖11雙行程逆流型交流式平板薄膜萃取系統示意圖51
圖12雙行程逆流型交流式平板薄膜萃取系統座標俯視示意圖52
圖13雙行程順交流薄膜萃取的改良型修正因子圖表: F1 vs a 54
圖14雙行程順交流薄膜萃取的改良型修正因子圖表: F2 vs a 55
圖15雙行程逆交流薄膜萃取的改良型修正因子圖表: F1 vs a 56
圖16雙行程逆交流薄膜萃取的改良型修正因子圖表: F2 vs a 57
圖17雙行程順流型交流式薄膜萃取系統實驗裝置圖60
圖18雙行程逆流型交流式薄膜萃取系統實驗裝置圖61
圖19雙行程順流型交流式系統在Qb×10^6=0.125 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果64
圖20雙行程順流型交流式系統在Qb×10^6=0.25 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果65
圖21雙行程順流型交流式系統在Qb×10^6=0.5 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果66
圖22雙行程順流型交流式系統在Qb×10^6=1.5 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果67
圖23雙行程逆流型交流式系統在Qb×10^6=0.125 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果68
圖24雙行程逆流型交流式系統在Qb×10^6=0.25 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果69
圖25雙行程逆流型交流式系統在Qb×10^6=0.5 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果70
圖26雙行程逆流型交流式系統在Qb×10^6=1.5 m3/s、Cb,i=0時,質量傳送速率實驗值與理論值之比較結果71
參考文獻
參考文獻
[1]郭文正和曾添文, “薄膜分離”, 高立圖書公司, 1988, pp. 1-18.
[2]L. E. Applegate, “Membrane Separation Processes”, Chem. Eng., 91(12), (1984) 64.
[3]P. M. Bungay, H. K. Lonsdale and M. N. De Pinho, “Synthetic Membrane: Science, Engineering, and Applications”, D. Reidel Publishing Company, Holland, (1986) 3-8.
[4]李昭仁, “ 化學工程資訊月刊 ”, 中國化學工業學會, 第38卷, 第4期, 1991, pp.46-53.
[5]P. R. Danesi, “ Separation of Metal Species by Supported Liquid Membranes ”, Sep. Sci. Technol., 19 (11-12) (1984-85) 857.
[6]J. W. Frankenfeed, R. P. Cahn and N. N. Li, “ Extraction of Copper by Liquid Membranes ”, Sep. Sci. Technol., 16 (4) (1981) 385.
[7]A. N. Goswami and B. S. Rawat, “ Permeation of Hydrocarbons through Liquid Surfactant Membranes and Formation of Liquid Crystalline Structure ”, J. Membrane Sci., 20 (1984) 261.
[8]H. C. Hayworth, W. S. Ho, W. A. Burns, Jr. and N. N. Li, “ Extraction of Uranium from Wet Process Phosphoric Acid by Liquid Membranes ”, Sep. Sci. Technol., 18 (6) (1983) 493.
[9]L. Bromberg, I. Lewin and A. Warshawsky, “ Membrane Extraction of Silver by Di(2-ethylhexyl)dithiophosphoric Acid ”, J. Membrane Sci., 70 (1992) 31.
[10]S. W. May and N. N. Li, “ The Immobilization of Urease Using Liquid Surfactant Membranes ”, Biochem. Biophys. Res., Commun., 47 (1972) 1179.
[11]U. Dayal and B. S. Rawat, “ The Technique of Permeation through Liquid Membranes ”, J. Sci. Ind. Res., 37 (11) (1978) 602.
[12]P. R. Alexander and R. W. Callahan, “ Liquid-Liquid Extraction and Stripping of Gold with Microporous Hollow Fibers ”, J. Membrane Sci., 35(1987) 57.
[13]L. Bromberg, I. Lewin and A. Warshawsky, “ Membrane Extraction of Silver by Di(2-ethylhexyl)dithiophosphoric Acid ”, J. Membrane Sci., 70 (1992) 31.
[14]C. H. Yun, R. Prasad and K. K. Sirkar, “ Membrane Solvent Extraction Removal of Priority Organic Pollutants from Aqueous Waste Streams ”, Ind. Eng. Chem. Res., 31 (1992) 1709.
[15]L. Dahuron and E. L. Cussler, “ Protein Extraction with Hollow Fibers ”, AIChE J., 34 (1988) 130.
[16]R. Prasad and K. K. Sirkar, “ Dispersion-Free Solvent Extraction with Microporous Hollow-Fibers Modules ”, AIChE J., 34 (1988) 177.
[17]W. J. Ward and W. L. Robb, “ Carbon Dioxide-Oxygen Separation: Facilitated Transport of Carbon Dioxide Across a Liquid Film ”, Science., 156 (1967) 1481.
[18]N. N. Li., “ Liquid Separation through a Permeable Membrane in Droplet From ”, U.S. Patent 3 389 (1968) 078.
[19]N. N. Li, “Permeation through Liquid Surfactant Membrane”, AIChE J., 17 (1971) 459.
[20]N. N. Li. “ Separation of Hydrocarbons by Liquid Membrane Permeation ”, Ind. Eng. Chem. Proc. Des. Dev., 10 (1971) 215.
[21]E. L. Cussler, “ Membrane with Pump ”, AIChE J., 17 (1971) 1300.
[22]J. S. Schultz, J. D. Goddard and S. R. Suchdeo, “ Facilitated Transportvis Carried-Mediated Diffusion in Membranes: Part I Mechanistic Aspects, Experimental Systems and Characteristic Regimes ”, AIChE J., 20 (1974) 417.
[23]W. C. Babcock, R. W. Backer, J. W. Brooke, D. J. Kelly, E. D. Lachapelle and H. K. Lonsdale, “ Coupled Transport Membranes for Metal Recovery-Phase II ”, National Technical Information Service., (1980) PB81.
[24]A. Kiani, R. R. Bhave and K. K. Sirkar, “Solvent Extraction with Immobilized Interfaces in a Microporous Hydrophobic Membrane ”, J. Membrane Sci., 20 (1984) 125.
[25]N. A. D’Elia, L. Dahuron and E. L. Cussler, “ Liquid-Liquid Extraction with Microporous Hollow Fibers ”, J. Membrane Sci., 29 (1986) 309.
[26]R. Prasad, A. Kiani, R. R. Bhave and K. K. Sirkar, “ Further Studies on Solvent Extraction with Immobilized Interfaces In a Microporous Hydrophobic Membrane ”, J. Membrane Sci., 26 (1986) 79.
[27]R. Prasad and K. K. Sirkar, “ Solvent Extraction with Microporous Hydrophilic and Composite Membrane ”, AIChE J., 33 (1987) 1057.
[28]R. Prasad and K. K. Sirkar,“ Microporous Membrane Solvent Extraction ”, Sep. Sci. Technol., 22 (1987) 619.Membrane Sci., 35 (1987) 57.
[29]P. R. Danesi, “ Separation of Metal Species by Supported Liquid Membranes ”, Sep. Sci. Technol., 19 (11-12) (1984-85) 857.
[30]P. R. Danesi, L. Reichley-Yinger and P. G. Rickert, “ Lifetime of Supported Liquid Membrane: The Influence of Interfacial Properties, Chemical Composition and Water Transport on the Longterm Stability of the Membrane ”, J. Membrane Sci., 31 (1987) 117.
[31]A. Sengupta, R. Basu and K. K. Sirkar, “ Separation of Solute from Aqueous by Contained Liquid Membranes ”, AIChE J., 34 (1988) 1698.
[32]S. Majumdar, A. K. Guha and K. K. Sirkar, “ A New Liquid Membrane Technique for Gas Separation ”, AIChE J., 34 (1988) 1135.
[33]L. Giorno, P. Spicka and E. Drioli, “ Downstreamprocessing of Lactic Acid by Membrane-Based Solvent Extraction “, Sep. Sci. Technol., 31 (1996) 2159.
[34]P. Harriott and S. V. Ho, “ Mass Transfer Analysis of Extraction with a Supported Polymeric Liquid Membrane ”, J. Membrane Sci., 139 (1997) 125.
[35]T. Tomida, M. Katoh, T. Inoue, T. Minamino and S. Masuda, “ Transient Analysis of Mass-Transfer Rate in Recovering Metal Ions Using a Microporous Hollow Fiber Membrane and a Water-Soluble Chelating Polymer “, Sep. Sci. Technol., 33 (1998) 2281.
[36]H. M. Yeh and Y. S. Hsu, “Analysis of Membrane Extraction Through Rectangular Mass Exchangers”, Chem. Eng. Sci., 54 (1999) 897.
[37]H. M. Yeh, “Modified Correction-Factor Analysis of Solvent Extraction in Rectangular Membrane Modules”, J. Chin. Inst. Chem. Engrs., 38 (2007) 385.
[38]H. M. Yeh, C. Y. Sung and C. R. Hung,“Modified Correction-Factor Analysis on Multipass Membrane Extraction in Backward-Flow Rectangular Modules”, Sep. Sci. Technol., 47 (2012) 1425.
[39]H. M. Yeh, C. D. Ho, C. S. Chiang and C. H. Chen,“Modified Correction-Factor Analysis for Mass Transfer in Double-Pass Rectangular Membrane Modules”, CJCE., 91 (2012) 499.
[40]H. M. Yeh, and C. C. Yang,“Modified Correction-Factor Analysis on Membrane Extraction in Multipass Countercurrent-Flow External-Recycle Rectangular Modules”, JTICE., 43 (2012) 542.
[41]H. M. Yeh, and W. L. Liao,“Recycled Membrane Extraction in Multipass Rectangular Modules with Modified Correction-Factor Analysis”, JTICE., 44 (2013) 863.
[42]T. Tomida, M. Katoh, T. Inoue, T. Minamino and S. Masuda, “ Transient Analysis of Mass-Transfer Rate in Recovering Metal Ions Using a Microporous Hollow Fiber Membrane and a Water-Soluble Chelating Polymer “, Sep. Sci. Technol., 33 (1998) 2281.
[43]M. Jacob, “Heat Transfer”, Vol., Wiley, New York, 1957, pp. 230-249.
[44]H. M. Yeh, “ Effect of MultipassArrangment on Solvent Extraction in Countercurrently Cross-Flow Rectangular Membrane Modules of Fixed Configuration”, J. Chin. Inst. Chem. Engrs., 37 (2006) 159.
[45]H. M. Yeh, and C. M. Huang,“ Solvent Extraction in Multipass Parallel-Flow Mass Exchangers of Microporous Hollow-Fiber Modules ”, J. Membr. Sci., 103 (1995) 135.
[46]陳逸科, “平板型交流式薄膜萃取器縱橫比對分離效率之影響” 淡江大學化工研究所碩士論文, (1999).
[47]曾一恆, “回流的隔板位置對平板型交流式薄膜萃取器效率之影響”淡江大學化工研究所碩士論文, (2002).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信