§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2306200810041700
DOI 10.6846/TKU.2008.00768
論文名稱(中文) 化學混凝程序去除水中鉛、銻之研究
論文名稱(英文) Removal of Lead and Antimony from Water by Chemical Coagulation Process
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 雷佳蓉
研究生(英文) Chia-Jung Lei
學號 695480714
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-06-12
論文頁數 75頁
口試委員 指導教授 - 徐錠基
委員 - 康世芳
委員 - 王根樹
關鍵字(中)

混凝
多元氯化鋁
氯化鐵
關鍵字(英) Lead
Antimony
Coagulation
Polyaluminum Chloride
Ferric Chloride
第三語言關鍵字
學科別分類
中文摘要
本研究目的探討化學混凝去除鉛、銻及淨水場操作對策,以因應鉛、銻之新標準管制。以內灣淨水場原水為實驗水樣,於實驗水樣添加鉛、銻,採瓶杯實驗探討操作參數如混凝劑種類與加藥量、原水濁度、pH及前加氯去除鉛、銻之影響。
研究結果顯示單位混凝劑劑量去除鉛之效果高低依序為多元氯化鋁(PACl)、氯化鐵(FC)、硫酸鋁(Alum),鋁鹽或鐵鹽混凝pH範圍於7.0~8.5,鉛去除率可達80%以上。ㄧ般國內淨水場以沉澱水濁度控制混凝劑加藥量,當原水含鉛時,可採加強混凝提高混凝劑加藥量以降低清水鉛濃度。相對地,鋁鹽無法有效去除銻,其去除率低於25%;鐵鹽混凝可去除銻達70%以上。國內淨水場很少採用鐵鹽混凝劑,因此當原水含銻時,混凝操作需改採用鐵鹽混凝劑,可同時去除鉛、銻。鐵鹽混凝pH範圍於5.0~9.0皆可使銻(Ⅲ)去除率達70%以上,最佳pH範圍為5.5~6.5。去除銻(Ⅴ)所需單位鐵鹽混凝劑量為去除銻(Ⅲ)之1.43~2.76倍,前加氯將銻(Ⅲ)氧化為銻(Ⅴ),需增加混凝劑加藥量3~5倍。鐵鹽混凝同時去除鉛、銻(Ⅲ)為主時可操作於pH 7.0,若以去除銻(Ⅴ)為主則需操作於pH 5.0。此外活性碳吸附及石灰軟化皆可去除鉛。因此,淨水場採加強混凝僅可提高鉛去除,若為同時提高鉛、銻去除,則鐵鹽混凝為最佳經濟可行技術。
英文摘要
The objectives of this study are to investigate the removal of lead and antimony from water by chemical coagulation process and to evaluate the treatment alternatives for water treatment plant to meet the new standards. Raw water of Nei-Wan Water Plant was selected in study to assess the removal efficiency.  Lead and antimony were spiked into the water samples and standard jar tests were conducted to determine the effects of solution pH, turbidity, the types and dosage of coagulant, and pre-chlorination on the removal of lead and antimony from spiked water.
The results showed that the removal efficiency of Pb (Pb removal per mg/L of coagulant) was in order of PACl, FC, and Alum. With aluminum- or ferric-based coagulants, an 80% removal of Pb was achieved at pH 7.0 to 8.5. Most of the water treatment plants in Taiwan use settled water turbidity as a reference to choose the coagulant dosage, it is recommended that the treatment plants can adopt enhanced coagulation to remove Pb when the concentration of Pb in raw water can’t meet the water quality standard. As a comparison, a poor removal of Sb (<25%) by aluminum-based coagulant was obtained.  However, the Sb removal efficiency can reach 70% when iron-based coagulant was used.  Since the domestic water treatment plants in Taiwan seldom use iron-based coagulant, it is recommended that the iron-based coagulant is used when the Sb concentration in raw water is high.  In this way, both Pb and Sb can be removed simultaneously.  In general, a 70% Sb removal can be reached at pH 5.0 to 9.0 by iron-based coagulant, and the optimum pH is between pH 5.5 and 6.5.  The dosage of iron-based coagulant required for Sb(V) removal was about 1.43 to 2.76 times higher than that for removal of Sb(III).  Oxidation of Sb(III) to Sb(V) due to pre-chlorination increased the coagulant dosages for about 3 to 5 times.  When iron-based coagulant was used, it was observed that simultaneous removal of both Pb and Sb(III) can be obtained at the ~pH 7.0, however, better removal for Sb(V) can only be obtained at the pH 5.0.  Both active carbon adsorption and lime softening are very effective for lead removal.  It is concluded that enhanced coagulation with aluminum-based coagulants is useful for Pb removal.  When simultaneous removal of Pb and Sb is necessary, it is recommended that iron-based coagulant should be used.
第三語言摘要
論文目次
目錄	Ⅰ
圖目錄	Ⅳ
表目錄	Ⅵ

第一章	前言	1
1-1	研究背景	1
1-2	研究目的	3
第二章	文獻回顧	4
2-1	鉛、銻化學性質	4
2-1-1	鉛	4
2-1-2	銻	8
2-2	國、內外飲用水水質標準鉛、銻之限值及控制技術	12
2-2-1	國內、外飲用水水質標準鉛、銻之限值	12
2-2-2	淨水處理去除鉛、銻技術	15
2-3	化學混凝原理及去除水中金屬	22
2-4	石灰軟化原理及去除水中金屬	26
第三章	研究方法與材料	28
3-1	台灣自來水公司原水及清水鉛、銻含量之統計	28
3-2	實驗材料及設備	28
3-2-1	淨水場原水	28
3-2-2	實驗藥品	30
3-2-3	實驗設備	31
3-3	評估實驗	32
3-3-1	化學混凝實驗	32
3-3-2	活性碳實驗	33
3-3-3	石灰軟化實驗	34
3-4	水質分析	35
第四章	結果與討論	38
4-1	台灣自來水公司原水及清水鉛、銻含量之統計	38
4-1-1	淨水場原水鉛、銻含量之統計	38
4-1-2	淨水場清水鉛、銻含量之統計	41
4-1-3	淨水場原水及清水鉛、銻含量綜合評析	44
4-2	化學混凝去除鉛	46
4-2-1	鋁鹽加藥量對去除鉛之影響	46
4-2-2	pH對鋁鹽去除鉛之影響	46
4-2-3	濁度對去除鉛之影響	47
4-2-4	混凝劑種類對去除鉛之比較	50
4-3	化學混凝去除銻	52
4-3-1	鋁鹽加藥量對去除銻(Ⅲ)之影響	52
4-3-2	混凝劑種類去除銻(Ⅲ)之比較	53
4-3-3	銻(Ⅲ)初始濃度對鐵鹽混凝去除銻之比較	55
4-3-4	pH對鐵鹽混凝去除銻(Ⅲ)之影響	56
4-3-5	鐵鹽混凝去除銻(Ⅲ)、銻(Ⅴ)之比較	58
4-3-6	前加氯對鐵鹽混凝去除銻(Ⅲ)之影響	59
4-4	pH對鐵鹽混凝同時去除鉛、銻之影響	60
4-5	鋁鹽或鐵鹽混凝去除鉛、銻之綜合評析	63
4-6	粉末活性碳吸附去除銻	65
4-6-1	粉末活性碳改善鋁鹽去除銻(Ⅲ)	65
4-6-2	粉末活性碳動力吸附去除銻(Ⅲ)	67
4-6-3	粉末活性碳等溫吸附去除銻(Ⅲ)	67
4-6-4	粉末活性碳等溫吸附同時去除鉛、銻之比較	69
4-7	石灰軟化	70
第五章	結論與建議	72
參考文獻	73
 
圖目錄
圖2-1 水中鉛之E-pH圖	7
圖2-2 水中銻之E-pH圖	11
圖4-1 原水中鉛濃度累積分布圖(樣本數:670個)	40
圖4-2 原水中銻濃度累積分布圖(樣本數:299個)	40
圖4-3 清水中鉛濃度累積分布圖(樣品數:697個)	42
圖4-4 清水中銻濃度累積分布圖(樣品數:673個)	43
圖4-5 鋁鹽加藥量對混凝去除鉛之影響	48
圖4-6 pH對鋁鹽混凝去除鉛之影響	48
圖4-7 鋁鹽加藥量對混凝去除濁度及鉛之影響	49
圖4-8 濁度對鋁鹽加藥量去除鉛之比較	49
圖4-9 混凝劑種類對混凝去除鉛之比較	51
圖4-10 鋁鹽加藥量對混凝去除銻(Ⅲ)之影響	52
圖4-11 鋁鹽與鐵鹽混凝去除銻(Ⅲ)之比較	54
圖4-12 混凝劑種類對混凝去除銻(Ⅲ)之比較	54
圖4-13初始銻濃度對鐵鹽混凝去除銻(Ⅲ)之比較	57
圖4-14 pH對鐵鹽混凝去除銻(Ⅲ)之影響	57
圖4-15 鐵鹽混凝去除銻(Ⅲ)、銻(Ⅴ)及銻(Ⅲ)前加氯之比較	61
圖4-16 pH對鐵鹽混凝同時去除鉛、銻(Ⅲ)之比較	61
圖4-17 同時添加PAC及鋁鹽對混凝去除銻(Ⅲ)之影響	66
圖4-18 先添加PAC及鋁鹽對混凝去除銻(Ⅲ)之影響	66
圖4-19 粉末活性碳動力吸附去除銻(Ⅲ)之影響	68
圖4-20 粉末活性碳動力吸附去除銻之影響	68
圖4-21石灰軟化程序去除鉛、銻(Ⅲ)之比較	71

 
表目錄
表2-1 各國飲用水水質鉛、銻基準/標準比較表	12
表2-2 美國及日本淨水場原水與清水鉛、銻含量	13
表2-3 鉛、銻之最佳可行性技術	15
表2-4 傳統混凝去除鉛之效果	17
表2-5 石灰軟化去除銻	19
表2-6 水處理程序去除鉛、銻之效果	21
表2-7 砷處理之成本分析(美元/年)	25
表3-1 台灣自來水公司95年水質年報內灣淨水場	29
表3-2 內灣淨水場原水水質分析	30
表3-3感應耦合電漿質譜儀操作參數	36
表4-1 原水中鉛、銻含量之統計(單位: μg/L)	39
表4-2 清水中鉛、銻含量之統計(單位: μg/L)	42
表4-3 台灣自來水公司原水及清水鉛、銻含量之統計(單位: μg/L)	43
表4-4 pH對鐵鹽混凝同時去除鉛及Sb(Ⅲ)之影響	62
表4-5 鐵鹽混凝同時去除鉛及Sb(Ⅴ)	62
表4-6 粉末活性碳等溫吸附去除鉛、銻之比較	69
參考文獻
大阪市水道局,大阪市水道局水質年報2005年, (2005)。
台灣自來水公司,台灣自來水公司95年水質年報, (2006)。
行政院環境保護署「飲用水水質標準修正案」諮詢會議資料,民國
   95年9月28日, (2006)。
蔣本基、張怡怡「飲用水水質資訊蒐集與法規整合之前置作業計畫」,
   EPA-95-J105-02-104,民國95年, (2006)。
楊萬發,“水及廢水處理化學”,茂昌圖書有限公司發行,(1987)
美國環境保護署網址http://www.epa.gov/safewater/dwh/c-ioc/lead.html
http://www.epa.gov/safewater/dwh/c-ioc/antimony.html, (2007)
日本厚生勞動省網址www.mhlw.go.jp, (2007)
http://www.aquamedia.at/templates/index.cfm/id/1066, (2007)
Chwirka J.D., Thomson, B.M., and Stop, J.M. Ⅲ, “Removing arsenic from groundwater”, J.AWWA, 92(3), 70~88(2000)
Faust S.D., Aly O.M., “Chemistry of water treatment”, 2nd Edition, New York: Lewis publisher, (1998)
Gregor JAN, “Arsenic removal during conventional aluminium-based drinking-water treatment, Water Research, 35(7), 1659-1664(2001)
Gannon K. and Wilson D.J., “Removal of antimony from aqueous systems”, Separation Science and Technology, 21(5), 475-493(1986)


Jarvie H. P., Neal C., Burton J. D. and Tappin A.D., “ Patterns in trace 
element chemistry in the freshwater tidal reaches of the River Trent”, The Science of The Total Environment, 251-252(5), 317-333(2000)
Kang M., Kamei T. and Magara Y., “Comparing polyaluminum chloride and ferric chloride for antimony removal”, Water Research, 37(17), 4171-4179(2003)
Kang M., Kawasaki M., Tamada S., Kamei T. and Magara Y., “Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes”, Desalination, 131(1-3), 293-298(2000)
Kawamoto Y. and Morisawa S., “The distribution and speciation of antimony in river water, sediment and biota in Yodo River, Japan”, Environmental Technology, 24(11), 1349-1356
McNeill L.S. and Edwards M., “Arsenic removal during precipitative softening”, Journal of Environmental Engineer, 123(5), 453-460 (1997)
Pourbaix M., “Atlas of electrochemical equilibria in aqueous solutions”, New York: Oxford Pergamon, 485-492, 524-532(1966)
Sorg T.J. and Logsdon G.S., “Treatment technology to meet the interim primary drinking water regulation for inorganics-2”, J Am Water Works Assoc, 70(7), 379-393(1978)
Sorg Thomas J., Csanady Mihaly, Logsdon Gary S., “Treatment technology to meet the interim primary drinking water regulation for inorganics-3”, J Am Water Works Assoc, 70(12), 680-691(1978)
Sigworth E.A. and Smith S.B., “Adsorption of inorganic compounds by activated carbon”, J Am Water Works Assoc, 63(6), 386-391(1972)
Tanizaki Y., Shimokawa T. and Yamazaki M, “Physico-chemical speciation of trace elements in urban streams by size fractionation”, Water Research, 26(1), 55-63(1992)
World Health Organization, Lead in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, (2003a)
World Health Organization, Antimony in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality, (2003b)
World Health Organization, Guidelines for Drinking-water quality, 3rd ed. (2006)
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信