淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2306201122555700
中文論文名稱 變幅波動於波動擇時策略之經濟價值:以股票型投資組合為例
英文論文名稱 Economic Value of Range-based Volatility in Volatility timing strategy-Evidence from a Stock-based Portfolio
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士在職專班
系所名稱(英) Department of Banking and Finance
學年度 99
學期 2
出版年 100
研究生中文姓名 曾亭碩
研究生英文姓名 Ting-Shuo Tseng
電子信箱 smallsow1982@hotmail.com
學號 798530324
學位類別 碩士
語文別 中文
口試日期 2011-05-22
論文頁數 67頁
口試委員 指導教授-邱建良
共同指導教授-洪瑞成
委員-邱哲修
委員-林卓民
委員-李命志
中文關鍵字 變幅波動 
英文關鍵字 Realized Range-Based Volatility 
學科別分類
中文摘要 考量一般投資人或股票型基金所持有的投資組合大多非完全風險分散的組合,常有集中於某些權值股或是藍籌股的機會,因此本研究以風險分散不足之投資組合:美國熱門三支個股,分別為亞馬遜 (Amazon;AMZN)、蘋果電腦 (APPLE)以及高盛銀行 (Goldman Sachs ; GS)為研究對象,樣本資料期間為2001年1月2日至2010年5月28日,其中2001年1月2日至2005年12月30日為樣本內估計,而2006年至2010年5月28日之資料為波動度預測期間。分別採用以報酬 (return) 概念為主之CCC-GARCH (constant conditional correlation GARCH)、DCC-GARCH (dynamic conditional correlation GARCH)模型方法和已實現變異數法 (realized variance) 以及變幅 (range) 概念之已實現變幅變異數法 (realized range-based variance) 去分別求算出波動度,再透過波動擇時策略衡量這四種方法下的經濟價值來做比較探討。過往研究中,常將預測出的波動以統計損失函數,例如:MSE等來驗證其績效;但在此研究中特別將預測出的波動度實際應用於財務上,以波動擇時策略也就是現在時常被討論的資產配置觀念來驗證波動估計方法的經濟價值。
實證結果發現,透過平均數、標準差、夏普值、投資組合變動程度與損益兩平之成本等衡量指標來觀察四種方法下的波動擇時策略,與Bannouh, van Dijk and Martens (2009)文獻中之論點相符;以變幅概念之已實現變幅變異數法所估計出的波動其帶來的經濟價值會優於以報酬概念為主之CCC-GARCH、DCC-GARCH模型方法和已實現變異數法,且即使標的物為相關性高之風險不分散投資組合,也能利用已實現變幅變異數法來估計波動度以提供投資人較佳之經濟價值。
英文摘要 Consider the general investors or equity funds are mostly held by the diversified portfolio of risk concentration .This study focus on the portfolio composed by the stocks, were the Amazon, Apple Computer and Goldman Sachs, the period of sample data were January 2, 2001 to May 28, 2010. We used the return based method of the CCC-GARCH, DCC-GARCH model and the realized variance method and the range based method of realized rang-based variance method to forecast the volatility, and measured the volatility forecast method by volatility timing strategies respectively in order to compare the economic value of the fore volatility forecast methods. Previous studies, often used the statistical loss function, such as: MSE, etc. to verify the performance of volatility forecast method; but specifically in this study we verify the economic value of the fore volatility forecast methods by the volatility timing strategy , the hot topics about asset allocation.
Empirical results match with the point mentioned by Bannouh, van Dijk and Martens (2009). Through the mean, standard deviation, Sharpe ratio, turnover and the degree of break-even cost of four methods to observe the volatility timing strategies, proved that the realized range-based variance is better than the CCC-GARCH, DCC-GARCH model and the realized variance method on volatility forecast. Even if the diversified portfolio were risk concentration, but also can use the realized range-based variance method to forecast the volatility to provide investors with better economic value.
論文目次 第一章 緒 論 1
第一節 研究動機與背景 1
第二節 研究目的 3
第三節 研究架構 6
第二章 理論基礎與文獻回顧 8
第一節 波動性探討 8
第二節 估計波動性之模型發展 9
第三節 變幅波動 (Range-based Volatility) 14
第四節 投資組合理論介紹 16
第三章 研究方法與理論模型 18
第一節 單根檢定 18
第二節 ARCH效果檢定 23
第三節 GARCH模型 25
第四節 波動率的估計方式 33
第五節 波動擇時策略(Volatility timing) 37
第六節 績效評估 38
第四章 實證結果分析 39
第一節 研究對象與資料處理 39
第二節 基本統計量分析 48
第三節 單根檢定 49
第五章 結論 56
參 考 文 獻 58
一、國外文獻 58
二、國內文獻 66
表   目   錄
【表一】各股價日報酬率之基本敘述統計量 48
【表二】各股價指數報酬率之單根檢定 49
【表三】各股價報酬率之ARCH效果檢定 50
【表四】波動擇時策略 55
圖   目   錄
【圖一】:研究流程圖 7
【圖二】:AMAZON/APPLE/GOLDMAN SACHS2001年至2010年間的股價走勢 40
【圖三】: AMZN 歷年股價走勢 / 於已實現變幅法下之波動圖 42
【圖四】: AMZN歷年股價走勢 / 於已實現變異數法下之波動圖 42
【圖五】: AMZN歷年股價走勢 / 於GARCH模型下之波動圖 43
【圖六】: APPLE歷年股價走勢 / 於已實現變幅法下之波動圖 44
【圖七】: APPLE 歷年股價走勢 / 於已實現變異數法下之波動圖 44
【圖八】: APPLE 歷年股價走勢 / 於GARCH模型下之波動圖 45
【圖九】: GS歷年股價走勢 / 於已實現變幅法下之波動圖 46
【圖十】: GS歷年股價走勢 / 於已實現變異數法下之波動圖 46
【圖十一】: GS歷年股價走勢 / 於GARCH模型下之波動圖 47
【圖十二】:已實現變幅法下投資權重之動態調整圖 (目標報酬=5%) 52
【圖十三】:已實現變異數法下投資權重之動態調整圖 (目標報酬=5%) 52
【圖十四】: CCC-GARCH 下投資權重之動態調整圖 (目標報酬=5%) 52
【圖十五】:DCC-GARCH 下投資權重之動態調整圖(目標報酬=5%) 53



參考文獻 一、國外文獻
Brunetti, C., and P. M. Lildholdt. 2007. Range-Based Covariance Estimation: The Co-Range. Working paper, Johns Hopkins University.

Bera, Anil K. and Roh J-S. (1991), “A Moment Test of the Constancy of the Correlation Coefficient in the Bivariate GARCH Model,” unpublished manuscript, Department of Economics, University of Illinois, Urbana-Champaign.

Akgiray, V.(1989), Conditional heteroscedasticity in time series of stock returns: evidence and forecasts, Journal of Business , 62, 55-80.

Alizadeh, S., M. Brandt, and F. Diebold(2002), Range-based estimation of stochastic volatility models, Journal of Finance, 57, 1047-1091.

Andersen, T. G. and T. Bollerslev(1998), Answering the skeptics: Yes, standard volatility models do provide accurate forecasts, International Economic Review, 39(4), 885-905.

Awartani, B.M.A. and V. Corradi(2005), Predicting the volatility of the S&P 500 stock index via GARCH models : The role of asymmetries, International journal of forecasting, 21, 167-183.

Beckers, S. (1983), Variances of security price returns based on high, low, and closing prices,
Journal of Business, 56, 97–112.
Black, F. (1976), Studies of stock price volatility changes, Proceedings of the 1976 meetings of the American statistical association, Business and Economics Statistics Section, 177-181.

Blair, B. J., P. Ser-Hung and S. J. Taylor(2001), Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high-frequency index returns, Journal of Econometrics, 105, 5-26.

Bollerslev, T. (1986), Generalized autoregressive conditional heteroscedasticity, Journal of Econometrics , 31, 307-327.

Bolleslev, T., R.F. Engle and D. B. Nelson (1994), ARCH models, In The Handbook of Econometrics, 4, 2959-3038.

Box, G. E. P., and G. M. Jenkins(1976), Time series analysis forecasting and control, 2nd ed., Holden-Day, San Francisco.

Brailsford, T., and R. Faff(1996), An evaluation of volatility forecasting techniques, Journalof Banking and Finance, 20, 419-438.

Brandt, M. W., and C. S. Jones(2002), Volatility forecasting with ranged-based EGARCH Models, working paper, University of Pennsylvania, USA.

Cheung, Y. L., Y. W. Cheung and T. K. Wan ( 2008), A high–low model of daily stock price ranges, Journal of Forecasting, 28, 103-119.

Cheung, Y. W. (2007), An empirical model of daily highs and lows, International Journal Of Finance And Economics, 12, 1-20.
Chong, C.W., M. I. Ahmad and M. Y. Abdulah(1999), Performance of GARCH models in forecasting stock market volatility, Journal of Forecasting, 18, 333-343.

Chou R.Y. (2005), Forecasting financial volatilities with extreme values: the conditional autoregressive range (CARR) Model, Journal of Money, Credit and Banking, 37(3), 561-582.

Chou, R., N. Liu and C.C. Wu (2009), Forecasting time-varying covariance with a range-based dynamic conditional correlation model, Review of Quantitative Finance and Accounting, 33, 327-345.

Christie, A. A. (1982), The stochastic behavior of common stock variances, Journal of Financial Economics, 10, 407-432.

Christoffersen, P. F. (1998), Evaluating interval forecasts, International Economic Review, 39, 841-862.

Christoffersen and Diebold (1998), Cointegration and long-horizon forecasting, Journal of Business and Economic Statistics ,16, 450–458.

Dickey, D. A. and W. A. Fuller (1981), Likelihood ratio statistic for autoregressive time series with a unit root, Econometrica, 49, 143-159.

Diebold, F. X. and R. S. Mariano (1995), Comparing predictive accuracy, Journal of Business and Economic Statistics, 13(3), 253-263.


Ederington, L. H. and W. Guan (2005), Forecasting volatility, The Journal of Future Markets , 20, 465-490.

Engle, R. F. (1982), Autoregressive conditional heteroscedasticity with estimates of variance of UK inflation, Econometrica, 50, 987-1008.

Engle, R. F. and C. W. J. Granger (1987), Cointegration and error correction representation, Estimate and test, Econometrica. 55, 251-276.

Engle, R. F. and S. Manganelli (2004), CAViaR: Conditional autoregressive value at risk by regression quantiles, Journal of Business and Economic Statistics, 22, 367-381.

Engle, R. F. and V. K. Ng (1993), Measuring and testing the impact of news on volatility, Journal of Finance, 48, 1749-1779.

Engle, R. F. (2002), Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroscedasticity models, Journal of Business and Economic Statistics, 12, 339-350.

Engle, R. F. and B. S. Yoo (1987), Forecasting and testing in co-integrated systems, Journal of Econometrics, 35, 143-159

Fama, E. F. (1965), The behavior of stock market prices, Journal of Business, 38, 34-105.

Figlewski, S. (1997), Forecasting volatility, Financial Markets, Institutions, and Instruments, 6, 1-88.

Fornari, F. and A. Mele (1997), Sign- and volatility-switching arch models: Theory and applications to international stock markets, Journal of Applied Econometrics, 12(1), 49 -66.

Franses, P. H. and D. van Dijk (1996), Forecasting stock market volatility using (non-linear) Garch models, Journal of Forecasting, 15, 229-235.

Gallant, A. R., C. T. Hsu and G. Tauchen(1999), Using daily range data to calibrate volatility diffusions and extract the forward integrated variance, The Review of Economics and Statistics, 81(4), 617-631.

Garman, M. B., and M. J. Klass (1980), On the estimation of security price volatilities from historical data, Journal of Business, 53, 67–78.

Glosten, L.R., R. Jagannathan and D.E. Runkle (1993), On the relation between the expected value and volatility on the nominal excess returns of stocks, Journal of Finance , 48, 1779-1801.

Gokcan, S. (2000), Forecasting volatility of emerging stock markets: Linear versus non-linear GARCH Models, Journal of Forecasting, 19, 499-504.

González-Rivera, G., L. Tae-Hey and S. Mishra(2004), Forecasting volatility :A reality check based on option pricing, utility function, value-at-risk and predictive likelihood, International journal of forecasting, 20, 629-645.

Gwilym, O. (2001), Forecasting volatility for options pricing for the UK stock market, Journal of Financial Management and Analysis, 14 (2), 55-62.

Hansen, B. E. (1994), Autoregressive conditional density estimation, International Economic Review, 35, 705-730.

Harvey, C. R. and A. Siddique(1999), Autoregressive conditional skewness , Journal of Financial and Quantitative Analysis, 34(4), 465-487.

Hansen, P. R. (2005), A test for superior predictive ability, Journal of Business & Economic Statistics, 4, 365-380.

Hansen, P. R. and A. A. Lunde, (2005), A forecast comparison of volatility models:Does anything beat GARCH(1, 1)?, Journal of Applied Econometrics , 20, 873-889.

Hull, J. and A. White (1987), The pricing of options on assets with stochastic volatilities , Journal
of Finance, 42, 281-300

Jorion, P.(2000), Value at risk: the new benchmark for managing financial risk, McGraw-Hill, New York.

Kanas, A. (1998), Volatility spillovers across equity markets: European evidence, Applied Financial Economics, 8(3), 245-57.

Koopman, S. J., B. Jungbacker and E. Hol (2005), Forecasting daily variability of the S&P 100 stock index using historical, realized and implied volatility measurements , Journal of Empirical Finance, 12, 445-475.


Kupiec, P. H. (1995), Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 3, 73-84.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin (1992), Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we the economic time series have a unit root? Journal of Econometrics, 54(1-3), 159-178.

Ljung, G.M. and G. E. P. Box (1978), On a measure of lack of fit in time series models, Biometrika, 65(2), 297-303.

Lopez, J. A. (1999), Regulatory evaluation of value-at-risk models, Journal of Risk, 1, 37-64.

Mandelbrot, B. (1963), The variation of certain speculative prices, Journal of Business, 36, 394-419.

Martens, M. and D. van Dijk (2007), Measuring volatility with the realized range, Journal of Econometrics, 138, 181-207.

Mcmillan, D., A. Speight and O. Apgwilym(2000), Forecasting UK stock market volatility, Applied Financial Economics, 10, 435-448.

Nelson, D. B. (1991), Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59, 347-370.

Pagan, A. R. and G. W. Schwert (1990), Alternative models for conditional stock volatility, Journal of Econometrics, 45, 267-290.

Parkinson, M. (1980), The extreme value method for estimating the variance of the rate of return, Journal of Business, 53, 61-65.

Phillips, C. B. and P. Perron (1988), Testing for a unit root in time series regression, Biometrika, 75(2), 335-346.

Politis D. N. and J. P. Romano (1994), The stationary bootstrap, American Statistical Association , 89, 1303-1313.

Rogers, L. C. G. and S. E. Satchell (1991), Estimating variance from high, low and closing prices, Institute of Mathematical Statistics, 1(4), 504-512.

Schwert, G. W. (1989), Tests for unit roots: A monte carlo investigation, Journal of Business and Economic Statistics, 7, 147-159.

Schwert, G. W. and P. J. Seguin (1990), Heteroskedasticity in stock returns, Journal of Finance, 45, 1129-1155.

Theodossiou, P. (1998), Financial data and skewed generalized t distribution, Management Science, 44, 1650-1661.

Wang, K. L., C. Fawson , C. B. Barrettand and J. B. McDonald(2001), A flexible parametric GARCH model with an application to exchange rates, Journal of Applied Econometrics, 16(4), 521-536.
二、國內文獻
王甡(1995),報酬衝擊對條件波動所造成之不對稱效果-台灣股票市場之實證分析,證券市場發展季刊,第七卷第一期,頁125-161。

王凱立(2001),一個新的參數化GARCH模型在亞洲股市上的應用,財務金融學刊,第九卷第三期,頁21-52。

呂文正(1998),股票報酬率的波動性研究-ARCH-Family、SWARCH 模型之應用,國立台灣大學經濟學系碩士論文。

李命志、洪瑞成和劉洪鈞(2007),厚尾GARCH模型之波動性預測能力比較,輔仁管理評論,第十四卷第二期,頁47-72。

李沃牆和張克群(2006),比較不同波動率模型下台灣股票選擇權之評估績效,真理財經學報,第十四期,頁71-96。

李憲杰(1994),一般化自迴歸條件異質性變異數模型參數之選定、估計與檢定,國立成功大學工業管理學系碩士論文。

周雨田、巫春洲和劉炳麟(2004),動態波動模型預測能力之比較與實證,財務金融學刊,第十二卷,第一期,頁1-25。

林孟樺 (2005),Forecast volatility from threshold heteroscedastic range models,逢甲大學統計與精算所碩士論文。


林楚雄、劉維琪和吳欽杉(1999),不對稱GARCH 模型的研究,管理學報,第 16 卷,第 3 期,頁479-515。

劉曦敏、葛豐瑞 (1996),台灣股價指數報酬率之線性及非線性變動,經濟研究,第 34 卷第 1 期,頁73-109。

蔡麗茹、葉銀華(1990),不同波動期間之期望報酬與風險關係的實證研究-不對稱GARCH-M模型之應用,輔仁管理評論,第七卷第二期,頁161-180。

鄭婉秀、鄒易凭和蘇欣玫(2006),商品期貨波動性之預測~ CARR 模型之應用,朝陽商管評論,第 5 卷第 2 期,頁115-132。

薛吉延(1999),隱含波動性預測品質之解析:台灣及美國市場之實證,淡江大學財務金融學系碩士論文。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-07-26公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信