淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2306201410372100
中文論文名稱 以離子交聯幾丁聚醣顆粒填充的聚乳酸複材之製備與抗菌性質
英文論文名稱 Preparation and antibacterial properties of poly(lactic acid) composites filled with ionic-crosslinked chitosan particles
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 林意翔
研究生英文姓名 Yi-Hsiang Lin
學號 600400138
學位類別 碩士
語文別 中文
口試日期 2014-05-26
論文頁數 97頁
口試委員 指導教授-董崇民
委員-邱文英
委員-鄭國忠
中文關鍵字 聚乳酸  幾丁聚醣  抗菌  離子交聯 
英文關鍵字 poly(lactic acid)  chitosan  antibacterial  polyelectrolyte complex 
學科別分類
中文摘要 生物可分解高分子又稱為綠色塑膠,它可於特定環境條件下完全分解成水和二氧化碳,可以減輕對環境造成的危害。現在市面上比較廣泛使用的可分解高分子為聚乳酸(PLA),它有良好的力學性質,可用在如塑膠製餐具、包裝材、生醫材料上。幾丁聚醣為天然多醣類高分子,本身無毒、具抗菌性、生物相容性及生物可分解性,可應用在食品工程及生醫材料上。此研究藉著添加幾丁聚醣於聚乳酸中,使其帶有抗菌性,期望能應用在食品包裝材上。首先將幾丁聚醣製備成離子交聯物(CS-TPP),再加入聚乳酸中,成為具抗菌能力之生物可分解薄膜。以拉伸試驗測試材料的機械性質變化,初始膜數約在1.65~1.73 GPa,沒有明顯變化;以DSC和TGA觀察材料的熱學性質;以掃描式電子顯微鏡觀察幾丁聚醣離子交聯顆粒在薄膜中的分散情形,結果顯示CS-TPP均勻分散於薄膜中,並無聚集現象發生;測試薄膜的抗菌能力,以大腸桿菌及金黃色葡萄球菌進行抑菌試驗,當CS-TPP含量在4 wt%時,金黃色葡萄球菌和大腸桿菌的抑菌能力可達到39 %及13 %,含量提高到8 wt%時,金黃色葡萄球菌和大腸桿菌的抑菌能力可達到43 %及29 %;雖然酵素能夠分解聚乳酸乳液,但是針對薄膜分解的測試則效果不佳。
英文摘要 Biodegradable polymers, also known as green plastics, can completely decompose into water and carbon dioxide under appropriate environmental conditions which consequently reduces the harm to the environment. Among many biodegradable polymers in the market, the most widely used is poly(lactic acid) (PLA), which has good mechanical rigidity and thus can be used in the cutlery, packaging materials and biomedical materials. On the other hand, chitosan (CS) is a natural polysaccharide polymer and is recognized as a non-toxic, antibacterial, biocompatible and biodegradable material. It can be used in food engineering and biomaterials. In this study, chitosan ionic-crosslinking particles (CS-TPP) was added into PLA films to render antibacterial properties for the use in food packaging materials. The CS-TPP particles in submicron size were prepared by ionic crosslinking the CS with tripolyphosphate (TPP) and added into the PLA to prepare antimicrobial and biodegradable films. In addition to the mechanical properties measured by tensile test, the initial modulus between 1.65 to 1.73 GPa. It not evident. Thermodynamics measured by DSC and TGA. Distribution of CS-TPP particles in the PLA matrix was evaluated by scanning electron microscopy. It can observe that there had no cluster in PLA matrix. The antibacterial properties of the prepared PLA composite films on two bacteria, Escherichia coli and Staphylococcus aureus, were also tested. When CS-TPP content 4 wt%, the antibacterial properties of Escherichia coli and Staphylococcus aureus were 39% and 13%. When CS-TPP content 8 wt%, the antibacterial properties of Escherichia coli and Staphylococcus aureus were 43% and 29%. Although emulsified PLA can degradable by enzyme, the degradability of PLA films by enzyme is not good.
論文目次 目錄
中文摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 1
第二章 文獻回顧 2
2.1 生物可分解高分子(Biodegradable polymer) 2
2.1.1 依製造方式分類生物可分解高分子[1] 2
2.1.2 依官能基分類生物可分解高分子 3
2.2 聚乳酸(Poly(lactic acid),PLA) 6
2.2.1 聚乳酸之性質與特性 6
2.2.2 PLA的製備方法 8
2.3 幾丁質與幾丁聚醣 10
2.3.1 來源及結構 10
2.3.2 幾丁質與幾丁聚醣的製備 12
2.3.3 物化性與應用 13
2.4 三聚磷酸鹽 14
2.5 幾丁聚醣微粒交聯製備 15
2.6 高分子掺合物 17
2.6.1 掺合方法 17
2.6.2 掺合物之相容性 19
2.7 聚乳酸摻合物 20
2.8 生物可分解高分子的微生物降解機制 23
2.8.1 分解聚乳酸菌株介紹 26
2.9 幾丁聚醣抗菌研究 28
2.9.1 菌株介紹 29
第三章 實驗方法 31
3.1 實驗藥品 31
3.2 實驗設備與分析儀器 34
3.3 實驗流程 39
3.4 實驗步驟 40
3.4.1 製備幾丁聚醣-三聚磷酸鈉離子凝膠顆粒(CS-TPP) 40
3.4.2 製備幾丁聚醣離子凝膠顆粒/PLA摻合物(CS-TPP/PLA) 40
3.5 材料測試與分析 42
3.5.1 幾丁聚醣的結構鑑定 42
3.5.1.1 幾丁聚醣去乙醯度測定(Degree of deacetylation) 42
3.5.1.2 幾丁聚醣分子量的測定 42
3.5.2 幾丁聚醣離子凝膠鑑定 44
3.5.2.1 幾丁聚醣離子凝膠參數變化與產率測量 44
3.5.2.2 凝膠顆粒尺寸測試(Dynamic Light Scattering) 44
3.5.2.3 凝膠顆粒表面電位及懸浮性 44
3.5.2.4 元素分析(Elemental Analysis) 45
3.5.3 化學結構鑑定(FTIR) 45
3.5.4 薄膜結晶度與熱轉移溫度觀察(Differential Scanning Calorimetry) 45
3.5.5 結晶構造分析(X-ray diffraction, XRD) 46
3.5.6 熱重損失測試(TGA) 46
3.5.7 拉伸機械性質測試(Universal testing machine) 46
3.5.8 CS/TPP/PLA薄膜型態觀察(SEM) 47
3.5.9 薄膜親疏水性測試(Contact Angle) 47
3.5.10 抗菌性質測試 47
3.5.10.1 培養基製作 47
3.5.10.2 菌培養 48
3.5.10.3 抗菌測試 48
3.5.11 分解測試 49
3.5.11.1 PLA乳液分解測試 49
3.5.11.2 PLA薄膜分解測試 50
第四章 結果與討論 51
4.1 幾丁聚醣性質測定 51
4.1.1 幾丁聚醣去乙醯度 51
4.1.2 幾丁聚醣分子量 52
4.2 幾丁聚醣離子凝膠的製備 54
4.2.1幾丁聚醣離子凝膠產率 54
4.2.2凝膠顆粒尺寸測試 55
4.2.3凝膠顆粒表面電位及懸浮性 57
4.2.4元素分析 59
4.3 化學結構分析 61
4.4 薄膜的熱性質分析 63
4.5薄膜的結晶構造分析 66
4.6薄膜的熱重損失分析 68
4.7薄膜的拉伸機械性質 74
4.8薄膜形態 78
4.9薄膜親疏水性測試 80
4.10薄膜抗菌分析 82
4.11 聚乳酸分解測試 83
第五章 結論 87
第六章 未來工作 89
第七章 參考文獻 90
圖目錄
圖2.1 聚乙烯醇(PVA)的分解機制…………………………………………………4
圖2.2生物可分解高分子的分解機制………………………………………………4
圖2.3乳酸的兩種立體結構示意圖…………………………………………………7
圖2.4丙交酯三種異構物的結構示意圖……………………………………………7
圖2.5聚乳酸的製造方法……………………………………………………………9
圖2.6纖維素、幾丁質、幾丁聚醣之化學結構……………………………………11
圖2.7不同排列方式的幾丁質……………………………………………………12
圖2.8幾丁聚醣交聯結構示意圖……………………………………………………17
圖2.9 DSC熱分析Tg與合物成份間相容性關係圖………………………………20
圖2.10總體侵蝕與表面侵蝕示意圖………………………………………………24
圖3.1不同CS-TPP比例之薄膜外觀照……………………………………………41
圖3.2 拉力試驗試片示意圖………………………………………………………47
圖3.3菌落培養圖…………………………………………………………………48
圖4.1(a)不同濃度N-乙醯基葡萄糖胺標準品的一次微分吸收光譜(b) N-乙醯基葡萄糖胺檢量線………………………………………………………………………52
圖4.2幾丁聚醣溶液在不同濃度下的還原黏度及固有黏度……………………53
圖4.3幾丁聚醣離子凝膠乾燥後再懸浮在THF的粒徑分佈…………………….55
圖4.4幾丁聚醣離子凝膠再懸浮在THF的粒徑分佈……………………………56
圖4.5幾丁聚醣離子凝膠再懸浮在DMF的粒徑分佈……………………………57
圖4.6幾丁聚醣離子凝膠水溶液表面電位圖………………………………………58
圖4.7幾丁聚醣水溶液表面電位圖………………………………………………58
圖4.8幾丁聚醣離子凝膠及幾丁聚醣懸浮穩定性…………………………………59
圖4.9 CS、TPP、CS-TPP的IR光譜圖…………………………………………62
圖4.10 CS-TPP/PLA的IR光譜圖…………………………………………………62
圖4.11不同比例CS-TPP/PLA摻合物第一次DSC升溫曲線圖…………………63
圖4.12不同比例CS-TPP/PLA摻合物第二次DSC升溫曲線圖…………………64
圖4.13 CS-TPP/PLA混摻物的XRD曲線圖………………………………………67
圖4.14 不同處理方式CS的XRD曲線圖…………………………………………67
圖4.15 CS、TPP及CS-TPP重量損失圖…………………………………………70
圖4.16不同處理方式之CS重量損失圖…………………………………………70
圖4.17 CS-TPP/PLA重量損失圖…………………………………………………71
圖4.18 CS-TPP/PLA重量損失微分圖……………………………………………71
圖4.19 CS-TPP/PLA理論與實際起始裂解溫度比較……………………………72
圖4.20 CS-TPP/PLA摻合物的楊氏模數圖………………………………………75
圖4.21 CS-TPP/PLA摻合物的降伏強度圖………………………………………75
圖4.22 CS-TPP/PLA摻合物的斷裂強度圖………………………………………76
圖4.23 CS-TPP/PLA摻合物的斷裂伸長率圖……………………………………76
圖4.24 CS-TPP/PLA摻合物的S-S curve圖………………………………………77
圖4.25 CS-TPP之SEM圖…………………………………………………………78
圖4.26 掃描式電子電微鏡之薄膜表面圖…………………………………………78
圖4.27掃描式電子電微鏡之薄膜淬斷面圖………………………………………79
圖4.28接觸角試驗機之水滴與薄膜接觸圖………………………………………81
圖4.29聚乳酸乳液顆粒尺寸分布圖………………………………………………84
圖4.30不同菌株生產之酵素上清液對聚乳酸乳液之分解效果…………………84
圖4.31不同比例聚乳酸乳液混合酵素上清液之吸光值…………………………85
圖4.32聚乳酸薄膜在芽孢桿菌酵素培養下之重量百分比和時間之關係圖……85
圖4.33聚乳酸薄膜不同分解時間之外觀…………………………………………86
表目錄
表2.1 生物可分解聚酯類……………………………………………………………5
表2.2 掺合方法優缺點比較………………………………………………………19
表2.3 微生物及其所對應可分解材料……………………………………………25
表2.4 常用商業酵素操作條件表…………………………………………………27
表3-1 黏度常數K與a值…………………………………………………………43
表4-1 幾丁聚醣離子凝膠之C、N、H含量百分比………………………………60
表4-2 CS-TPP/PLA摻合物第一次DSC升溫數據表……………………………64
表4-3 CS-TPP/PLA摻合物第二次DSC升溫數據表……………………………65
表4-4 CS-TPP/PLA混摻物的熱重損失數據表……………………………………72
表4-5幾丁聚醣的熱重損失數據表…………………………………………………73
表4-6 CS/PLA,TPP/PLA混摻物的熱重損失表……………………………………73
表4-7 CS-TPP/PLA薄膜的拉力性質測試數據表…………………………………77
表4-8不同比例幾丁聚醣三聚磷酸鈉凝膠顆粒對PLA薄膜的接觸角變化……80
表4-9不同CS-TPP含量之CS-TPP/PLA薄膜對金黃色葡萄球菌之抑菌數據表82
表4-10不同CS-TPP含量之CS-TPP/PLA薄膜對大腸桿菌之抑菌數據表………82
參考文獻 1. 劉義峋 (2011). Studies on Compatibility and Biodegradability of PHB/PLA Blends
2. M. Watanabe, F. Kawai (2003). Numerical simulation for enzymatic degradation of poly(vinyl alcohol). Polymer Degradation and Stability, 81, 393-399
3. R. J. Mueller (2006). Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochemistry, 41, 2124-2128
4. E. M. Petrie (2007). Biodegradable Polymers in Adhesive Systems. Adhesives & Sealants Industry, 14, 36
5. R. K. Kulkarni, K. G. Pani, C. Neuman, F. Leonard (1966). Polylactic Acid for Surgical Implants. Arch. Surg, 93, 839–843
6. S. S. Ray, M. Bousmina (2005). Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50, 962–1079
7. S. H. Hyon, K. Jamshidi, Y. Ikada (1997). Synthesis of polylactides with different molecular weights. Biomaterial, 18, 1503-1508
8. K. Jamshidi, S. H. Hyon, Y. Ikada (1988).Thermal characterization of polylactides. Polymer, 29, 2229-2234
9. D. Cam, S. H. Hyon, Y. Ikada (1995). Degradation of high molecular weight poly(L-lactide) in alkaline medium. Biomaterials, 16, 833-843
10. T. R. Tice (1984). Pharmaceutical technology Conference Proceedings,11, 26-35
11. R. A. A. Muzzarelli (1985) Chitin. The Polysaccharides, 3, 417-450
12. A. Mima, M. Miya, R. Iwamoto, S. Yoshikawa (1983). Highly deacetylated chitosan and its properties. Journal of Applied Polymer Science, 28, 1909-1917
13. C. Stefanescu, W. H. Daly, I. I. Negulescu (2012). Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydrate Polymers, 87, 435-443
14. C. Chatelet, O. Damour, A. Domard (2001). Influence of the degree of acetylation on some Biological properties of chitosan films. Biomaterials, 22, 261
15. N. R. Sudarshan, D. G. Hoover, D. Knorr (1992). Antibacterial action of chitosan. Food Biotechnol, 6, 257-272
16. G. J. Tasi, W. H.Su (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot, 62, 239-243
17. X. F. Liu, Y. L.Guan, D. Z. Yang, Z. Li, K. D. Yao (2001). Antibacterial Action of Chitosan and Carboxymethylated Chitosan. Journal of Applied Polymer Science, 79, 1324-1335
18. F. Shahidi, J. K. V. Arachchi, Y.J. Jeon (1999). Food applications of chitin and chitosans. Trends Food Sci Technol, 10, 37-51
19. M. N. V. R. Kumar (2000). A review of chitin and chitosan application. Reactive Funct Polym, 46, 1-27
20. S. S. Shyu, F. L. Mi, S. T. Lee, T. B. Wong (1999). Kinetic Study of Chitosan-Tripolyphosphate Gel Beads Prepared by in-Liquid Curing Method. Journal of Polymer Science: Part B: Polymer Physics, 37, 1551-1564
21. Y. K. Twu, Y. W. Chen, C. M. Shih (2008). Preparation of silver nanoparticles using chitosan suspensions. Powder Technology, 185, 251–257
22. P. Calvo, C. Remu˜nan-Lopez, J.L. Vila-Jato, M.J. Alonso (1997). Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63, 125–132
23. K.A. Janes, M.J. Alonso (2003). Depolymerized chitosan nanoparticles for protein delivery: preparation and characterization. Journal of Applied Polymer Science, 88, 2769–2776
24. H. Zhang, M. Oh, C. Allen, E. Kumacheva (2004). Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules, 5, 2461–2468
25. F. L. Mi, S. S. Shyu, C. Y. Kuan, S. T. Lee, K. T. Lu, S. F. Jang (1999). Chitosan–Polyelectrolyte Complexation for the Preparation of Gel Beads and Controlled Release of Anticancer Drug. I. Effect of Phosphorous Polyelectrolyte Complex and Enzymatic Hydrolysis of Polymer. Journal of Applied Polymer Science, 74, 1868-1879
26. K. Sarkar, P.P. Kundu (2012). Preparation of low molecular weight N-maleated chitosan-graft-PAMAM copolymer for enhanced DNA complexation. International Journal of Biological Macromolecules, 51, 859-867
27. T. Patricio, P. Bartolo (2013). Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Engineering, 59, 292-297
28. H. Chen, M. Pyd, P. Cebe (2009). Non-isothermal crystallization of PET/PLA blends. Thermochimica Acta, 492, 61-66
29. 黃俞方 (2011). Transparent Toughening of PLA/PMMA Blend by Melt Compounding.
30. N. Petchwattana, S. Covavisaruch, N. Euapanthasate (2012). Utilization of ultrafine acrylate rubber particles as a toughening agent for poly(lactic acid). Materials Science and Engineering A, 532, 64-70
31. Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner, E. Baer (2003). Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer, 44, 5681–5689
32. H. T. Liao, C. S. Wu (2009). Preparation and characterization of ternary blends composed of polylactide, poly
33. M. Zhang, N. L. Thomas (2011). Blending Polylactic Acid with Polyhydroxybutyrate: The Effect on Thermal, Mechanical, and Biodegradation Properties. Advances in Polymer Technology, 30, 67-79
34. A. Zhu, F. Li, L. Ji (2012). Poly(lactic acid)/N-maleoylchitosan core–shell capsules: Preparation and drug release properties. Colloids and Surfaces B: Biointerfaces, 91, 162–167
35. F. Se’bastien, G. Ste’phane, A. Copinet, V. Coma (2006). Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydrate Polymers, 65, 185–193
36. P. R. Chang, R. Jian, J. Yu, X. Ma (2010). Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, 120, 736–740
37. P. Bie, P. Liu, L. Yu, X. Li, L. Chen, F. Xie (2013). The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98, 959–966
38. 張永承 (2010). Composite film of poly-caprolactone/ chitosan Nanoparticles.
39. H. J. Hueck (2001). The Biodeterioration of Materials-An Appraisal. International Biodeterioration & Biodegradation, 48, 5-11
40. A. A. Shah, F. Hasan, A. Hameed, S. Ahmed (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26, 246-265
41. F. Cappitelli, P. Principi, C. Sorlini (2006). Biodeterioration of modern materials in contemporary collection : can biotechnology help? Trends in Biotechnology, 24, 350-354
42. S. Bonhommea, A. Cuerb, A. Delortb, J. Lemairea, M. Sancelmeb, G. Scott (2003). Environmental biofegradation of polyethylene. Polymer Degradation and Stability, 81, 441-452
43. C. Rubio, C. Ott, C. Amiel, I. Dupont-Moral, J. Travert, L. Mariey (2006). Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: A new approach to biocorrosion control. Journal of Microbiological Methods, 64, 287-296
44. F. V. Burkersroda, S. Luise, G. Achim. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23, 4221-4231
45. T. Kimura, Y. Ishida, N. Ihara, Y. Saito (1999). High Speed Degradation of Biodegradable Plastics by Composting of Biological Wastes. International symposium, 8, 209-213
46. H. Pranamuda, Y. Tokiwa, H. Tanaka (1997). Polylactide degradation by an Amycolatopsis sp. Applied and Environmental Microbiology, 63, 1637-1640
47. Y. Tokiwa, B. P. Calabia (2006). Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology, 72, 244-251 48. Z. Wang, Y. Wang, Z. Guo, F. Li, S. Chen (2011). Purification and characterization of poly(L-lactic acid) depolymerase fromPseudomonas sp. strain DS04-T. Polymer Engineering & Science, 51, 454-459
49. L.H. Van, P.B. Yen, N.Q. Huy (2012). Polylactic acid biodegradability study of a thermophilic bacterium isolated in Vietnam. J.Eng. Technol. Educ., 104-110
50. Y. Tokiwa, A. Jarerat, (2004). Biodegradation of poly (L-lactide). Biotechnol, 26, 771–777
51. D.F. Williams, (1981). Enzymatic hydrolysis of polylactic acid. Engineering in Medecine, 10, 5–7
52. F. Kawai, K. Nakadai, E. Nishioka, H. Nakajima, H. Ohara, K. Masaki, H. Iefuji (2011). Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(L-lactic acid) and poly(D-lactic acid). Polymer Degradation and Stability, 96, 1342-1348
53. P. R. Rege, R. J. Garmise, L. H. Block (2003). Spray dried chitinosans: PartⅠ: preparation and characterization. International Journal of Pharmaceutics, 252, 41-51 54. Y. M. Chen, Y. C. Chung, L. W. Wang, K. T. Chen, S. Y. Li (2002). Antibacterial properties of chitosan in waterborne pathogen. Journal of Environmental Science and Health, 37, 1379-1390 55. H. K. No, N. Y. Park, S. H. Lee, S. P. Meyers (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65-72 56. Y. J. Jeon, P. J. Park, S. K. Kim (2001). Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers, 44, 71-76 57. G. H. Wang (1992). Inhibition and inactivation of five species of foodborne pathogens by chitosan. Food Contamination and Toxicology, 55, 916-919
58. M. W. Anthonsen, K. M. Varum, O. Smidsrod (1993). Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylation. Carbohydrate Polymers, 22, 193-201 59. Y. Shin, K. Min, H. K. Kim (1999). Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. Journal of Applied Polymer Science, 74, 2911-2916
60. H. Seo, K. Mitsuhashi, H. Tanibe (1992). Antibacterial and antifungal fiber blended by chitosan. Advance in Chitin and Chitosan, 34-40
61. 溫宜霖(2012). Antibacterial Activity of beta-bungarotoxin B chain
62. 王聖予、李麗俐、吳秀玲 2004 最新醫學微生物 藝軒圖書出版社
63. S. Li, S. McCarthy (1999). Influence of Crystallinity and Stereochemistry on the Enzymatic Degradation of Poly(lactides)s. Macromolecules, 32, 4454-4456
64. M. R. de Moura, F. A. Aouada, R. J. Avena-Bustillos, T. H. McHugh ,J. M. Krochta, L. H. C. Mattoso (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92, 448–453
65. S. W. Ali, S. Rajendran, M. Joshi (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83, 438–446
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信