淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2306200617443200
中文論文名稱 外回流效應對平板式薄膜透析器效率之提高
英文論文名稱 Improvement of Performance for Dialysis in Parallel-Plate Membrane Module with External Reflux
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 陳冠宏
研究生英文姓名 Kuan-Hung Chen
學號 693360132
學位類別 碩士
語文別 中文
口試日期 2006-06-20
論文頁數 82頁
口試委員 指導教授-葉和明
委員-何啟東
委員-蔡少偉
中文關鍵字 薄膜透析  平板膜組  回流  平行流動  微孔薄膜 
英文關鍵字 Membrane Dialysis  Rectangular module  Reflux  Parallel flow  Microporous membrane 
學科別分類
中文摘要 關於平板薄膜透析操作之質傳問題在理論上可以類比於平板式熱交換器的熱傳方式。而本實驗是以纖維酯為材質的薄膜做為阻隔膜將尿素由單行程裝置水溶液端透析到薄膜的另一端,而理論的預測值與實驗的結果相當吻合。本文主要探討回流裝置的加入對於平板式薄膜透析系統的改善情形,研究結果發現,回流裝置確實能夠提高平板式薄膜透析器之效率,由實驗結果得知,在較高的尿素水溶液入口濃度、較大的回流比或是較高的水溶液(透析相)的體積流率的操作方式下對質量傳送的效果越好。
英文摘要 The mass transfer for membrane dialysis through a flat-plate module has been studied theoretically with or without the external reflux, which is analogous to the heat transfer in a flat-plate heat exchanger. Experiments were carried out by using the membrane sheet made of cellulose ester as a permeable barrier to dialyze urea from the aqueous solution. Theoretical predictions are in good agreement with the experimental results. In contrast to the device without recycle, considerable improvement in mass transfer is obtainable, if the membrane dialysis is operated with recycle. The recycle can enhance mass transfer, especially for operations with higher volumetric flow rate, higher inlet urea concentration or reflux ratio.
論文目次 目 錄
中文摘要………………………………………………………Ⅰ
英文摘要………………………………………………………Ⅱ
目錄……………………………………………………………Ⅲ
圖目錄…………………………………………………………Ⅳ
表目錄…………………………………………………………Ⅵ
第一章 序論……………………………………………………1
1-1 引言………………………………………………………1
1-2 分離程序…………………………………………………3
1-3 薄膜透析…………………………………………………6
1-4 研究目的…………………………………………………8
第二章 文獻回顧………………………………………………9
第三章 理論分析………………………………………………15
3-1質量傳送係數……………………………………………17
3-2平板薄膜透析系統………………………………………19
3-2-1順流式平板薄膜透析系統………………………… 21
3-2-2逆流式平板薄膜透析系統………………………… 23
3-3外回流式平板薄膜透析系統……………………………25
第四章 實驗……………………………………………………29
4-1實驗裝置……………………………………………… 29
4-2 藥品…………………………………………………… 32
4-3 實驗操作條件………………………………………… 36
4-4 實驗步驟……………………………………………… 36
第五章 結果與討論……………………………………………39
5-1固定透析相體積流率……………………………………40
5-2入口濃度之影響…………………………………………41
5-3回流比對總質傳量之影響………………………………42
第六章 結論……………………………………………………75
符號說明……………………………………………………… 76
參考文獻……………………………………………………… 78

圖 目 錄
圖1 影響薄膜分離程序之因素及其應用範圍…………………3
圖2 薄膜透析示意圖……………………………………………16
圖3 順流型下之平板質量交換器的薄膜透析示意圖…………20
圖4 逆流型下之平板質量交換器的薄膜透析示意圖…………20
圖5 回流操作下之逆流型平板質量交換器的薄膜透析示意圖26
圖6 平板式薄膜透析器透視圖…………………………………33
圖7 平板式薄膜透析器斷面圖…………………………………34
圖8 平板式薄膜透析器正視圖…………………………………35
圖9 外回流式平板薄膜透析系統實驗裝置圖…………………38
圖10 1M下質傳速率對回流比作圖,Qb=0.246 (m3/s) ………45
圖11 1M下質傳速率對回流比作圖,Qb=0.492 (m3/s) ………46
圖12 1M下質傳速率對回流比作圖,Qb=0.739 (m3/s) ………47
圖13 1M下質傳速率對回流比作圖,Qb=0.985 (m3/s) ………48
圖14 1M下質傳速率對回流比作圖,Qb=1.231 (m3/s) ………49
圖15 1.5M下質傳速率對回流比作圖,Qb=0.246 (m3/s) ……50
圖16 1.5M下質傳速率對回流比作圖,Qb=0.492 (m3/s) ……51
圖17 1.5M下質傳速率對回流比作圖,Qb=0.739 (m3/s) ……52
圖18 1.5M下質傳速率對回流比作圖,Qb=0.985 (m3/s) ……53
圖19 1.5M下質傳速率對回流比作圖,Qb=1.231 (m3/s) ……54
圖20 2M下質傳速率對回流比作圖,Qb=0.246 (m3/s) ………55
圖21 2M下質傳速率對回流比作圖,Qb=0.492 (m3/s) ………56
圖22 2M下質傳速率對回流比作圖,Qb=0.739 (m3/s) ………57
圖23 2M下質傳速率對回流比作圖,Qb=0.985 (m3/s) ………58
圖24 2M下質傳速率對回流比作圖,Qb=1.231 (m3/s) ………59

表 目 錄
表1 用於人工腎臟的透析薄膜……………………………………7
表2 在Qa,i=1M 及Qb=0.246 (m3/s)下之透析量的提升率……60
表3 在Qa,i=1M 及Qb=0.492 (m3/s)下之透析量的提升率……61
表4 在Qa,i=1M 及Qb=0.739 (m3/s)下之透析量的提升率……62
表5 在Qa,i=1M 及Qb=0.985 (m3/s)下之透析量的提升率……63
表6 在Qa,i=1M 及Qb=1.231 (m3/s)下之透析量的提升率……64
表7 在Qa,i=1.5M 及Qb=0.246 (m3/s)下之透析量的提升率…65
表8 在Qa,i=1.5M 及Qb=0.492 (m3/s)下之透析量的提升率…66
表9 在Qa,i=1.5M 及Qb=0.739 (m3/s)下之透析量的提升率…67
表10 在Qa,i=1.5M 及Qb=0.985 (m3/s)下之透析量的提升率…68
表11 在Qa,i=1.5M 及Qb=1.231 (m3/s)下之透析量的提升率…69
表12 在Qa,i=2M 及Qb=0.246 (m3/s)下之透析量的提升率……70
表13 在Qa,i=2M 及Qb=0.492 (m3/s)下之透析量的提升率……71
表14 在Qa,i=2M 及Qb=0.739 (m3/s)下之透析量的提升率……72
表15 在Qa,i=2M 及Qb=0.985 (m3/s)下之透析量的提升率……73
表16 在Qa,i=2M 及Qb=1.231 (m3/s)下之透析量的提升率……74
參考文獻 1.Abbas M. and V. P. Tyagi, “Analysis of a Hollow-fibre Artificial Kidney Performing Simultaneous Dialysis and Ultrafiltration,” Chem. Eng. Sci., 42, 133 (1987)

2.A. Kiani, R.R. Bhave and K.K. Sirkar, “Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane,” J. Membrane Sci., 20, 125 (1984)

3.Blatt W. F., A. Dravid, A. S. Michaels and L. Nelson, “ Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences, and Control Techniques,” in Membrane Science and Technique, J. E. Flinn ed., Plenum Press, New York (1970)

4.Bowman R. A., A. C. Mueller and W. M. Nagle, “ Mean Temperature Difference in Design,” Trans, Am. Mech. Engrs., 62 283 (1940)

5.Bruining W. J., “A General Description of Flows and Pressures in Hollow Fiber Membrane Modules,” Chem. Eng. Sci., 44, 1441 (1989)

6.Colton G. K., L. W. Henderson, C. A. Ford, and M. J. Lysaght, “ Kinetics of Hemodiafiltration. I. In vitro Transprot Characteristics of Hollow-Fiber Blood Ultrafilter,” J. Lab. Clin. Med., 85, 355 (1975)

7.Cooney D. O., S. S. Kim and E. J. Davis, “ Analysis of Mass Transfer in Hemodialyzers of Laminar Blood Flow and Homogeneous Dialysate,” Chem. Eng. Sci., 29, 1731 (1974)

8.Franco Evangelista, “An Improved Analytical Method for the Design of Spriral-wound Modules,” Chem. Eng. J., 38, 33 (1988)

9.Grimsurd L., and A. L. Bavv, “ Velocity and Concentration Profiles for Laminar Flow of Newtonian Fluid in a Dialyzer,” Chem. Eng. Prog. Ser., 62(66), 20 (1966)

10.Gostoli C., and A. Gatta, “ Mass Transfer in a Hollow Fiber Dialyzer,” J. Membrane Sci. 6, 133 (1980)

11.Isao Noda, Dimabo G. Brown-West and Carl C. Gryte, “Effect of Flow Maldistribution on Hollow Fiber Dialysis-Experimental Studies,” J. Membrane Sci., 5, 209 (1979)

12.Jagannathan R. and U. R. Shettigar, “ Analysis of a Turblar Hemodialyser-Effect of Ultrafiltration and Dialysate Concentration,” Med. & Biol. & Comput. 15, 134 (1977)

13.Jakob M., “Heat Transfer,” Wiley, New York, 2, 230 (1957)

14.Joong Kon Park and Ho Nam Chang, “ Flow Distribution in the Fiber Lumen Side of a Hollow-Fiber Module,” AIChE. J., 32 1937 (1986)

15.Lipps B. J. , R. D. Stewart, H. A. Perkins, G. W. Howlmes, E. A. McLain, M. A. Rolfs, and P. D. Oja, “ The Hollow Fiber Artificial Kideny,” Trans. Amer. Soc. Artif, Intern. Organs., 13, 200 (1967)

16.Masataka Tanigakc, Tetsuo Shiode, Shinsuke Okumi and Wataru Eguchi, “ Facilitated Transport of Zinc Chloride Through Hollow Fiber Supported Liquid Membrane. Part 3. Module Operation,” Sep. Sci., 30, 877 (1975)

17.Papenfuss H. D., J. F. Gross, and S. T. Thorson, “ An Analytical Study of Ultrafiltration in a Hollow Fiber Artificial Kident,” AIChE J. , 25, 170 (1979)

18.Pillarella M.R., and Zydney, A.L., “Theoretical Analysis of the Effect of Convective Flow on Solute Transport and Insulin Release in a Hollow Fiber Bioartificial Pancreas,” J. Biornech. Eng., 112, 220 (1990)

19.Popvich R. P., T. G. Christopher and A. L. Babb, “The Effect of Membrane Diffusion and Ultrafiltration Properties on Hemodialyzer Design and Performance,” Chem. Eng. Symp. Ser. 67, 105 (1971)

20.Porter M. C., “Handbook of Industrial Membrane Technology, Noyes Publications,” New Jersey, 175, 1 (1990)

21.Sakai K., ”Determination of Pore Size and Pore Size Distribution 2. Dialysis Membranes,” J. Membrane Sci. 96, 91 (1994)

22.Sikar Kamalesh K., P. L. T. Brian, R. E. Fisher and Lawrence Drensner, “ Salt Concentration at Phase Boundaries in Desalination by Revere Osmosis,” Ind. Eng. Chem. Fundamentals, 4, 113 (1965)

23.Tharakan John P. and Pao C. Chau, “Operation and Pressure Distribution of Immobilized Cell Hollow Fiber Bioreactors,” Bioeng., 28, 1064 (1986)

24.Velde Vandrt C. and E. F. Leonard, “Theoretical Assessment of the Effect of Flow Maldistributions on the Mass Transfer Efficiency of Artifical Orange,” Med. & Biol. Eng. & Comput., 23, 224 (1985)

25.Wakeman J. G., S. Nakao and C. A. Smolders, “ Flux Limitation in Ultrafiltration: Osomtic Pressure Model and Gel Layer Model,” J. Membrane Sci., 20, 115 (1984)

26.Yang Ming-Chien and Cussler, ”Artifical Gills,” J. Membrane Sci., 42, 273 (1989)

27.Yang Ming –Chien and Cussler, “Design Hollow-Fiber contactors,’ AIChE. J., 32, 1910 (1986)

28.Yeh H.M. and Huang C.M., “ Solvent Extraction in Multipass Parallel-Flow Mass Exchangers of Microporous Hollow-Fiber Modules,” J. Membrane Sci., 103, 135 (1995)

29.Yeh H.M., Peng Y.Y. and Chen Y.K., “ Solvent Extraction through a Double-Pass Parallel-Plate Membrane Channel with Recycle,” J. Membrane Sci., 163, 177 (1999)

30.Yeh H.M. and Hsu Yu-Shu, ”Analysis of Membrane Extraction thrugh Retangular Mass Exchangers,” 54, 897 (1999)

31.Yeh H.M. and Chem Y.K., “Membrane Extraction through Cross-Flow Rectangular Modules,” 170, 235 (2000)

32.Yeh H.M. and Chen C.L., Peng Y.Y., Chen C.H., “Effects of Recycle Type on Solvent Extraction Through a Parallel-Plate Membrane Module,” J. Membrane Sci., 183, 109 (2001)

33.Yeh H.M. and Chen C.H., “Recycle effects on solvent extraction through concurrent-flow parallel-plate membrane modules,” J. Membrane Sci., 190, 35 (2001)

34.Yeh H.M. and Hung C.R., Yueh T.Y., “Effect of barrier location on solvent extraction in double-pass parallel-plate membrane modules with recycle,” J. Membrane Sci., 227, 71 (2003)

35.Yeh H.M. and Cheng H.H., Hsieh M.J., “Membrane Extraction through Cross-Flow Rectangular Modules,” Chem. Eng. Sci., 57, 2457 (2002)

36.郭文正和曾添文, “薄膜分離”, 高立圖書公司, 1988

37.蘇志宏, “流動方式對薄膜質傳裝置性能之影響,” 淡江大學化學工程研究所碩士論文, 2001
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-07-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信