§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2302201215480500
DOI 10.6846/TKU.2012.00959
論文名稱(中文) Bi3(Nb1-xMx)O7-δ (M = Mg, Ho) 的製備與離子導電性研究
論文名稱(英文) Preparation and ionic Conductivity of Bi3(Nb1-xMx)O7-δ (M = Mg, Ho)
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 1
出版年 101
研究生(中文) 施長志
研究生(英文) Chang-Chi Shih
學號 698160396
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-01-03
論文頁數 106頁
口試委員 指導教授 - 高惠春(kaohci@mail.tku.edu.tw)
委員 - 王錫福(sfwang@ntut.edu.tw)
委員 - 黃炳照(bjh@mail.ntust.edu.tw)
關鍵字(中) 離子導體
固態電解質
螢石
關鍵字(英) ionic conductivity
solid state electrolyte
fluorite
crystal structure
solid oxide fuel cell
第三語言關鍵字
學科別分類
中文摘要
本實驗採用固態法製備Bi3(Nb1-xMgx)O7-1.5x (x = 0-0.70)和Bi3(Nb1-xHox)O7-x (x = 0-1.0)兩系列樣品,在空氣中熱處理溫度分別為900 和 1000C。所有的樣品皆為螢石結構,皆有95%以上的緻密度。樣品的單位晶胞a-軸遵守Vegard定律。Ho2O3可完全溶於Bi3NbO7,而MgO卻只能溶到0.70,推論維持單相螢石結構,氧原子數必須達6以上,當MgO取代到0.70時,氧原子計量只剩5.95。以3價的Ho3+或2價的Mg2+取代5價的Nb5+,隨著取代量的增加,使得氧空缺濃度增加,有利於氧離子導電。在Bi3(Nb1-xMgx)O7-1.5x系列中,700C時,Bi3(Nb0.3Mg0.6)O6.1樣品有最高的導電度,達1.13(3) × 10-1 S•cm-1,氧離子遷移率0.881(7),活化能0.682(7) eV。在Bi3(Nb1-xHox)O7-x系列中,700C時,Bi3HoO7樣品有最高的導電度,6.25(9) × 10-2 S•cm-1,氧離子遷移率0.872(2),活化能0.94(1) eV。氧離子遷移率隨著溫度的升高而增加,估計在900C左右,可以接近1。假使要將這些化合物放在SOFC中當作電解質使用,建議要在900C。
英文摘要
Two series of Bi3(Nb1-xMgx)O7-1.5x (x = 0-0.70) and Bi3(Nb1-xHox)O7-x (x = 0-1.0) samples were prepared by a solid state reaction method at 900 and 1000C, respectively under the static air atmosphere. The resulting samples have relative densities larger than 95% and a fluorite crystalline phase. Unit cell a-axis of them obeys Vegard’s law well. Solubility of Ho2O3 in the Bi3NbO7 is complete, but only 0.70 of the MgO can be dissolved into Bi3NbO7. It probably relates to the amount of oxygen vacancies. When x >0.70, the oxygen stoichiometry for the Bi3(Nb0.3Mg0.7)O5.95 is<5.95, which may be too less to keep a fluorite phase. Substitution of Nb by Mg or Ho, both oxygen vacancies and ionic conductivity of Bi3(Nb1-xMx)O7-x is increased with increasing the amount of x. For the Bi3(Nb1-xMgx)O7-1.5x series, at 700C, x = 0.60 has the highest conductivity, 1.13(3) × 10-1 S•cm-1 with a transference number of 0.881(7) and the least activation energy of 0.682(7) eV. For the Bi3(Nb1-xHox)O7-x series, at 700C, Bi3HoO7 has the highest conductivity 6.25(9) × 10-2 S•cm-1 with a transference number of 0.872(2) and the least activation energy of 0.94(1) eV. Transference number increases with increasing the measuring temperature, in order to obtain a transference number close to 1, for the pure ionic conduction as an electrolyte in the SOFC, these bismuthate may be used at temperature close to 900C.
第三語言摘要
論文目次
目 錄
目錄.........................................	І
圖索引.......................................	Ⅲ
表索引.......................................	ⅩⅡ

第一章  緒論.................................	1
1-1  固體氧化物燃料電池(Solid Oxide Fuel Cell) .........	1
1-2  氧離子導體.....................................	3
1-3  常用的電解質材料...............................	8
1-4  常用的電極材料.................................	10
1-5  研究動機及目的.................................	11
第二章  實驗.................................	13
2-1  藥品...........................................	13
2-2  實驗流程.......................................	13
2-3  樣品的物性分析.................................	14
2-3-1  X-光粉末繞射圖譜鑑定...................	14
2-3-2  Rietveld精算法..........................	15
2-3-3  掃描式電子顯微鏡(SEM)....................       17
2-3-4  X光微區分析 (EDS).....................	18
2-3-5  交流阻抗分析(AC Impedance)..............	18
2-3-6  變氧壓對導電度影響.....................	19
2-3-7  電動勢(EMF)分析........................	20
2-3-8  X-光吸收近邊緣光譜(XANES).................      21
第三章  結果與討論...........................	24
3-1 樣品單相鑑定....................................	24
3-2 結構分析........................................	26
3-3 樣品微結構分析..................................	32
3-4 樣品緻密度測量..................................	36
3-5 樣品元素分析(EDS)...............................	37
3-6 交流阻抗分析 (AC Impedance)......................	39
3-7變氧壓導電度影響.................................	82
3-8 電動勢(EMF)分析.................................	92
3-9  X-光吸收近邊緣結構光譜.........................	96
第四章 結論與未來計畫........................	99
4-1  結論...........................................	99
4-2  未來計畫.......................................	100
參考文獻.....................................	101
參考文獻
1. J. W. Fergus, J. Power Sources 162 (2006) 30.
2. H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1.
3. J. Molenda, K. Swierczek, W. Zajac, J. Power Sources 173 (2007) 657.
4. Z. G. Liu, J. H. Ouyang, Y. Zhou, X. L. Xia, J. Power Sources 185 (2008) 876.
5. Q. A. Huang, R. Hui, B. Wang, J. Zhang, Electrochim. Acta 52 (2007)  8144.
6. A. Dutta, A. Kumar, R. N. Basu, Electrochim. Commun. 11 (2009) 699.
7. W. Nernst, Z. Elektrochem. 6 (1899) 41.
8. H. L. Tuller, Solid State Ionics 52 (1992) 135.
9. S. Kramer, M. Spears, H. L. Tuller, Solid State Ionics 72 (1994) 59.
10. C. Heremans, B. J. Wuensch, J. K. Stalic, E. prince, J. Solid State Chem. 117 (1995) 108.
11. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao, Solid State Chem. 15 (1983) 55.
12. S. A. Kramer, H. L. Tuller, Solid State Ionics 82 (1995) 15.
13. M. Han, X. Tang, H. Yin, S. Peng, J. Power Sources 165 (2007) 757.
14. Z. Qu, C. Wan, W. Pan, J. Am. Chem. Soc. 19 (2007) 4913.
15. R. L. Cook, J. Electrochem. Soc.137 (1990) 3309.
16. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116 (1994)  3801.
17. M. Feng, J. B. Goodenough, Eur. J. Solid State Inorg. Chem. 31 (1994) 663.
18. P. Huang, A. Petric, J. Electrochem. Soc. 143 (1996) 1644.
19. K. Huang, M. Feng, J. B. Goodenough, J. Am. Ceram. Soc. 79 (1996) 1100.
20. J. W. Stevenson, T. R. Armstrong, D. E. McCready, L. R. Pederson, W. J. Weber, J. Electrochem. Soc. 144 (1997).
21. K. Huang, M. Feng, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 3620.
22. T K. Huang, R. S. Tichy, J. B. Goodenough, J. Am. Chem. Soc. 81 (1998) 2565.
23. K. Huang, M. Feng, J. B. Goodenough, M. Schmerling, J. Am. Chem. Soc. 143 (2006) 3630.
24. K. W.Browall, O. Muller, Mat. Res. Bull. 11 (1971) 1475.
25. H. von Gaertner, Neues Jahrb. Mineral. Geol. Palaeontol. 61                                                                    (1930) 1.
26. B. J. Kennedy, T. Vogt, J. Solid State Chem. 126 (1996) 261.
27. L. Minervini, R. W. Grimes, K. E. Sickafus, J. Am. Ceram. Soc. 83 (2000) 1873.
28. A. V. Shlyakhtina, A. V. Knotko, M. V. Boguslavskii, S. Yu. Stefanovich, D. V. Peryshkov, I. V. Kolbanev, L. G. Shcherbakova, Solid State Ionics 176 (2005) 2297.
29. M. P. van Dijk, A. J. Burggraaf, A. N. Cormack, C. R. A. Catlow, Solid State Ionics 17 (1985) 159.
30. B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud,  E. M. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen, Solid State Ionics. 129 (2000) 111.
31. B. J. Kennedy, B. A. Hunter, C. J. Howard, J. Solid State Chem. 130 (1997) 58.
32. N. Bonanos, R. K. Slotwinski, B.C. H. Steel, E. P. Butler, J. Mat. Sci.  Lett. 3 (1984) 245.
33. N. Bonanos, R. K. Slotwinski, B. C. H. Steel, E. P. Butler, J. Mat. Sci. 19 (1984) 785.
34. N. Q. Ming, J. Am. Ceram. Soc. 76 (1993) 563.
35. P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid    State Ionics 89 (1996) 179.
36. H. A. Harwig, A. G. Gerards, Thermochim. Acta. 28 (1979) 121.
37. G. Mairesse In Fast ion transport in solids, eds. B. Scrosati, Kluver Amsterdam, (1993) 271.
38. H. Gao, J. Liu, H. Chen, S. Li, T. He, Y. J, J. Zhang, Solid State Ionics 179 (2008) 1620.
39. B. C. H. Steel, J. Power Sources. 49 (1994) 1.
40. B. C. H. Steel, Solid State Ionics. 75 (1995) 157.
41. B. C. H. Steel, Solid State Ionics. 129 (2000) 95.
42. C. Xia, F. Chen, M. Liu, Electrochem. Solid State Lett. A 4 (2001) 52. 
43.C. Xia, M. Liu, Solid State Ionics. 144 (2001) 249. 
44. R. Doshi, L. von Richards, J. D. Carter, X. Wang, M. Krumpelt, J. Electrochem. Soc. 146 (1999) 1273. 
45. K. Zheng, B. C. H. Steel, M. Sahibzada, I. S. Metcalfe, Solid State Ionics. 86–88 (1996) 1241. 
46. M. Sahibzada, B. C. H. Steel, R. A. K. Zheng, I. S. Rudkin, Catal. Today, 38 (1997) 459. 
47. M. Sahibzada, B. C. H. Steel, K. Hellgardt, D. Barth, A. Effendi, D. Mantzavinos, Chem. Eng. Sci. 55 (2000) 3077.
48. T. Matsui, T. Kosaka, M. Inaba, A. Mineshige, Z. Ogumi, Solid State Ionics 176 (2005) 663.
49. H. T. Tuller, A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.
50. A. Atkinson, Solid State Ionics 95 (1997) 249.
51. J. S. Lee, K. H. Choi, B. K. Ryu, B. C. Shin, I. S. Kim, Ceram. Inter. 30 (2004) 807.
52. V. V. Kharton, F. M. B. Marques, A. Atkinson, Solid State Ionics 174 (2004) 135.
53. B. Dalslet, P. Blennow, P. V. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen, J. Solid State Electrochem. 10 (2006) 547.
54. A. V. Joshi, J. J. Steppan, D .M. Taylor, S. Elangovan, J. Electroceram. 13 (2004) 619. 
55. J. W. Stevenson, T. R. Armstrong, L. R. Pederson, J. Li, C. A. Lewinsohn, S. Baskaran, Solid State Ionics 113–115 (1998) 571.
56. J. W. Stevenson, K. Hasinska, N. L. Canfield, T. R. Armstrong, J. Electrochem. Soc. 147 (2000) 3213.
57. J. W. Stevenson, T. R. Armstrong, D. E. McCready, L. R. Pederson, W. J. Weber, J. Electrochem. Soc. 144 (1997) 3613.
58. K. Huang, M. Feng, J. B. Goodenough, M. Schmerling, J. Electrochem. Soc. 143 (1996) 3630.
59. I. Yasuda, Y. Matsuzaki, T. Yamakawa, T. Koyama, Solid State Ionics 135 (2000) 381.
60. J. Xue, Y. Shen, Q. Zhou, T. He, Y. Han, Inter. J. Hydrog. Energy 35 (2010) 294.
61. J. Tong, D. Clark, M. Hoban, R. O'Hayre, Solid State Ionics 181 (2010) 496.
62. J. Bradley, P. R. Slater, T. Ishihara, J.T.S. Irvine, Electrochem. Soc. Proc. 2003-07 (2003) SOFC VII, 315.
63. T. Kudo, H. Obayashi, J. Electrochem. Soc. 123 (1976) 415.
64. K. Eguchi, J. Alloys Comps. 250 (1997) 486.
65. V. V. Kharton, F. M. Figueiredo, L. Navarro, E. N. Naumovich, A. V. Kovalevsky, A. A. Yaremchenko, A. P. Viskup, A. Carneiro, F. M. B. Marques, J. R. Frade, J. Mater. Sci. 36 (2001) 1105.
66. S. Wang, T. Koyabashi, M. Dokiya, T. Hashimoto, J. Electrochem. Soc. 147 (2000) 3606.
67. 余河潔,《以鍶摻雜銅酸鑭做為中溫固態氧化物燃料電池陰極材料之研究》,國立成功大學材料科學及工程學系博士論文:(2005)。
68. N. Q. Minh, J. Am. Ceram. Soc. 76 (1993) 563.
69. Y. Takeda, R. Kanno, M. Noda, O.Yamamoto, J. Electrochem. Soc. 11 (1987) 2656.
70. F. Krok, I. Abrahams, W.Wrobel, A. Kozanecka-Szmigiel, J. R. Dygas. Materials Science-Poland. 24, (2006).
71. P. Shuk, H.-D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ionics 89 (1996) 179.
72. T. Takahashi, H. Iwahara and Y. Nagai, J. Appl. Electrothem. 2 (1972) 97.
73. G. Mairesse, “In Fast Ion Transport in Solids,” ed. B. Scrosati, Kluver, Amsterdam, 271 (1993).
74. T. Takahashi, T. Esaka and H. Iwahara, J. Appl. Electrothem. 7 (1977) 303.
75. M. Leszczynska, M. Holdynski, F. Krok, I. Abrahams, X. Liu, W. Wrobel, Solid State Ionics 181 (2010) 796.
76. D. Zhou, H.Wang, X. Yao, L.-X. Pang, Mater. Chem. Phys. 110 (2008) 212.
77. F. Krok, I. Abrahams, W. Wrobel, S. C. M Chan, A. Kozanecka, T. Ossowski, J. R. Dygas, Solid State Ionics 175 (2004) 335. 
78. I. Abrahams, F. Krok, A. Kozanecka-Szmigiel, W. Wrobel, S. C. M. Chan, J.R. Dygas, J. Pow. Sour. 173 (2007) 788 
79. M. Leszczynska, M. Holdynski, F. Krok , I. Abrahams, X. Liu, W. Wrobel, Solid State Ionics.181 (2010) 796.
80. A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR (2004) 86-748.
81. Rietveld, H. M. Acta Crystallogr. 151 (1967) 22.
82. Rietveld, H. M. J. Appl. Crystallogr. 65 (1969) 2.
83. 張凌雲,NSRRC BL16A1光束線 X-光吸收能譜操作手冊.
84. M. Małys, M. Hołdynski, F. Krok, W. Wróbel, J. R. Dygas, C. Pirovano, R.-N. Vannier, E. Capoen, I. Abrahams, J. Pow. Sour. 194 (2009) 16.
85. Z. G. Liu, J. H. Ouyang, K. N. Sun, X. L. Xia, J. Pow. Sour. 195 (2010) 7225.
86. A. R. West, Basic Solid State Chemistry, 2 ed., Wiley, N.Y. USA, 1999, p.p. 357
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信