淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2306201023152500
中文論文名稱 大型量販店整合性庫存控制與銷售物流網路之多目標區位定址問題
英文論文名稱 The Multi-Objective Facility Location Problem with Integrated Inventory Control and Logistics Network Issues
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 98
學期 2
出版年 99
研究生中文姓名 曾建元
研究生英文姓名 Jian-Yuan Tzeng
電子信箱 opopiide23@hotmail.com
學號 697620242
學位類別 碩士
語文別 中文
口試日期 2010-05-24
論文頁數 102頁
口試委員 指導教授-廖述賢
共同指導教授-林長青
委員-劉基全
委員-廖述賢
委員-李旭華
中文關鍵字 設施區位定址  供應商選擇  整合性供應鏈  庫存控制  供應商管理庫存  多目標規劃  遺傳演算法 
英文關鍵字 Facility Location Problem (FLP)  Supplier Selection  Integrated Supply Chain  Inventory Control  Vendor-Managed Inventory (VMI)  Multiobjective Evolutionary Algorithm 
學科別分類 學科別社會科學管理學
中文摘要 本研究主要探討大型量販店物流網路之區位定址問題,並加入供應商管理庫存策略,並整合了供應鏈供應商選擇、庫存控制與運輸等供應鏈中重要議題,以兩階層的供應鏈為例,由供應商將商品成品運送至配銷中心,配銷中心再將商品成品送至消費者手中。
由於本模式所考量的目標為總成本最小、服務回應率最大、商品訂單達交率等三大目標,並非單一的目標,所以我們使用了基因遺傳演算法(NSGA-II)求解混合非線性整數規劃問題,並採行兩個貪婪法則來使用基因遺傳演算法求取柏拉圖最佳解。
依據所建立問題之混合式基因演算法所寫的MATLAB程式進行相關的進行模式求解與數據分析,以便能瞭解數學規劃模式中相關參數與不同因子的變化,對於整合性物流網路選址問題當中之最適解所產生的影響性。
最後,我們設計了不同情境,將不同目標函數賦予不同的權重值,以得知對於不同目標函數權重的情境明顯會影響配銷中心的地點設置之決策,再由決策者依據所得的結果選擇適合的方案,最後再把成本項細分為六項,探討各項成本的影響程度。
英文摘要 The study focused on the Facility Location Problem (FLP) problem in a logistics network for a large retail store in Taiwan. We also add in the VMI strategy and also provide the solutions for the supplier selection, inventory control, and transportation decisions. Using a two-stage supply chain with as an example, the suppliers send product to distribution centers (DCs) and DCs send products to consumers.Because the goal of our three objective are to make the total cost smallest, Responsiveness Level biggest and volume fill rate biggest, not single objective, so we use NSGA-II to solve mixed nonlinear integer programming problem and take two greedy approach to use heuristic genetic algorithm and find the optimal solution of Pareto. According to the established model and we used the software of MATLAB to solve and analyzed the data, then we can understand the change of our model’s parameters and different factors, than we can realize the effects of the optimal Pareto solutions.
Finally, we designed several different conditions and distributed different weight to different objective, so we can know different condition would obviously affect the strategy of facility location, than the decision maker could accord to the result and found a solution. After we got the result, we divided the total cost into six items of cost, and tried to know the impact of the six different items.
論文目次 目錄
頁次
目錄 I
圖目錄 III
表目錄 V
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究範圍與限制 6
1.4 研究流程與架構大綱 8
第二章 文獻探討 10
2.1 設施區位定址問題 10
2.1.1 設施區位定址之基本概念 10
2.1.2 設施區位定址問題與銷售物流網路設計 13
2.2 供應商管理庫存(Vender Managed Inventory) 15
2.2.1 庫存政策 15
2.2.2 供應商管理庫存定義與基本概念 17
2.2.3 供應商管理庫存VMI的效益 20
2.2.4 供應鏈管理庫存VMI之阻礙 21
2.3 整合性供應鏈模式 23
2.4 多目標規劃法(Multiobjective Evolutionary Algorithm) 29
2.4.1 多目標規劃法之基本概念 29
2.4.2 柏拉圖最佳化基本概念 30
2.4.3 傳統多目標規劃法 32
2.5 多目標遺傳演算法 35
2.5.1 第一代多目標遺傳演算法 36
2.5.2第二代多目標遺傳演算法 37
第三章 模式建構 39
3.1 模型之基本架構想法 39
3.2 研究問題與假設 43
3.3 模型之建構與求解 46
3.3.1 模型符號說明 46
3.3.2 模型之目標函數 48
3.3.3 整合庫存控制與銷售物流網路之多目標設址模式 54
3.4 小結 56
第四章 問題求解方法 57
4.1 多目標基因遺傳演算法 57
4.2 第二代非支配基因演算法(NSGA-II) 58
4.3 求解方法 61
第五章 案例設計與分析 66
5.1 案例設計說明 66
5.2 案例求解 71
5.3 案例分析 72
第六章 結論與建議 83
6.1 研究結論 83
6.2 管理意涵 84
6.3 未來研究方向與建議 86
參考文獻 88
附錄 97

圖目錄
頁次
圖1-1 物流基本架構 2
圖1-2 本研究流程架構 8
圖2-1 銷售設計網路中的四個戰略計劃 14
圖2-2 基本商業模式與VMI商業模式之比較 18
圖2-3 VMI概念架構圖 19
圖2-4 整合性供應鏈模式 23
圖2-5 柏拉圖最適解集合 31
圖2-6 傳統多目標規劃法 33
圖3-1 設置於採購地區之物流中心架構 40
圖3-2設置於賣場地區之物流中心架構 40
圖3-3設置於兩端之物流中心架構 41
圖3-4 設立於同一區域之物流中心架構 42
圖3-5 本研究之分銷網路系統架構圖 43
圖3-6數學模型之概念圖形 48
圖3-7 集合覆蓋問題 52
圖4-1 典型的基因遺傳演算法架構 57
圖4-2 非支配解排序過程 59
圖4-3 NSGA II的演算流程 59
圖4-4 混合式基因遺傳演算流程圖 61
圖4-5 基因編碼之後的染色體 64
圖5-1 案例之物流架構 66
圖5-2演算法第一代與第三次演算結果 71
圖5-3 演算法前1/4與最後一代演算結果 71
圖5-4 情境一(以成本為主)最佳解選址結果 78
圖5-5 情境二、三(以消費者滿意度為主)最佳解選址結果 78
圖5-6情境四(三個目標偏好程度一致)最佳解選址結果 79
表目錄
頁次
表2-1 VMI效益之文獻 20
表2-2 多目標確定性模式研究文獻 24
表2-3 傳統多目標最佳化方法 33
表5-1 案例之供應商 67
表5-2 案例之配銷中心(DC) 67
表5-3 案例之消費者來源 67
表5-4柏拉圖前緣解與決策結果74
表5-5 第6、19、27組解對應之目標函數值 - 76 -
表5-6 不同情境之下之柏拉圖最佳解與對應參數 - 77 -
表5-7 柏拉圖前緣解之成本項目百分比 - 79 -
參考文獻 A.英文部分
1.Altiparmak, F., M. Gen, L. Lin and T. Paksoy, (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers & Industrial Engineering 51, 196-215.
2.Arntzen, B.C., Brown G.G., Harrison T.P. and Trafton L.L., (1995). Global supply chain management at Digital Equipment Corporation, Interfaces, 25(1), 69-93.
3.Ballou, R. H. and J. M. Masters, (1993). Commercial software for locating warehoused and other facilities, Journal of Business Logistics, 14(2), 70-107.
4.Beasley, J. E. and P. C. Chu, (1996). A Genetic algorithm for the set covering problem, European Journal of Operational Research, 94, 392-404.
5.Benayoun, J. et al., (1971). Linear programming with multiple objective functions, Mathematical Programming, 1(3), 366-375.
6.Brynjolfsson, E. and M. D. Smith, (2000). Frictionless commerce: a comparison of internet and conventional retailers, Mansgement Science, 46, 563-585.
7.Coello, Coello C. A., (2006). 20 Years of Evolutionary Multi-Objective Optimization: What Has Been Done and What Remains to be Done, in Gary Y. Yen and David B. Fogel (editors), Computational Intelligence: Principles and Practice, IEEE Computational Intelligence Society, Chapter 4, 73-88.
8.Cetinkaya, S. and C. Y. Lee, (2000). Stock replenishment and shipment scheduling for vendor-managed inventory systems, Management Science, 46(2), 217-232.
9.Charnes, A. and W. W. Cooper, (1961). Management models and industrial applications of linear programming, Wiley, New York.
10.Chen, C. L., B. W. Wang, and W. C. Lee (2003). Multi-objective optimization for a multi-enterprise supply chain network, Industrial and Engineering Chemistry Research, 42, 1879-1889.
11.Chern, C.-C and J.-S. Hsieh, (2007). A heuristic algorithm for master planning that satisfies multiple objectives, Computers & Operations Research, 34, 3491 -3513.
12.Cohen, J. L., (1978). Multi-objective programming and planning, Academic Press, New York.
13.Cohen, M. A. and H. L. Lee, (1988). Strategic analysis of integrated production-distribution systems: Models and Methods, Operations Research, 36(2), 216-228.
14.Croxton, K. L. and Zinn, (2005). Inventory Considerations in New York design, Journal of Business Logistics, 149-168.
15.Daskin, M. S., C. R. Coullard and Z. H. Shen, (2002). An inventory-location model: formulation, solution algorithm and computational results, Annals of Operations Research, 110, 83-106.
16.Deb, K., Pratap A., Agarwal S., and Meyarivan T., (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
17.Dong, Y. and K. Xu, (2002). A supply chain model of vender managed inventory, Logistics & Transportation Review, 38E, 75-95.
18.Dupont, L., (2008). Branch and bound algorithm for a facility location problem with concave site dependent costs, International Journal of Production Economics, 112, 245-254.
19.Ellram, L. M., Londe B. J. L. and Weber M. M., (1999). Retail logistics, International Journal of Physical Distribution & Logistics Management, 29(7/8), 477-519.
20.Eppen, G., (1979), Effects of centralization on expected costs in a multi-location newsboy problem., Management Science, 25(5), 498-501.
21.Erlebacher, S. J. and R. D. Meller, (2000). The interaction of location and inventory in designing distribution systems, IIE Transactions, 32, 155-166.
22.Fogarty, D. W., J. H. Blackstone and T. R. Hoffmann Jr., (1991), Production and inventory management, South-Western.
23.Fonseca, C. M. and P. J. Fleming, (1993). Genetic algorithms for multi-objective optimization: Formulation, Discussion and Generalization, Proceeding of the Fifth International Conference on Genetic Algorithms, San Mateo, CA, 416-423.
24.Ganeshan, R., (1999). Managing supply chain inventories: A multiple retailer, one warehouse, multiple supplier model, International Journal of Production Economics, 59, 341-354.
25.Geoffrion, A. M., (1972). An interactive approach for multi-criteria optimization, with an application to the operation of an academic department, Management Science, 194(1), 357-368.
26.Goldberg, D., (1999). Genetic algorithms in search, optimization, and machine learning, Addison-Wesley, Reading.
27.Guar, S. and A. R. Ravindran, (2006). A bi-criteria model for the inventory aggregation problem under risk pooling, Computers and Industrial Engineering, 51, 341-354.
28.Hinojosa, Y., J. Kalcsics, S. Nickel, J. Puerto and S. Velten, (2008). Dynamic supply chain design with inventory, Computers and Operations Research, 35(2), 373-391.
29.Horn, J., N. Nafpliotis and D. E. Goldberg, (1994). A Niched Pareto Genetic Algorithm for multi-objective optimization, In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1, 82-87, Piscataway, New Jersey, IEEE Service Center.
30.Hwang, C. L., A. S. Masud, (1979). Multiple objective decision-making: Methods and Applications, Springer-Verlag, New York.
31.Jayaraman, V., (1998). Transportation, Facility location and inventory issues in distribution network design: An Investigation. International, Journal of Operations & Production Management, 18(5), 47.
32.Jayaraman, V. and H. Pirkul, (2001). Planning and coordination of production and distribution facilities for multiple commodities, European Journal of Operation Research, 133, 394-408.
33.Jayaraman, V. and A. Ross, (2003). A simulated annealing methodology to distribution network design and management, European Journal of Operational Research, 144, 629-645.
34.Joshua, D. and D. W. Knowles, (2002). Enumeration of pareto optimal multi-criteria spanning trees- a proof of the incorrectness of Zhou and Gen’s proposed algorithm, European Journal of Operation Research, 143, 543-547.
35.Kuhn, H. W., & Tucker, A. W., (1951). Nonlinear programming, Proceeding of the second Berkeley Symposium on Mathematical Statistics and Probability, Ed. University of California Press, Berkeley, USA.
36.Marglin, S. A., (1967). Public investment criteria London: Allen and Unwin.
37.Matthew, A. W. et al., (1999). Vendor-managed inventory in the retail supply chain, Journal of Business Logistics, 20, 183-185.
38.Min, H. and Melachrinoudis E., (1999), The relocation of a hybrid manufacturing /distribution facility from supply chain perspectives: A case study, Omega, 27(1), 75-85.
39.Min, H. and G. Zhou, (2002). Supply chain modeling: Past, Present and Future, Computers and Industrial Engineering, 43, 251-261.
40.Miranda, P. A. and R. A. Garrido, (2004). Incorporating inventory control decisions into a strategic distribution network model with stochastic demand, Transportation Research Part E, 40, 183-207.
41.Nozick, L. K., (2001a). The fixed charge facility location problem with coverage restrictions, Transportation Research. Part E, 37, 281-296.
42.Nozick, L. K. and M. A. Turnquist, (2001b). A two-echelon allocation and distribution center location analysis, Transportation Research Part E, 37, 425-441.
43.Owen, S. H. and M. S. Daskin (1998). Strategic facility location:A Review, European Journal of Operational Research, 111, 423-447.
44.Ozsen, L., (2004). Location-Inventory Planning Models: Capacity Issues and Solution Algorithms, Pd.D. Dissertation, Northwestern University, Evanston, IL.
45.Peidro, D. et al., (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment, European Journal of Operational Research, 205, 65-80.
46.Robinson, P. E., Goa L. L. and Muggenborg S.T., (1993). Designing anintegrated distribution system at Dowbrands Inc, Interfaces, 23, 107-17.
47.Sabri, E. H. and B. M. Beamon, (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design, Omega, 28, 581-598.
48.Schaffer, J. D., (1985). Multiple objective optimization with vector evaluated genetic algorithms, In Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, 93-100, Hillsdale, NJ.
49.Shen, Z. J., C. R. Coullard and M. S. Daskin, (2003). A Joint location-inventory model, Transportation Science, 37, 40-55.
50.Shen, Z. M. and M. S. Daskin, (2005). Trade-offs between customer service and cost in integrated supply chain design, Manufacturing and Service Operations Management, 7(3), 188-207.
51.Shu, J., C. P. Teo and Z. J. Shen, (2005). Stochastic transportation-inventory network design problem, Operations Research, 53, 48-60.
52.Snyder, L. V., M. S. Daskin and Teo C. P., (2007). The stochastic location model with risk-pooling, European Journal of Operational Research, 179(3), 1221-1238.
53.Srinivas, N. and K. Deb, (1994). Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms, Evolutionary Computation, 2(3), 221-248.
54.Steuer, R. E. and Choo E. U., (1983). An interactive weighted Tchebycheff procedure for multiple objective programming, Mathematical Programming, 26, 326-344.
55.Teo, C. P., Shu, J., (2004). Warehouse-retailer network design problem, Operations Research, 52(3), 396–408.
56.Thai, V. V. and Grewal, D., (2005). Selecting the location of distribution centre in logistics operations: a conceptual framework and case study, Asia Pacific Journal of Marketing and Logistics, 17, 3-24.
57.Thanh, P. N., N. Bostel and O. Peton, (2008). A dynamic model for facility location in the design of complex supply chains, International Journal of Production Economics, 113, 678-693.
58.Torabi, S. A. and E. Hassini, (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning, Fuzzy Sets and Systems, 159, 193-214.
59.Tyan, J. and H.-M. Wee, (2003). Vendor managed inventory: a survey of the Taiwanese grocery industry, Journal of Purchasing and Supply Management, 9, 11-18.
60.Vidyarthi, N., E. Celebi, S. Elhedhli and E. Jewkes, (2007). Integrated production-inventory-distribution system design with risk pooling: Model Formulation and Heuristic Solution, Transportation Science, 41(3), 392-340
61.Yoon, K. P. and Hwang, C. L. (1995). Multiple attribute decision making, Sara Miller McCune, Sage Publications.
62.Yu, P. L. and G. Leitmann, (1974). Compromise solutions, domination structures, and Salukvadze’s solution, Journal of Optimization Theory and Applications, 13(3), 362-378.
63.Yan, H., Z. Yu and T. C. E. Cheng, (2003). A strategic model for supply chain design with logical constraints: Formulation and Solution, Computers and Operations Research, 30, 2135-2155.
64.Yu P. L., (1973). A class of solutions for group precision problems, Management Science, 19(8), 362-378.
65.Zadeh, L. A., (1963). Optimality and nonscalar-valued performance criteria, IEEE Transactions Evolutionary Computing, 3, 257-271.
66.Zitzler, E., Laumanns M. and Thiele L.,(2002). SPEA2: Improving the Strength Pareto Evolutionary Algorithm for multi-objective optimization. In K. C. Giannakoglou et al. (eds.), Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems (EUROGEN 2002), 95-100.

B.中文部分-
1.王裕文,半導體設備供應商備用零件存貨導入VMI之研究,國立交通大學工業工程與管理學系碩士論文,1998。
2.李建瑋,多目標逐段迴歸之序列相關估計,國立暨南國際大學管理學院資訊管理研究所碩士論文,2007。
3.吳永裕,鄰避設施之廠址選擇及車輛途程問題,國立雲林科技大學工業工程與管理研究所碩士論文,2005。
4.李佩芸,大陸台商鞋品物流據點佈署之探討,國立成功大學交通管理科學所碩士論文,2003。
5.林宏澤,構築高效能供應鏈的秘訣:電子化VMI的導入策略,惠第一專刊,第一期,pp.52-55,2003。
6.林香柏,企業實施「供應商管理存貨」實務之探討-以個人電腦代工業為例,中原大學資訊管理學系碩士論文,2004。
7.張有恆,物流管理,初版,華泰文化事業公司,台北,1998。
8.許志義( 2003),《多目標決策》增訂版,全書271頁,台北:五南圖書出版公司。
9.陳春益、林志鴻、張惠蘭,網路區位問題應用在車隊管理之探討,中華民國第四屆運輸網路研討會,頁VI 1-20,1999。
10.黃彥達譯,Tony Wild著,庫存管理,藍鯨出版有限公司,2003。
11.葉康洋,應用多目標規劃方法建構軍事投資建案決策模式研究,國立中央大學公業管理研究所碩士論文,2009。
12.溫哲欽,國內量販店物流體系之探討,國立成功大學交通管理科學研究所碩士論文,2004。
13.楊雅婷,二階供應鏈VMI應用分析,國立東華大學全球運籌管理研究所碩士論文,2006。
14.經濟部現代化商業流通物流http://www.materialflow.org.tw。
15.蔡麗敏,廢輪胎處理廠區位指派與運送路線選擇之研究,國立交通大學-交通運輸研究所碩士論文,1999。
16.劉昭宜,結合分析網路程序法與詮釋結構模型於農產物流中心選擇模式,國立高雄第一科技大學運籌管理研究所碩士論文,2008。
17.鄭穎聰,供應鏈長鞭效應因應政策之研究,國立台北科技大學生產系統工程與管理研究所碩士論文,2000。
18.翟志剛,商業快速回應輔導案例-供應商管理存貨,經濟部商業司,1998。
19.賴士葆,生產/作業管理-理論於實務,華泰書局,1991。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信