§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2301201311345200
DOI 10.6846/TKU.2013.00905
論文名稱(中文) 銦錫氧化物奈米片條透明導電塗膜
論文名稱(英文) Transparent conducting coating composed by Indium-tin oxide (ITO) nanostrips
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 1
出版年 102
研究生(中文) 王彥智
研究生(英文) Yen-Chih Wang
學號 699401211
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-01-08
論文頁數 62頁
口試委員 指導教授 - 張朝欽
委員 - 陳慶鐘
委員 - 張正良
關鍵字(中) 銦錫氧化物
共沉澱法
複合塗膜
紫外光曝光
片電阻
關鍵字(英) indium-tin oxide
co-precipitation
composite coating
UV-curing
sheet resistance
第三語言關鍵字
學科別分類
中文摘要
本研究製備出的片條狀銦錫氧化物,是由方塊狀銦錫氫氧化物轉變而成。ITO片條是以共沉澱法製備,並加入聚電解質聚磺酸苯乙烯做為結構生長導向劑及穩定劑,探討PSS及溫度對前驅物型態的影響。在室溫下沉澱並熟化三天的前驅物為寬60 ~ 100 nm、長500 ~ 800 nm的片條,經過高溫煆燒片條狀ITO前驅物轉變成ITO,以壓克力單體三異丙基矽基丙烯酸酯(MSMA)做為黏附劑,利用刮膜法及紫外光曝光,製作透明導電塗膜。ITO片條及複合塗膜的結構、型態、相態、光電性質分別利用穿透式電子顯微鏡、掃描式電子顯微鏡、傅立葉轉換紅外光線光譜儀、X光繞射儀、紫外線-可見光光譜儀和四點探針等分析。隨壓克力單體含量增加,使塗膜結構更緊密也擁有更高的可見光穿透度。當MSMA/ITO為0.6時獲得的塗膜片電阻為0.32 kohm/sq、可見平均穿透度為82.5%。
英文摘要
In this study, fabrication of strip-like indium-tin oxide (ITO) precursors from indium-tin hydroxide (ITH) nanocubes is demonstrated. The strip-like precursors were prepared using a co-precipitation method, in which a polyelectrolyte, poly(styrenesulfonic acid) (PSS), was employed both as the structure-directing agent and stabilizer. The effects of PSS and temperature on morphology of the precursors were investigated. Typical trip-like precursors with 60~100 nm wide and 500~800 nm long were prepared by means of precipitation at room temperature and after aging 3 day. Then ITO nanostrips were prepared from the strip-like precursors by post-calcination. Transparent conductive coatings composed of ITO nanostrips and acrylic binder, 3-(trimethoxy silyl)propyl methacrylate (MSMA), were prepared via doctor-blade coating and UV curing. The structure, morphology, phase, optical and electrical properties of the formed particles and coatings were characterized via TEM, SEM, FTIR, XRD, UV-visible, and four point probe..., etc. Increasing the binder content resulted in a denser structure of the coating and higher transmittance in the visible range. A coating with 0.32 kohm/sq sheet resistance and 82.5% average transmittance could be attained when the weight ratio of MSMA/ITO = 0.6.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
本文目錄	III
表目錄		IV
圖目錄		V

第一章 序論	1
1-1 前言	1
1-2 研究動機與目的	2
第二章 原理與文獻	3
2-1 銦錫氧化物	3
2-2 銦錫氧化物奈米粒子的製備	8
2-3 濕式ITO透明導電膜製備	12
第三章 實驗部分	14
3-1 實驗藥品	14
3-2 實驗步驟	17
3-3 實驗儀器	19
第四章 結果與討論	22
4-1 銦錫氧化物奈米粒子合成及結構分析	22
4-1-1 熟化時間和溫度對前驅物結構影響	22
4-1-2 聚磺酸苯乙烯對前驅物結構影響	28
4-1-3 煆燒溫度對結構的影響	36
4-2 銦錫氧化物塗膜光學性質	40
4-3 銦錫氧化物-壓克力複合塗膜	41
4-3-1 煆燒前未分散ITO塗膜	41
4-3-2 煆燒前先分散ITO塗膜	46
第五章 結論	53
參考文獻	54
附錄A		58
附錄B		59
附錄C		61
 
表目錄

表1-1	透明導電膜依不同片電阻的應用	1
表4-1	不同固含量ITO塗膜片電阻與可見光平均穿透率	41
表4-2	不同ITO/MSMA比例複合塗膜的片電阻與可見光平均穿透度	43
表4-3	R = 0.4,不同固含量複合塗膜的片電阻與可見光平均穿透度	43
表4-4	分散後,不同固含量ITO塗膜片電阻與可見光平均穿透率	46
表4-5	不同ITO/MSMA比例ITO複合塗膜片電阻與可見光穿透度	48
表4-6	R = 0.6,不同固含量ITO複合塗膜片電阻與可見光平均穿透度	48
表A-1	不同銦錫莫耳比與沉澱溫度下製作的ITH EDX分析	58

 
圖目錄

圖2-1	(a) cubic-In(OH)3和(b) bixbyite-In2O3的晶體結構	4
圖2-2	以銦為立方體中心各原子所佔據的位置	5
圖2-3	(a)ITO穿透圖,(b)ITO反射圖	7
圖2-4	氫氧化銦經高溫煆燒轉變成氧化銦過程圖	9
圖2-5	氫氧化銦經高溫煆燒轉變氧化銦FTIR圖	9
圖2-6	結構因NH3的影響往[100]方向生長	11
圖2-7	ITO塗膜片電阻值	13
圖3-1	ITO粉體製備流程圖	18
圖3-2	ITO複合塗膜製作流程圖	18
圖4-1	室溫下沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天,(d)熟化三天之SEM圖	24
圖4-2	室溫下沉澱的ITO precursor FTIR圖	25
圖4-3	室溫下沉澱的ITO precursor XRD圖	25
圖4-4	40 oC下沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天之SEM圖	26
圖4-5	40 oC下沉澱的ITO precursor FTIR圖	27
圖4-6	40 oC下沉澱的ITO precursor XRD圖	27
圖4-7	室溫,在PSS水溶液中沉澱的ITO precursor:(a)熟化三小時,(b)熟化一天,(c)熟化三天之SEM圖	29
圖4-8	室溫,在PSS水溶液中沉澱的ITO precursor FTIR圖	30
圖4-9	室溫,在PSS水溶液中沉澱的ITO precursor XRD圖	30
圖4-10	40 oC,在PSS水溶液中沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天之SEM圖	32
圖4-11	40 oC,在PSS水溶液中沉澱的ITO precursor FTIR圖	33
圖4-12	40 oC,在PSS水溶液中沉澱的ITO precursor XRD圖	33
圖4-13	80 oC,在PSS水溶液中沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天之SEM圖	34
圖4-14	80 oC,在PSS水溶液中沉澱的ITO precursor FTIR圖	35
圖4-15	80 oC,在PSS水溶液中沉澱的ITO precursor XRD圖	35
圖4-16	室溫,在PSS水溶液中沉澱並熟化三天的ITO precursor SEM圖:(a)煆燒前;(b)煆燒後	37
圖4-17	室溫,在PSS水溶液中沉澱並熟化三天ITO precursor TEM圖:(a)煆燒前;(b)煆燒後	37
圖4-18	室溫,在PSS水溶液中沉澱的ITO precursor,進行不同溫度壓燒XRD圖	38
圖4-19	(a)室溫,在PSS水溶液中沉澱的ITO precursor粉體熱重分析(b)由(a)所製作的ITO粉體之熱重與DSC分析	39
圖4-20	ITO粉體之UV-Vis-NIR吸收圖	40
圖4-21	ITO塗膜之UV-Vis穿透圖	41
圖4-22	(a)不同ITO/MSMA比例塗膜之UV-Vis穿透圖;(b) R = 0.4,不同固含量塗膜之UV-Vis穿透圖	44
圖4-23	R=0.4,14 wt%塗膜之SEM圖:(a)表面;(b)截面	45
圖4-24	R = 0.4,ITO複合塗膜SEM圖:(a)7 wt%;(b)9 wt%;(c)11 wt%	45
圖4-25	ITO塗膜之UV-Vis穿透圖	46
圖4-26	不同ITO/MSMA比例ITO複合塗膜UV-Vis穿透圖:(a)R = 0 ~ 0.4;(b)R = 0.4 ~ 1	49
圖4-27	R = 0,ITO複合塗膜:(a)表面;(b)截面圖	50
圖4-28	R = 0.4,ITO複合塗膜:(a)表面;(b)截面圖	50
圖4-29	R = 0.6,ITO複合塗膜:(a)表面;(b)截面圖	51
圖4-30	R=1,ITO複合塗膜:(a)表面;(b)截面圖	51
圖4-31	塗膜置於空氣中,片電阻變化情形	52
圖A-1	cubic ITO之JCPDS cards	58
圖A-2	rhombhedral ITO之JCPDS cards	58
圖B-1	聚磺酸苯乙烯FTIR圖	59
圖B-2	氫氧化銦FTIR圖	59
圖C-1	不含PSS 沉澱的ITO precursor:熟化(a)三小時,(b)一天,(c)三天SEM圖	61
圖C-2	氫氧化銦熟化三天SEM圖	62
參考文獻
[1]	L. Schlicker, R. Riedel, A. Gurlo, “Indium hydroxide to bixbyite-type indium oxide transition probed in situ by time resolved synchrotron radiation”, Nanotechnology 20, No. 495702 (2009).
[2]	N. Nadaud, N. Lequeux, M. Nanot, J.Jove, T. Roisnel, “Structure studies of tin-doped indium oxide (ITO) and In4Sn3O12”, Journal of Solid State Chemistry 135, 148 (1988).
[3]	E. Shigeno, K. Shimizu, S. Seki, M. Ogawa, A. Shida, M. Ide, Y. Sawada “Formation of indium-tin-oxide films by dip coating process using indium dipropionate monohydroxide”, Thin Solid Films 411, 56-59 (2002).
[4]	H. Miyazaki, T. Ota, I. Yasui, “Design of ITO/transparent resin optically selective transparent composite”, Solar Energy Materials & Solar Cells 79, 51-55 (2003).
[5]	J. E. Song, Y. H. Kim, Y. S. Kang, “Preparation of indium tin oxide nanoparticles and their application to near IR-reflective film”, Current Applied Physics 6, 791-795 (2006).
[6]	N. C. Pramanik, S. Dasl, P. K. Biswas, “The effect of Sn(IV) on transformation of co precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide(ITO) powder”, Materials Latters 56, 671-679 (2002).
[7]	B. C. Kim, S. M. Kim, J. H. Lee, J. J. Kim, “Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders”, Journal of American Ceramic Society 85, 2083-88 (2002).
[8]	K. Y. Kim, S. B. Park, “Preparation and property control of nano-sized indium tin oxide particle”, Materials Chemistry and Physics 86, 210-221 (2004).
[9]	S. G. Chen, C. H. Li, W. H. Xiong, L. M. Liu, H. Wang, “Preparation of indium-tin-oxide (ITO) nano-aciculae by a simple precipitation near boiling point and post-calcination method”, Materials Letters 59, 1342-1346 (2005).
[10]	S. Li, X. Qiao, J. Chen, H. Wang, F. Jia, X. Lin, “Effects of temperature on indium tin oxide particles synthesized by co-precipitation”, Jounal of Crystal Growth 289, 151-156 (2006). 
[11]	J. E. Song, D. K. Lee, H. W. Kim, Y. I. Kim, Y. S. Kang, “Preparation and characterization of monodispersed indium-tin oxide nanoparticles”, Colloids and Surfaces A :physicochem. Eng. Aspects 257-258 (2005).
[12]	R. J. Pan, S. W. Qiang, K. Y. Liew, Y. X. Zhao, R. Wang, J. H. Zhu, “Effect of stabilizer on synthesis of indium tin oxide nanoparticles”, Powder Technology 189, 126-129 (2009).
[13]	N. Al-Dahoudi, M. Aegerter, “Comparative study of transparent conductive In2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension”, Thin Solid Film 502, 193-197 (2006).
[14]	N. Al-Dahoudi, M.A. Aegerter, “Wet coating deposition of ITO coating on plastic substrates”, Journal of Sol-Gel Science and Technology 26, 693-697 (2003)
[15]	S. Heusing, P. W. de Oliveira, E. Kraker, A. Haase, C. Palfinger, M. Veith, “Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes”, Thin Solid Films 518, 1164-1169 (2009).
[16]	B. Zhu, M. Zhu, Q. Zhang, L. Chang, Y. Li, H. Wang, “Conducting behaviors of PPy/ITO composites synthesized by polymerization”, Synthetic Metals 160, 2151–2154 (2010). 
[17]	H. Y. Lai, T. H. Chen, C. H. Chen “Optical and electrical properties of ink-jet printed indium–tin-oxide nanoparticle films”, Materials Letters 65, 3336–3339 (2011).
[18]	C. Q. Peng, Y. S. Thio, R. A. Gerhardt, “Conductive paper fabricated by
layer-by-layer assembly of polyelectrolytes and ITO nanoparticles”, Nanotechnology 19, 505603 (2008).
[19]	C. Q. Peng, Y. S. Thio, R. A. Gerhardt, “Enhancing the Layer-by-Layer Assembly of Indium Tin Oxide Thin Films by Using Polyethyleneimine”, Journal of Physical Chemistry C 114, 9685–9692 (2010).
[20]	薛玫玲,聚磺酸苯乙烯對銦錫氧化物奈米粒子之製備、形態以及性質之影響,碩士論文,淡江大學,(2010).
[21]	T. Sasaki, Y Endo, M. Nakaya, K. Kanie, A. Nagatomi, K. Tanoue, R. Nakamura, A. Muramatsu, “One-step solvothermal stnthesis of cubic-shaped ITO nanoparticles precisely controlled in size and shape and their electrical resistivity”, Journal of Materials Chemistry 20, 8153-8157 (2010).
[22]	M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region”, Journal of American Society 131, 17736-17737 (2009).
 
[23]	S. I. Choi, K. M. Nam, B. K. Park, W. S. Seo, J. T. Park, “Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles”, Chemical Material 20, 2609-2611 (2008).
[24]	R. A. Gilstrap Jr., C. J. Capozzi, C. G. Carson, R. A. Gerhardt, C. J. Summers, “Synthesis of nonagglomerated indium tin oxide nanoparticle dispersion”, Advanced Materials 20, 4163-4166 (2008).
[25]	I. Maksimenko, M. Gross, T. Koniger, H. Munstedt, P. J. Wellmann, “Conductivity and adhesion enhancement in low-temperature processed indium tin oxide/polymer nanocomposites”, Thin Solid Film 518, 2910-2915 (2010).
[26]	N. Al-Dahoudi, H. Bisht, C. Gobbert, T. Krajewski, M. Aegerter, “Transparent conducting, anti-static and anti-glare coating on plastic substrates”, Thin Solid Film 392, 299-304 (2001).
[27]	C. J. Capozzi, R. A. Gerhardt, “Novel Percolation Mechanism in PMMA Matrix Composites Containing Segregated ITO Nanowire Networks”, Advanced Functional Materials 17, 2515–2521 (2007).
[28]	R. A. Gilstrap Jr, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, C. J. Summers, “Synthesis of a Nonagglomerated Indium Tin Oxide Nanoparticle Dispersion”, Advanced Materials 20, 4163–4166 (2008).
[29]	N. Mechau, R. Groeger, A. Prodi-Schwab, R. Schmechel, “Reduced conductivity in poly(3,4-ethylenedioxythiophen)-poly(styrenesulfonate) and indium tin oxide nanocomposite for low indium tin oxide content”, Journal of Applied Physics 105, 054318 (2009).
[30]	G. Buhler, D. Tholmann, C. Feldmann, “One-Pot Synthesis of Highly Conductive Indium Tin Oxide Nanocrystals”, Advanced Materials 19, 2224-2227 (2007)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信