淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2301201311345200
中文論文名稱 銦錫氧化物奈米片條透明導電塗膜
英文論文名稱 Transparent conducting coating composed by Indium-tin oxide (ITO) nanostrips
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 王彥智
研究生英文姓名 Yen-Chih Wang
學號 699401211
學位類別 碩士
語文別 中文
口試日期 2013-01-08
論文頁數 62頁
口試委員 指導教授-張朝欽
委員-陳慶鐘
委員-張正良
中文關鍵字 銦錫氧化物  共沉澱法  複合塗膜  紫外光曝光  片電阻 
英文關鍵字 indium-tin oxide  co-precipitation  composite coating  UV-curing  sheet resistance 
學科別分類
中文摘要 本研究製備出的片條狀銦錫氧化物,是由方塊狀銦錫氫氧化物轉變而成。ITO片條是以共沉澱法製備,並加入聚電解質聚磺酸苯乙烯做為結構生長導向劑及穩定劑,探討PSS及溫度對前驅物型態的影響。在室溫下沉澱並熟化三天的前驅物為寬60 ~ 100 nm、長500 ~ 800 nm的片條,經過高溫煆燒片條狀ITO前驅物轉變成ITO,以壓克力單體三異丙基矽基丙烯酸酯(MSMA)做為黏附劑,利用刮膜法及紫外光曝光,製作透明導電塗膜。ITO片條及複合塗膜的結構、型態、相態、光電性質分別利用穿透式電子顯微鏡、掃描式電子顯微鏡、傅立葉轉換紅外光線光譜儀、X光繞射儀、紫外線-可見光光譜儀和四點探針等分析。隨壓克力單體含量增加,使塗膜結構更緊密也擁有更高的可見光穿透度。當MSMA/ITO為0.6時獲得的塗膜片電阻為0.32 kohm/sq、可見平均穿透度為82.5%。
英文摘要 In this study, fabrication of strip-like indium-tin oxide (ITO) precursors from indium-tin hydroxide (ITH) nanocubes is demonstrated. The strip-like precursors were prepared using a co-precipitation method, in which a polyelectrolyte, poly(styrenesulfonic acid) (PSS), was employed both as the structure-directing agent and stabilizer. The effects of PSS and temperature on morphology of the precursors were investigated. Typical trip-like precursors with 60~100 nm wide and 500~800 nm long were prepared by means of precipitation at room temperature and after aging 3 day. Then ITO nanostrips were prepared from the strip-like precursors by post-calcination. Transparent conductive coatings composed of ITO nanostrips and acrylic binder, 3-(trimethoxy silyl)propyl methacrylate (MSMA), were prepared via doctor-blade coating and UV curing. The structure, morphology, phase, optical and electrical properties of the formed particles and coatings were characterized via TEM, SEM, FTIR, XRD, UV-visible, and four point probe..., etc. Increasing the binder content resulted in a denser structure of the coating and higher transmittance in the visible range. A coating with 0.32 kohm/sq sheet resistance and 82.5% average transmittance could be attained when the weight ratio of MSMA/ITO = 0.6.
論文目次 目錄
中文摘要 I
英文摘要 II
本文目錄 III
表目錄 IV
圖目錄 V

第一章 序論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 原理與文獻 3
2-1 銦錫氧化物 3
2-2 銦錫氧化物奈米粒子的製備 8
2-3 濕式ITO透明導電膜製備 12
第三章 實驗部分 14
3-1 實驗藥品 14
3-2 實驗步驟 17
3-3 實驗儀器 19
第四章 結果與討論 22
4-1 銦錫氧化物奈米粒子合成及結構分析 22
4-1-1 熟化時間和溫度對前驅物結構影響 22
4-1-2 聚磺酸苯乙烯對前驅物結構影響 28
4-1-3 煆燒溫度對結構的影響 36
4-2 銦錫氧化物塗膜光學性質 40
4-3 銦錫氧化物-壓克力複合塗膜 41
4-3-1 煆燒前未分散ITO塗膜 41
4-3-2 煆燒前先分散ITO塗膜 46
第五章 結論 53
參考文獻 54
附錄A 58
附錄B 59
附錄C 61

表目錄

表1-1 透明導電膜依不同片電阻的應用 1
表4-1 不同固含量ITO塗膜片電阻與可見光平均穿透率 41
表4-2 不同ITO/MSMA比例複合塗膜的片電阻與可見光平均穿透度 43
表4-3 R = 0.4,不同固含量複合塗膜的片電阻與可見光平均穿透度 43
表4-4 分散後,不同固含量ITO塗膜片電阻與可見光平均穿透率 46
表4-5 不同ITO/MSMA比例ITO複合塗膜片電阻與可見光穿透度 48
表4-6 R = 0.6,不同固含量ITO複合塗膜片電阻與可見光平均穿透度 48
表A-1 不同銦錫莫耳比與沉澱溫度下製作的ITH EDX分析 58


圖目錄

圖2-1 (a) cubic-In(OH)3和(b) bixbyite-In2O3的晶體結構 4
圖2-2 以銦為立方體中心各原子所佔據的位置 5
圖2-3 (a)ITO穿透圖,(b)ITO反射圖 7
圖2-4 氫氧化銦經高溫煆燒轉變成氧化銦過程圖 9
圖2-5 氫氧化銦經高溫煆燒轉變氧化銦FTIR圖 9
圖2-6 結構因NH3的影響往[100]方向生長 11
圖2-7 ITO塗膜片電阻值 13
圖3-1 ITO粉體製備流程圖 18
圖3-2 ITO複合塗膜製作流程圖 18
圖4-1 室溫下沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天,(d)熟化三天之SEM圖 24
圖4-2 室溫下沉澱的ITO precursor FTIR圖 25
圖4-3 室溫下沉澱的ITO precursor XRD圖 25
圖4-4 40 oC下沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天之SEM圖 26
圖4-5 40 oC下沉澱的ITO precursor FTIR圖 27
圖4-6 40 oC下沉澱的ITO precursor XRD圖 27
圖4-7 室溫,在PSS水溶液中沉澱的ITO precursor:(a)熟化三小時,(b)熟化一天,(c)熟化三天之SEM圖 29
圖4-8 室溫,在PSS水溶液中沉澱的ITO precursor FTIR圖 30
圖4-9 室溫,在PSS水溶液中沉澱的ITO precursor XRD圖 30
圖4-10 40 oC,在PSS水溶液中沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天之SEM圖 32
圖4-11 40 oC,在PSS水溶液中沉澱的ITO precursor FTIR圖 33
圖4-12 40 oC,在PSS水溶液中沉澱的ITO precursor XRD圖 33
圖4-13 80 oC,在PSS水溶液中沉澱的ITO precursor:(a)熟化三小時,(b)熟化六小時,(c)熟化一天之SEM圖 34
圖4-14 80 oC,在PSS水溶液中沉澱的ITO precursor FTIR圖 35
圖4-15 80 oC,在PSS水溶液中沉澱的ITO precursor XRD圖 35
圖4-16 室溫,在PSS水溶液中沉澱並熟化三天的ITO precursor SEM圖:(a)煆燒前;(b)煆燒後 37
圖4-17 室溫,在PSS水溶液中沉澱並熟化三天ITO precursor TEM圖:(a)煆燒前;(b)煆燒後 37
圖4-18 室溫,在PSS水溶液中沉澱的ITO precursor,進行不同溫度壓燒XRD圖 38
圖4-19 (a)室溫,在PSS水溶液中沉澱的ITO precursor粉體熱重分析(b)由(a)所製作的ITO粉體之熱重與DSC分析 39
圖4-20 ITO粉體之UV-Vis-NIR吸收圖 40
圖4-21 ITO塗膜之UV-Vis穿透圖 41
圖4-22 (a)不同ITO/MSMA比例塗膜之UV-Vis穿透圖;(b) R = 0.4,不同固含量塗膜之UV-Vis穿透圖 44
圖4-23 R=0.4,14 wt%塗膜之SEM圖:(a)表面;(b)截面 45
圖4-24 R = 0.4,ITO複合塗膜SEM圖:(a)7 wt%;(b)9 wt%;(c)11 wt% 45
圖4-25 ITO塗膜之UV-Vis穿透圖 46
圖4-26 不同ITO/MSMA比例ITO複合塗膜UV-Vis穿透圖:(a)R = 0 ~ 0.4;(b)R = 0.4 ~ 1 49
圖4-27 R = 0,ITO複合塗膜:(a)表面;(b)截面圖 50
圖4-28 R = 0.4,ITO複合塗膜:(a)表面;(b)截面圖 50
圖4-29 R = 0.6,ITO複合塗膜:(a)表面;(b)截面圖 51
圖4-30 R=1,ITO複合塗膜:(a)表面;(b)截面圖 51
圖4-31 塗膜置於空氣中,片電阻變化情形 52
圖A-1 cubic ITO之JCPDS cards 58
圖A-2 rhombhedral ITO之JCPDS cards 58
圖B-1 聚磺酸苯乙烯FTIR圖 59
圖B-2 氫氧化銦FTIR圖 59
圖C-1 不含PSS 沉澱的ITO precursor:熟化(a)三小時,(b)一天,(c)三天SEM圖 61
圖C-2 氫氧化銦熟化三天SEM圖 62
參考文獻 [1] L. Schlicker, R. Riedel, A. Gurlo, “Indium hydroxide to bixbyite-type indium oxide transition probed in situ by time resolved synchrotron radiation”, Nanotechnology 20, No. 495702 (2009).
[2] N. Nadaud, N. Lequeux, M. Nanot, J.Jove, T. Roisnel, “Structure studies of tin-doped indium oxide (ITO) and In4Sn3O12”, Journal of Solid State Chemistry 135, 148 (1988).
[3] E. Shigeno, K. Shimizu, S. Seki, M. Ogawa, A. Shida, M. Ide, Y. Sawada “Formation of indium-tin-oxide films by dip coating process using indium dipropionate monohydroxide”, Thin Solid Films 411, 56-59 (2002).
[4] H. Miyazaki, T. Ota, I. Yasui, “Design of ITO/transparent resin optically selective transparent composite”, Solar Energy Materials & Solar Cells 79, 51-55 (2003).
[5] J. E. Song, Y. H. Kim, Y. S. Kang, “Preparation of indium tin oxide nanoparticles and their application to near IR-reflective film”, Current Applied Physics 6, 791-795 (2006).
[6] N. C. Pramanik, S. Dasl, P. K. Biswas, “The effect of Sn(IV) on transformation of co precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide(ITO) powder”, Materials Latters 56, 671-679 (2002).
[7] B. C. Kim, S. M. Kim, J. H. Lee, J. J. Kim, “Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders”, Journal of American Ceramic Society 85, 2083-88 (2002).
[8] K. Y. Kim, S. B. Park, “Preparation and property control of nano-sized indium tin oxide particle”, Materials Chemistry and Physics 86, 210-221 (2004).
[9] S. G. Chen, C. H. Li, W. H. Xiong, L. M. Liu, H. Wang, “Preparation of indium-tin-oxide (ITO) nano-aciculae by a simple precipitation near boiling point and post-calcination method”, Materials Letters 59, 1342-1346 (2005).
[10] S. Li, X. Qiao, J. Chen, H. Wang, F. Jia, X. Lin, “Effects of temperature on indium tin oxide particles synthesized by co-precipitation”, Jounal of Crystal Growth 289, 151-156 (2006).
[11] J. E. Song, D. K. Lee, H. W. Kim, Y. I. Kim, Y. S. Kang, “Preparation and characterization of monodispersed indium-tin oxide nanoparticles”, Colloids and Surfaces A :physicochem. Eng. Aspects 257-258 (2005).
[12] R. J. Pan, S. W. Qiang, K. Y. Liew, Y. X. Zhao, R. Wang, J. H. Zhu, “Effect of stabilizer on synthesis of indium tin oxide nanoparticles”, Powder Technology 189, 126-129 (2009).
[13] N. Al-Dahoudi, M. Aegerter, “Comparative study of transparent conductive In2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension”, Thin Solid Film 502, 193-197 (2006).
[14] N. Al-Dahoudi, M.A. Aegerter, “Wet coating deposition of ITO coating on plastic substrates”, Journal of Sol-Gel Science and Technology 26, 693-697 (2003)
[15] S. Heusing, P. W. de Oliveira, E. Kraker, A. Haase, C. Palfinger, M. Veith, “Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes”, Thin Solid Films 518, 1164-1169 (2009).
[16] B. Zhu, M. Zhu, Q. Zhang, L. Chang, Y. Li, H. Wang, “Conducting behaviors of PPy/ITO composites synthesized by polymerization”, Synthetic Metals 160, 2151–2154 (2010).
[17] H. Y. Lai, T. H. Chen, C. H. Chen “Optical and electrical properties of ink-jet printed indium–tin-oxide nanoparticle films”, Materials Letters 65, 3336–3339 (2011).
[18] C. Q. Peng, Y. S. Thio, R. A. Gerhardt, “Conductive paper fabricated by
layer-by-layer assembly of polyelectrolytes and ITO nanoparticles”, Nanotechnology 19, 505603 (2008).
[19] C. Q. Peng, Y. S. Thio, R. A. Gerhardt, “Enhancing the Layer-by-Layer Assembly of Indium Tin Oxide Thin Films by Using Polyethyleneimine”, Journal of Physical Chemistry C 114, 9685–9692 (2010).
[20] 薛玫玲,聚磺酸苯乙烯對銦錫氧化物奈米粒子之製備、形態以及性質之影響,碩士論文,淡江大學,(2010).
[21] T. Sasaki, Y Endo, M. Nakaya, K. Kanie, A. Nagatomi, K. Tanoue, R. Nakamura, A. Muramatsu, “One-step solvothermal stnthesis of cubic-shaped ITO nanoparticles precisely controlled in size and shape and their electrical resistivity”, Journal of Materials Chemistry 20, 8153-8157 (2010).
[22] M. Kanehara, H. Koike, T. Yoshinaga, T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region”, Journal of American Society 131, 17736-17737 (2009).

[23] S. I. Choi, K. M. Nam, B. K. Park, W. S. Seo, J. T. Park, “Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles”, Chemical Material 20, 2609-2611 (2008).
[24] R. A. Gilstrap Jr., C. J. Capozzi, C. G. Carson, R. A. Gerhardt, C. J. Summers, “Synthesis of nonagglomerated indium tin oxide nanoparticle dispersion”, Advanced Materials 20, 4163-4166 (2008).
[25] I. Maksimenko, M. Gross, T. Koniger, H. Munstedt, P. J. Wellmann, “Conductivity and adhesion enhancement in low-temperature processed indium tin oxide/polymer nanocomposites”, Thin Solid Film 518, 2910-2915 (2010).
[26] N. Al-Dahoudi, H. Bisht, C. Gobbert, T. Krajewski, M. Aegerter, “Transparent conducting, anti-static and anti-glare coating on plastic substrates”, Thin Solid Film 392, 299-304 (2001).
[27] C. J. Capozzi, R. A. Gerhardt, “Novel Percolation Mechanism in PMMA Matrix Composites Containing Segregated ITO Nanowire Networks”, Advanced Functional Materials 17, 2515–2521 (2007).
[28] R. A. Gilstrap Jr, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, C. J. Summers, “Synthesis of a Nonagglomerated Indium Tin Oxide Nanoparticle Dispersion”, Advanced Materials 20, 4163–4166 (2008).
[29] N. Mechau, R. Groeger, A. Prodi-Schwab, R. Schmechel, “Reduced conductivity in poly(3,4-ethylenedioxythiophen)-poly(styrenesulfonate) and indium tin oxide nanocomposite for low indium tin oxide content”, Journal of Applied Physics 105, 054318 (2009).
[30] G. Buhler, D. Tholmann, C. Feldmann, “One-Pot Synthesis of Highly Conductive Indium Tin Oxide Nanocrystals”, Advanced Materials 19, 2224-2227 (2007)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-02-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-02-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信